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ON gr-C-2A-SECONDARY SUBMODULES
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Abstract. Let Ω be a group with identity e, Γ be a Ω-graded commutative ring and ℑ a
graded Γ-module. In this article, we introduce the concept of gr-C-2A-secondary submodules
and investigate some properties of this new class of graded submodules. A non-zero graded
submodule S of ℑ is said to be a gr-C-2A-secondary submodule if whenever r, s ∈ h(Γ), L is a
graded submodule of ℑ, and rs S ⊆ L, then either r S ⊆ L or s S ⊆ L or rs ∈ Gr(AnnΓ(S)).

1. Introduction

In this article we assume that Γ is a commutative Ω-graded ring with identity and ℑ
is a unitary graded Γ-module.

Let Ω be a group with identity e and Γ a commutative ring with identity 1Γ. Then
Γ is an Ω-graded ring if there exist additive subgroups Γg of Γ such that Γ =

⊕
g∈Ω Γg

and ΓgΓh ⊆ Γgh for all g, h ∈ Ω. Furthermore, h(Γ) =
⋃

g∈Ω Γg, (see [13]).
A left Γ-module ℑ is called Ω-graded Γ-module if there exists a family of additive

subgroups {ℑα}α∈Ω of ℑ such that ℑ =
⊕

α∈Ω ℑα and Γαℑβ ⊆ ℑαβ for all α, β ∈ Ω.
Even if an element of ℑ belongs to ∪α∈Ωℑα = h(ℑ), it is called homogeneous. We
refer to [9, 11–13] for basic properties and more information about graded rings and
graded modules. By L ≤Ω ℑ we mean that L is a Ω-graded submodule of ℑ.

Let Γ be a Ω-graded ring, ℑ a graded Γ-module and S a graded submodule of
ℑ. Then (S :Γ ℑ) is defined as (S :Γ ℑ) = {a ∈ Γ|aℑ ⊆ S}. The annihilator of ℑ is
defined as (0 :Γ ℑ) and is denoted by AnnΓ(ℑ). Let Γ be an Ω-graded ring. The graded
radical of a graded ideal L, denoted by Gr(L), is the set of all t =

∑
α∈Ω tα ∈ Γ, so

that for every α ∈ Ω there exists nα > 0 with tnα
α ∈ L, (see [15]). A proper graded

submodule S of ℑ is called a completely graded irreducible if S = ∩α∈∆Sα, where
{Sα}α∈∆ is a family of graded submodules of ℑ, then S = Sβ for some β ∈ ∆.

The study of graded rings and modules has long attracted the attention of many
researchers, as they have important applications in many fields such as geometry and
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physics. For example, graded Lie algebra plays an important role in differential ge-
ometry, such as the Frolicher-Nijenhuis and Nijenhuis-Richardson brackets (see [10]).
In addition, they solve many physical problems related to supermanifolds, supersym-
metries and quantizations of systems with symmetry (see [8, 17]).

The notion of graded 2-absorbing ideals was introduced and studied in [1]. Al-
Zoubi and Abu-Dawwas in [3] extended graded 2-absorbing ideals to graded 2-absorbing
submodules. In [2], the authors introduced the concept of the graded 2-absorbing
primary ideal, which is a generalization of the graded primary ideal. The notion of
graded 2-absorbing primary submodules as a generalization of graded 2-absorbing pri-
mary ideals was introduced and studied in [7]. In [4, 16], the authors introduced the
dual notion of graded 2-absorbing submodules (i.e. graded 2-absorbing (resp., graded
strongly 2-absorbing) second submodules) of ℑ and investigated some properties of
these classes of graded modules. In this paper, we introduce the concept of graded
classical 2-absorbing secondary submodules as a dual notion of graded 2-absorbing
primary submodules. We investigate the basic properties and characteristics of graded
classical 2-absorbing secondary submodules.

2. Results

Definition 2.1. Let Γ be a Ω-graded ring and ℑ a graded Γ-module. A non-zero
graded submodule S of ℑ is said to be graded classical 2-absorbing secondary (Ab-
breviated, gr-C-2A-secondary) submodule of ℑ if whenever r, s ∈ h(Γ), L ≤Ω ℑ, and
rs S ⊆ L, then r S ⊆ L or s S ⊆ L or rs ∈ Gr(AnnΓ(S)).

We say that ℑ is a gr-C-2A-secondary module if ℑ is a gr-C-2A-secondary sub-
module of itself.

