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THREE WEAK SOLUTIONS FOR A p(x)-LAPLACIAN EQUATION

Mohsen Alimohammady, Asieh Rezvani and Ismail Aydin

Abstract. We study the existence of three weak solutions to the Dirichlet boundary
condition for a p(x)-Laplacian equation. Using a variational method and the three critical
point theorem, we would show the existence and multiplicity of the solutions. For this
purpose, we focus on a generalized variable exponent Lebesgue-Sobolev space.

1. Introduction

In this article we study the following problem:{
−div[O(x, |∇u|)∇u]+|u|p(x)−2u = λ(a(x)|u|q(x)−2−b(x)|u|r(x)−2)u in Ω

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain of RN with a sufficiently smooth boundary. Let λ
be a positive real parameter and p, q and r be real continuous functions on Ω̄ with

1 < q(x) < r(x) < p(x) < p∗(x), where p∗(x) =
Np(x)

N − p(x)
and p(x) < N for all x ∈ Ω̄,

O(x, ξ) is of type |ξ|p(x)−2. ∆p(x)u := div(|∇u|p(x)−2∇u) denotes the p(x)-Laplacian
operator (for details see [2, 8, 15]) . We consider the following conditions.

(H1) O : Ω̄× [0,∞) → R is a continuous function such that

C1t
p(x)−2 ≤ O(x, t) ≤ C2t

p(x)−2,

for all t ≥ 0 and for all x ∈ Ω̄, where C1, C2 are positive constants and p ∈ C(Ω̄) such
that 1 < p(x) < p∗(x) for all x ∈ Ω̄.

(H2) a and b are positive functions in L∞(Ω̄) and there exists ε > 0 for all x ∈ Ω̄,
such that ε < a(x) and ε < b(x).

(H3) ∥a∥∞ < ∥b∥∞.
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2 Three weak solutions for a p(x)-Laplacian equation

Many results have been obtained on this kind of problems. For literature in [11], the
authors studied the existence of at least one positive radial solution for the problem:

−△p(x)u+R(x)|u|p(x)−2u = a(x)|u|q(x)−2u− b(x)|u|r(x)−2u x ∈ B,

u > 0 x ∈ B,

u = 0 x ∈ ∂B,

where B is the unit ball centered at the origin in RN , N ≥ 3. In [15], V. F. Uta
considered the existence of minimum action solutions and the concentration of the
spectrum in a bounded interval for the following problem using the Mountain pass
theorem and the Nehari manifold technique:{

−div[Φ(x, |∇u|)∇u] = λ(g(x)|u|q(x)−2u+ |u|r(x)−2u) in Ω,

u = 0 on ∂Ω,

In [13], I. D. Stircu, studied the existence at least two weak solutions for the following
problem using the Mountain pass theorem:{

−div[Φ(x, |∇u|)∇u] + |u|p(x)−2u = λ|u|r(x)−2u− h(x)|u|s(x)−2u in Ω,

u = 0 on ∂Ω

Ismail Aydin and Cihan Unal in [1] have found the existence of at least three weak
solutions to the following Steklov problem using the three critical points theorem:div(a(x)|∇u|p(x)−2∇u) = b(x)|u|p(x)−2u in Ω,

a(x)|∇u|p(x)−2 ∂u

∂v
= λf(x, u) on ∂Ω.

In [14], S. Taarabti, Z. E. Allali and K. B. Haddouch studied the following p(x)-
biharmonic problem using the three critical points theorem:∆2

p(x) + a(x)|u|p(x)−2u = βV (x)f(x, u) in Ω,
∂u

∂v
=

∂

∂v
(|∆u|p(x)−2∆u) = 0 on ∂Ω.

Here, we study the existence and multiplicity of the solutions for the problem (1)
by using the variational method and the three critical point theorem.

2. Preliminaries

We recall some necessary definitions and propositions concerning the Lebesgue and
Sobolev spaces. Let Ω be a bounded domain of RN . Set C+(Ω) := {s ∈ C(Ω̄); s(x)>1,
∀x ∈ Ω̄}. For any continuous function s : Ω → (1,∞), s− := infx∈Ω s(x) and
s+ := supx∈Ω s(x). For s ∈ C+(Ω̄), Ls(x)(Ω) := {u : Ω → R is a measurable function:∫
Ω
|u|s(x)dx<+∞}, endowed with the norm ∥u∥s(x):= inf

{
µ>0 :

∫
Ω

∣∣∣u(x)
µ

∣∣∣s(x)dx ≤ 1

}
.