Theorem 2.2. Let S be a gr-C-2A-secondary submodule of ℑ, let I =
⊕

α∈Ω Iα and
J =

⊕
α∈Ω Jα be a graded ideals of Γ. Then for every α, β ∈ Ω and L ≤Ω ℑ, with

IαJβS ⊆ L either IαS ⊆ L or JβS ⊆ L or IαJβ ⊆ Gr(AnnΓ(S)).

Proof. Let α, β ∈ Ω such that IαJβS ⊆ L for some L ≤Ω ℑ. Assume that IαJβ ⊈
Gr(AnnΓ(S). Then there exist rα ∈ Iα and sβ ∈ Jβ such that rαsβ /∈ Gr(AnnΓ(S).
Now since rαsβ S ⊆ L, we get rα S ⊆ L or sβ S ⊆ L. We show that either IαS ⊆ L
or JβS ⊆ L. On contrary, we suppose that IαS ⊈ L and JβS ⊈ L. Then there exist
r′α ∈ Iα and s′β ∈ Jβ such that r′α S ⊈ L and s′β S ⊈ L. Since r′αs

′
β S ⊆ L and S be a

gr-C-2A-secondary submodule of ℑ, r′αs′β ∈ Gr(AnnΓ(S). We have three cases:

Case I : Suppose that rα S ⊆ L but sβ S ⊈ L. Since r′αsβ S ⊆ L and sβ S ⊈ L and
r′α S ⊈ L, this implies r′αsβ ∈ Gr(AnnΓ(S)). Since rα S ⊆ L and r′α S ⊈ L, we get
(rα + r′α)S ⊈ L. As (rα + r′α)sβ S ⊆ L and sβ S ⊈ L, then (rα + r′α)S ⊈ L implies
(rα+r

′
α)sβ ∈ Gr(AnnΓ(S). Since r

′
αsβ ∈ Gr(AnnΓ(S)), we get rαsβ ∈ Gr(AnnΓ(S)),

a contradiction.

Case II : Suppose sβ S ⊆ L but rα S ⊈ L. Then similar to the Case I, we get a
contradiction.
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Case III : Suppose rα S ⊆ L and sβ S ⊆ L. Now sβ S ⊆ L and s′β S ⊈ L imply (sβ +

s′β)S ⊈ L. Since r′α(sβ+s
′
β)S ⊆ L and (sβ+s

′
β)S ⊈ L and r′α S ⊈ L, we get r′α(sβ+

s′β) ∈ Gr(AnnΓ(S)). Now as r′αs
′
β ∈ Gr(AnnΓ(S)), we get r′αsβ ∈ Gr(AnnΓ(S)).

Again rα S ⊆ L and r′α S ⊈ L imply (rα + r′α)S ⊈ L. Since (rα + r′α)s
′
β S ⊆ L

and (rα + r′α)S ⊈ L and s′β S ⊈ L, we have (rα + r′α)s
′
β ∈ Gr(AnnΓ(S)). Since

r′αs
′
β ∈ Gr(AnnΓ(S)), we get rαs

′
β ∈ Gr(AnnΓ(S)). Since (rα+r

′
α)(sβ+s

′
β)S ⊆ L and

(rα+r
′
α)S ⊈ L and (sβ+s

′
β)S ⊈ L, we get (rα+r

′
α)(sβ+s

′
β) ∈ Gr(AnnΓ(S)). Since

rαs
′
β , r

′
αsβ , r

′
αs

′
β ∈ Gr(AnnΓ(S)), we have rαsβ ∈ Gr(AnnΓ(S)), a contradiction.

Thus IαS ⊆ L or JβS ⊆ L.

Theorem 2.3. Let S be a gr-C-2A-secondary submodule of ℑ, then for each a, b ∈
h(Γ) we have abS = aS or ab S = bS or ab ∈ Gr(AnnΓ(S)).

Proof. Let a, b ∈ h(Γ), then abS ⊆ abS implies that aS ⊆ abS or aS ⊆ abS or
ab ∈ Gr(AnnΓ(S)). Clearly, abS ⊆ aS and abS ⊆ bS, so we have abS = aS or
abS = bS or ab ∈ Gr(AnnΓ(S)). □

Let U and P be two graded submodules of a graded Γ-module. To prove that
U ⊆ P , it suffices to show that if V is a completely graded irreducible submodule
of ℑ such that P ⊆ V , then U ⊆ V (see [4]). A proper graded ideal L of Γ is
called a graded 2-absorbing primary (abbreviated, gr-2A-primary) ideal if whenever
a, b, c ∈ h(Γ) with abc ∈ L, then ab ∈ L or ac ∈ Gr(L) or bc ∈ Gr(L).