Ls(x)(Ω) is well known that is a separable reflexive Banach space [3, 7, 9].

The modular of the Ls(x)(Ω) is defined by σs(x)(u) :=
∫
Ω
|u(x)|s(x)dx.
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Proposition 2.1 ([5, 8]). (Ls(x)(Ω), ∥.∥s(x)) is separable, uniformly convex, reflexive

Banach space and its conjugate space is (Ls′(x)(Ω), ∥.∥s′(x)), where 1
s(x) +

1
s′(x) = 1,

∀x ∈ Ω. For all u ∈ Ls(x)(Ω) and w ∈ Ls′(x)(Ω), we have

|
∫
Ω

uw dx| ≤ (
1

s−
+

1

s′−
)∥u∥s(x)∥w∥s′(x) ≤ 2∥u∥s(x)∥w∥s′(x).

Proposition 2.2 ([6, 9]). Suppose that u, un ∈ Ls(x)(Ω), we have

∥u∥s(x) < 1 ⇒ ∥u∥s
+

s(x) ≤ σs(x)(u) ≤ ∥u∥s
−

s(x).

∥u∥s(x) > 1 ⇒ ∥u∥s
−

s(x) ≤ σs(x)(u) ≤ ∥u∥s
+

s(x).

∥u∥s(x) < 1(resp,= 1;> 1) ⇔ σs(x)(u) < 1(resp,= 1;> 1).

∥un∥s(x) → 0(resp,→ +∞) ⇔ σs(x)(un) → 0(resp,→ +∞).

lim
n→∞

∥un − u∥s(x) = 0 ⇔ lim
n→∞

σs(x)(un − u) = 0.

The Sobolev space W 1,s(x)(Ω), W 1,s(x)(Ω) :=
{
u ∈ Ls(x)(Ω) : |∇u| ∈ Ls(x)(Ω)

}
is

a separable and reflexive Banach spaces with norm ∥u∥1,s(x) = ∥u∥s(x) + ∥∇u∥s(x).
For more details, we refer to [4, 9].

OnW
1,s(x)
0 (Ω), we may consider the following equivalent norm ∥u∥s(x) = ∥∇u∥s(x),

where W
1,s(x)
0 (Ω) is the closure of C∞

0 (Ω) with respect to the following norm:

∥u∥ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∇u(x)

µ

∣∣∣s(x)) dx ≤ 1

}
.

It is known that W
1,s(x)
0 (Ω) :=

{
u; u

∣∣∣
∂Ω

= 0, u ∈ Ls(x)(Ω), |∇u| ∈ Ls(x)(Ω)
}
. For

more details, we refer to [2, 4, 15].

Proposition 2.3 ([5, Sobolev Embedding]). For s, s′ ∈ C+(Ω̄) and 1 < s′(x) < s∗(x)

for all x ∈ Ω̄, there is a continuous compact embedding W
1,s(x)
0 (Ω) ↪→ Ls′(x)(Ω),

which is continuous and compact. Therefore, there is a constant c0 > 0 such that
∥u∥s′(x) ≤ c0∥u∥.

Proposition 2.4 ([10, Poincare Inequality]). There is a constant c > 0 such that

∥u∥s(x) ≤ C∥∇u∥s(x), for all u ∈ W
1,s(x)
0 (Ω).

Remark 2.5. From Proposition 2.4, ∥∇u∥s(x) and ∥u∥1,s(x) are equivalent norms on

W
1,s(x)
0 (Ω).

3. Main results

Before to the proceed the results, we need some notions.

Definition 3.1. u ∈ W
1,p(x)
0 (Ω) is called a weak solution for (1) if∫

Ω

O(x, |∇u(x)|)∇u(x)∇h(x)dx+

∫
Ω

|u(x)|p(x)−2u(x)h(x)dx
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= λ

∫
Ω

[a(x)|u(x)|q(x)−2u(x)h(x)− b(x)|u(x)|r(x)−2u(x)h(x)]dx,

for all h ∈ W
1,p(x)
0 (Ω). In what follows

A0(x, z) :=

∫ z

0

O(x, t)t dt,

and A : W
1,p(x)
0 (Ω) → R by A(u) :=

∫
Ω

A0(x, |∇u(x)|)dx.

The energy functional associated to problem (1) can obtained by

J(u) =

∫
Ω

A0(x, |∇u|)dx+
∫
Ω

1

p(x)
|u|p(x)dx−λ

∫
Ω

a(x)

q(x)
|u|q(x)dx+λ

∫
Ω

b(x)

r(x)
|u|r(x)dx,

for all u ∈ W
1,p(x)
0 (Ω). It is well defined, C1 functional and for all u, h ∈ W

1,p(x)
0 (Ω),

⟨J ′(u), h⟩ =
∫
Ω

O(x, |∇u|)∇u.∇hdx+

∫
Ω

|u|p(x)−2uhdx

− λ

∫
Ω

a(x)|u|q(x)−2uhdx+ λ

∫
Ω

b(x)|u|r(x)−2uhdx.

Therefore, critical points of this energy functional are week solutions for the prob-
lem (1). We consider Ω ⊂ RN (N > 3) as a bounded domain with smooth boundary
and p ∈ C+(Ω) such that

1 < q− ≤ q(x) ≤ q+ < r− ≤ r(x) ≤ r+ < p− ≤ p(x) ≤ p+ < p∗(x) (2)

Theorem 3.2 ([12]). Let X be a separable and reflexive real Banach space, Φ : X → R
is a continuous Gateaux differentiable and sequentially weakly lower semicontinuous
functional whose Gateaux derivative admits a continuous inverse on X ′, Ψ : X → R is
a continuous Gateaux differentiable functional whose Gateaux derivative is compact.
Suppose the following assertions:
(i) lim∥u∥→∞(Φ(u) + λΨ(u)) = ±∞, for all λ > 0,

(ii) There exist e ∈ R and u0, u1 ∈ X such that Φ(u0) < e < Φ(u1),

(iii) infu∈Φ−1(−∞,e] Ψ(u) >
(Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
.

Then there exist an open interval Λ ⊂ (0,+∞) and a positive real number γ such that
the equation Φ′(u)+λΨ′(u) = 0 admits at least three solutions in X whose norms are
less than γ, for all λ ∈ Λ.

Theorem 3.3. If (2) and (H1)-(H3) hold. Then, there exist an open interval Λ ⊂
(0,+∞) and a positive real number γ such that for any λ ∈ Λ, the problem (1) has at

least three solutions in W
1,p(x)
0 (Ω) whose norms are less than γ.

Proposition 3.4 ([1]). Let us define the functional Φ : W
1,p(x)
0 (Ω) → R by

Φ(u) =

∫
Ω

A0(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx,
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for all u ∈ W
1,p(x)
0 (Ω). Then, we have

(i) Φ : W
1,p(x)
0 (Ω) → R is sequentially weakly lower semicontinuous and Φ ∈

C1(W
1,p(x)
0 (Ω),R). Moreover, the derivative operator Φ′ of Φ define as

⟨Φ′(u), h⟩ =
∫
Ω

O(x, |∇u|)∇u∇hdx+

∫
Ω

|u|p(x)−2uhdx.

for all u, h ∈ W
1,p(x)
0 (Ω).

(ii) Φ′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is a continuous, bounded and strictly mono-

tone operator.

(iii) The mapping Φ′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is of (S+) type, i.e., if un ⇀ u

as n → ∞ and lim supn→∞⟨Φ′(un), un − u⟩ ≤ 0 implies un → u.

(iv) Φ′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is a homeomorphism.

Let

Ψ(u) =

∫
Ω

a(x)

q(x)
|u|q(x)dx−

∫
Ω

b(x)

r(x)
|u|r(x)dx.

We have ⟨Ψ′(u), h⟩ =
∫
Ω

a(x)|u|q(x)−2uh dx−
∫
Ω

b(x)|u|r(x)−2uh dx.