Theorem 2.4. Let S be a gr-C-2A-secondary submodule of a graded Γ-module ℑ.
Then AnnΓ(S) is a gr-2A-primary ideal of Γ.

Proof. Let r, s, t ∈ h(Γ) wit rst ∈ AnnΓ(S). Assume that rs /∈ AnnΓ(S) and rt /∈
Gr(AnnΓ(S)). We show that st ∈ Gr(AnnΓ(S)). There exist completely irreducible
submodule J1 and J2 of ℑ such that rs S ⊈ J1 and rt S ⊈ J2. Since rst S = 0 ⊆
J1 ∩ J2, st S ⊆ (J1 ∩ J2 :ℑ r). Since S is gr-C-2A-secondary submodule of ℑ, we
have rs S ⊆ J1 ∩ J2 or rt S ⊆ J1 ∩ J2 or st ∈ Gr(AnnΓ(S)). If rs S ⊆ J1 ∩ J2 or
rt S ⊆ J1 ∩ J2, then rs S ⊆ J1 or rt S ⊆ J2 which are contradictions. Therefore
st ∈ Gr(AnnΓ(S)). □

A proper graded ideal L of Γ is a graded 2-absorbing (abbreviated, gr-2A) ideal
of Γ if whenever a, b, c ∈ h(Γ) with abc ∈ L, then ab ∈ L or ac ∈ L or bc ∈ L (see [1]).

Corollary 2.5. Let S be a gr-C-2A-secondary submodule of a graded Γ-module ℑ.
Then Gr(AnnΓ(S)) is a gr-2A ideal of Γ.

Proof. By Theorem 2.4, AnnΓ(S) is gr-2A-primary ideal of Γ. So by [2, Theorem
2.3], Gr(AnnΓ(S)) is gr-2

A ideal of Γ. □

The following example shows that the converse of Theorem 2.4 is not true in
general.

Example 2.6. Let Γ = Z and Ω = Z2, then Γ is a Ω-graded ring with Γ0 = Z and
Γ1 = {0}. Consider ℑ = Zpq ⊕Q as a Z-module, where p, q are two prime integers, ℑ
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is a Ω-graded module with ℑ0 = Zpq ⊕ {0} and ℑ1 = {0̄} ⊕Q. Then AnnΓ(ℑ) = {0}
is a gr-2A-primary ideal of Z. But ℑ is not gr-C-2A-secondary Z-module, since
pqℑ ⊆ {0̄} ⊕ Q, but pM = pZpq ⊕ Q ⊈ {0̄} ⊕ Q and qℑ = qZpq ⊕ Q ⊈ {0̄} ⊕ Q and
pq /∈ Gr(AnnΓ(ℑ)).

A graded domain Γ is called a gr-Dedekind ring if every graded ideal of Γ factorises
into a product of graded prime ideals (see [19]).

A graded Γ-module ℑ is called a gr-comultiplication module if for every graded
submodule S of ℑ there exists a graded ideal P of Γ such that S = (0 :ℑ P ), or,
equivalently, for each graded submodule S of ℑ, we have S = (0 :ℑ AnnΓ(S)) (see [5]).

The gr-C-2A-secondary submodules of a gr-comultiplication module over a gr-
Dedekind domain are described in the following theorem.

Theorem 2.7. Let Γ be a gr-Dedekind domain, and ℑ be a gr-comultiplication Γ-
module, if S is gr-C-2A-secondary submodule of ℑ, then S = (0 :ℑ Annn

Γ(L)) or
S = (0 :ℑ Annn

Γ(L1)Ann
m
Γ (L2)), where L,L1, L2 are graded minimal submodules of

ℑ and n,m are positive integers.