Therefore, Ψ is a C1- function on W
1,p(x)
0 (Ω) and by [3], Ψ′ satisfied the condition

(S+). By using H2 and the compact Sobolev embedding W
1,s(x)
0 (Ω) ↪→ Lq(x)(Ω) and

W
1,s(x)
0 (Ω) ↪→ Lr(x)(Ω). It is direct to see that Ψ′ is compact.

Proof (Proof of Theorem 3.3). To prove this theorem, we first verify the condition (i)
of Theorem 3.2

Φ(u) =

∫
A0(x, |∇u|)dx+

∫
Ω

1

p(x)
|u|p(x)dx =

∫
Ω

[∫ |∇u|

0

O(x, t)t dt

]
+

∫
Ω

1

p(x)
|u|p(x)dx

≥
∫
Ω

[
C1

∫ |∇u|

0

tp(x)−1dt

]
dx+

∫
Ω

1

p(x)
|u|p(x)dx ≥ C1

p+

∫
Ω

|∇u|p(x)dx+ 1

p+

∫
|u|p(x)dx.

Set C2 = min{C1

p+
,
1

p+
}. If σp(x)(u) :=

∫
Ω
|u(x)|p(x)dx and σs(x)(u) > 1, by Proposi-

tion 2.4, Proposition 2.2 and (2)

Φ(u) ≥ C2∥u∥p
−
. (3)

On the other hand,

Ψ(u) =

∫
Ω

a(x)

q(x)
|u|q(x)dx−

∫
Ω

b(x)

r(x)
|u|r(x)dx

≥ 1

q+

∫
Ω

a(x)|u|q(x)dx− ∥b∥∞
r−

∫
Ω

|u|r(x)dx ≥ −∥b∥∞
r−

∫
Ω

|u|r(x)dx.

If σp(u) > 1, by Proposition 2.4, Proposition 2.2 and (2)

Ψ(u) ≥ −∥b∥∞
r−

∥u∥r
+

. (4)



6 Three weak solutions for a p(x)-Laplacian equation

By (3), (4) and for any λ > 0, we obtain Φ(u) + λΨ(u) ≥ C2∥u∥p
− − λ

∥b∥∞
r−

∥u∥r+ .
Since (2), then lim∥u∥→∞(Φ(u) + λΨ(u)) = ∞, for all λ > 0 and (i) of Theorem 3.2
is verified.

Choosing k < dp
− |Ω|, 0 < e <

k

p+
, u0(x) = 0 and u1(x) = d such that d > 1, then

Φ(u0) = Ψ(u0) = 0 and Φ(u1) =

∫
Ω

1

p(x)
dp(x)dx ≥ dp

−

p+
|Ω| > e.

Thus Φ(u0) < e < Φ(u1). Then (ii) of Theorem 3.2 is verified.

On the other hand, by (H3), (2), d > 1 and choosing
dq

+

q−
<

dr
−

r+
,

− (Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
= −e

Ψ(u1)

Φ(u1)

= −e

∫
Ω

a(x)

q(x)
dq(x)dx−

∫
Ω

b(x)

r(x)
dr(x)dx∫

Ω

1

p(x)
dp(x)dx

> −e

∥a∥∞
q−

dq
+ |Ω| − ∥a∥∞

r+
dr

− |Ω|

dp
+

p−
|Ω|

= −e

(
dq

+

q−
− dr

−

r+
)∥a∥∞

dp
+

p−

> 0. (5)

Let u ∈ W
1,p(x)
0 (Ω) such that Φ(u) ≤ e and e < C2. By (3) and Proposition 2.2, we

have C2∥u∥p
− ≤ Φ(u) ≤ e. So

∥u∥ ≤ (
e

C2
)

1

p− < 1. (6)

From (H2), (2), (4) and (6)

− inf
u∈Φ−1(−∞,e]

Ψ(u) = sup
u∈Φ−1(−∞,e]

−Ψ(u) ≤ sup[
∥b∥∞
r−

∥u∥r
+

− ε

q+
∥u∥q

−
] ≤ 0. (7)

Then by (5) and (7)

− inf
u∈Φ−1(−∞,e]

Ψ(u) < − (Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
,

and inf
u∈Φ−1(−∞,e]

Ψ(u) >
(Φ(u1)− e)Ψ(u0) + (e− Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
.

This completes the proof. □
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