Proof. By Theorem 2.4, since S is gr-C-2A-secondary submodule of ℑ, then AnnΓ(S)
is a gr-2A-primary ideal of Γ. Using [18, Theorem 4.1] and [19, Lemma 1.1], we have
either AnnΓ(S) = In or AnnΓ(S) = In1 I

m
2 , where I, I1, I2 are graded maximal ideals

of Γ. First assume AnnΓ(S) = In. If (0 :ℑ I) = 0, then (0 :ℑ In) = 0, and so we
conclude that S = 0, a contradiction. Now by [5, Theorem 3.9], since I is graded
maximal ideal of Γ, we have (0 :ℑ I) is graded minimal submodule of ℑ. This implies
that S = (0 :ℑ Annn

Γ(L)), where L = (0 :ℑ I). Now assume that AnnΓ(S) = In1 I
m
2 . If

(0 :ℑ I1) = 0 and (0 :ℑ I2) = 0, then S = 0, a contradiction. Thus either (0 :ℑ I1) ̸= 0
or (0 :ℑ I2) ̸= 0. Hence one can see that either S = (0 :ℑ AnnnΓ(L1)Ann

m
Γ (L2))

or S = (0 :ℑ Annn
Γ(L1)) or S = (0 :ℑ Annm

Γ (L2)), where L1 = (0 :ℑ I1) and
L2 = (0 :ℑ I2) are graded minimal submodules of ℑ. □

For a graded Γ-submodule S of ℑ, the graded second radical of S is defined
as the sum of all gr-second Γ-submodules of ℑ contained in S, and is denoted by
GSec(S). If S does not contain any gr-second Γ-submodule, then GSec(S) = {0}.
The graded second spectrum of ℑ is the collection of all gr-second Γ submodules and
is represented by the symbol GSpecs(ℑ). The set of all gr-prime Γ-submodules of
ℑ is called the graded spectrum of ℑ and is denoted by GSpec(ℑ). The mapping
ψ : GSpecs(ℑ) → GSpec(Γ/AnnΓ(ℑ)) is defined by ψ(S) = AnnΓ(S)/AnnΓ(ℑ) is
called the natural mapping of GSpecs(ℑ), see [16]. A graded submodule S of ℑ is
called a graded strongly 2-absorbing second (abbreviated, gr-S-2A-second) submodule
of ℑ if whenever a, b ∈ h(Γ), S1, S2 are completely graded irreducible submodules of
ℑ, and abS ⊆ S1 ∩ S2, then aS ⊆ S1 ∩ S2 or bS ⊆ S1 ∩ S2 or ab ∈ AnnΓ(S), see [4].

It is clear that every gr-S-2A-second submodule is a gr-C-2A-secondary submodule
of ℑ, but the converse is generally not true. This is illustrated by the following
examples.

Example 2.8. Let Ω = Z2 and Γ = Z be a Ω-graded ring with Γ0 = Z and Γ1 = {0}.
Let ℑ = Zp∞ = { a

pn + Z : a, n ∈ Z, n ⩾ 0} be a graded Γ-module with ℑ0 = Zp∞
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and ℑ1 = {0Zp∞ } = {Z}, where p is a fixed prime number. Consider the graded
submodule N = ⟨ 1

p3 + Z⟩ of ℑ. Then N is gr-C-2A-secondary submodule which is

not a gr-S-2A-second submodule.

Theorem 2.9. Let ℑ be a gr-comultiplication Γ-module, and the natural map ψ of
GSpecs(S) is surjective, if S is a gr-C-2A-secondary submodule of ℑ, then GSec(S)
is a gr-S-2A-second submodule of ℑ.

Proof. Let S be a gr-C-2A-secondary submodule of ℑ. By Corollary 2.5, Gr(AnnΓ(S))
is gr-2A ideal of Γ. By [16, Lemma 4.7], Gr(AnnΓ(S)) = AnnΓ(GSec(S)). Therefore,
AnnΓ(GSec(S)) is gr-2

A ideal of Γ. Using [16, Proposition 3.7], GSec(S) is gr-S-2A-
second Γ-submodule of ℑ. □

Let Γ be a Ω-graded ring, a graded Γ-module ℑ is a gr-sum-irreducible if ℑ ̸= 0
and the sum of any two proper graded submodule of ℑ is always a proper graded
submodule (see [6]).

Theorem 2.10. Let S be a gr-C-2A-secondary submodule of ℑ. Then r S = r2 S, ∀r ∈
h(Γ)\Gr(AnnΓ(S)). The converse hold, if S is a gr-sum-irreducible submodule of ℑ.

Proof. Let r ∈ h(Γ)\Gr(AnnΓ(S)). Then r2 ∈ h(Γ)\Gr(AnnΓ(S)). Thus by Theo-
rem 2.3, we have r S = r2 S. Conversely, let S be a gr-sum-irreducible submodule of ℑ
and rs S ⊆ L, for some r, s ∈ h(Γ) and L ≤Ω ℑ. Suppose that rs /∈ Gr(AnnΓ(S)). We
show that r S ⊆ L or s S ⊆ L. Since rs /∈ Gr(AnnΓ(S)), we have r, s /∈ Gr(AnnΓ(S)).
Thus r S = r2 S by assumption. Let x ∈ S, then rx ∈ r S = r2 S. So ∃y ∈ S
such that rx = r2y. This implies that x − ry ∈ (0 :S r) ⊆ (L :S r). Thus
x = x − ry + ry ∈ (L :S r) + (L :S s). Hence S ⊆ (L :S r) + (L :S s). Clearly,
(L :S r) + (L :S s) ⊆ S, as S is gr-sum-irreducible submodule of ℑ, (L :S r) = S or
(L :S s) = S, i.e r S ⊆ L or s S ⊆ L, as needed. □

A graded Γ-module ℑ is called gr-multiplication, if for every graded submodule S
of ℑ, there exists a graded ideal K of Γ such that S = Kℑ (see [14]).

Theorem 2.11. Let S ≤Ω ℑ. Then we have the following.
(a) If S is a gr-C-2A-secondary submodule of ℑ, then IC is a gr-C-2A-secondary
submodule of ℑ, for all graded ideal I of Γ, with I ⊈ AnnΓ(S).

(b) If ℑ is a gr-multiplication gr-C-2A-secondary module, then every non-zero graded
submodule of ℑ is a gr-C-2A-secondary submodule of ℑ.

Proof. (a) Let I be a graded ideal of Γ, with I ⊈ AnnΓ(S). Then IC is a non-
zero graded submodule of ℑ. Let r, s ∈ h(Γ), L is graded submodule of ℑ, and
rs IC ⊆ L, then rs S ⊆ (L :ℑ I), thus r IC ⊆ L or s IC ⊆ L or rs ∈ Gr(AnnΓ(S)) ⊆
Gr(AnnΓ(IC)), as desired.

(b) This follows from part (a). □

Theorem 2.12. Let Γ be Ω-graded ring and ℑ, ℑ′ be two graded Γ-module. Let
ψ : ℑ → ℑ′ be a graded monomorphism.
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(a) If S is a gr-C-2A-secondary submodule of ℑ, then ψ(S) is a gr-C-2A-secondary
submodule of ℑ′.

(b) If S′ is a gr-C-2A-secondary submodule of ψ(ℑ), then ψ−1(S′) is a gr-C-2A-
secondary submodule of ℑ.

Proof. (a) As S ̸= 0, and ψ is a graded monomorphism, we have ψ(S) ̸= 0, let
r, s ∈ h(Γ), L′ ≤Ω ℑ′, and rsψ(S) ⊆ L′. Then rs S ⊆ ψ−1(L′). Since S is gr-C-2A-
secondary submodule of ℑ, r S ⊆ ψ−1(L′) or s S ⊆ ψ−1(L′) or rs ∈ Gr(AnnΓ(S)).
Therefore, r ψ(S) ⊆ ψ(ψ−1(L′)) = ψ(ℑ) ∩ L′ ⊆ L′ or sψ(S) ⊆ ψ(ψ−1(L′)) = ψ(ℑ) ∩
L′ ⊆ L′ or rs ∈ Gr(AnnΓ(ψ(S))), as desired.

(b) If ψ−1(S′) = 0, then ψ(ℑ)∩S′ = ψ ψ−1(S′) = ψ(0) = 0. So S′ = 0, which is a
contradiction. Therefore ψ−1(S′) ̸= 0. Let r, s ∈ h(Γ), L ≤Ω ℑ, and rsψ−1(S′) ⊆ L.
Then rs S′ = rs(ψ(ℑ) ∩ S′) = rsψ ψ−1(S′) ⊆ ψ(L). As S′ is gr-C-2A-secondary
submodule of ψ(ℑ), r S′ ⊆ ψ(L) or s S′ ⊆ ψ(L) or rs ∈ Gr(AnnΓ(S

′)). Thus
r ψ−1(S′) ⊆ ψ−1ψ(L) = L or sψ−1(S′) ⊆ ψ−1ψ(L) = L or rs ∈ Gr(AnnΓ(ψ

−1(S′))),
as needed. □
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