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Abstract. We present new results about the factorization of Φp(M) ∈ F2[x], where p is
a prime number, Φp is the corresponding cyclotomic polynomial, and M is a Mersenne prime
polynomial. In particular, these results improve our understanding of the factorization of
the sum of the divisors of M2h for a positive integer h. This is related to the fixed points
of the sum of divisors function σ on F2[x]. The factorization of composed polynomials over
finite fields is not well understood, and classical results on cyclotomic polynomials primarily
concern the special case where M is replaced by x.

1. Introduction

A Mersenne (prime) polynomial over F2 is defined as an irreducible polynomial of
the form xa(x + 1)b + 1, for some positive integers a and b. Since −1 = 1 in F2,
this definition mirrors the concept of a Mersenne prime over the integers, where
xa(x+ 1)b ∈ F2[x] corresponds to the power 2a+b ∈ Z.

For a nonzero polynomial A ∈ F2[x], let ω(A) and σ(A) denote, respectively, the
number of distinct irreducible factors of A and the sum of all its divisors. If σ(A) = A,
we call A perfect (see [12]). The integer analogue of perfect polynomials A ∈ F2[x] is
the class of multiperfect numbers n ∈ Z, where σ(n)/n is an integer.

Conjecture 1.2, central to this study, plays a crucial role in characterizing known
perfect polynomials over F2. This conjecture has been explored in prior works, such
as [10,11,13].

Let Φp denote the cyclotomic polynomial associated with a prime p. It is evident
that Φp(M) = 1+M + · · ·+Mp−1 = σ(Mp−1). Thus, insights into the factorization
of Φp(M) are potentially valuable for addressing Conjecture 1.2.

The factorization of composed polynomials F (x) = D(x)deg(f(x)) · f(g(x)), where
f(x), C(x), D(x) ∈ Fq[x], D(x) ̸= 0, and g(x) = C(x)/D(x), is an active area of
research (see [1, 2, 5, 6, 8, 15, 17, 18, 20–24, 26]). Gallardo [9] established preliminary
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2 Factorization of cyclotomic polynomial values at Mersenne prime polynomials

results for the case whereD(x) = 1, f(x) = Φp(x), and g(x) = M , withM a Mersenne
prime polynomial.

More broadly, the factorization of polynomials over finite fields (see [16, 25]) is
of significant interest due to its applications in error-correcting codes, cryptography,
and combinatorics. Recent works, such as [4, 14, 19], have focused on the irreducible
factors of the polynomial xn − 1 =

∏
d|n Φd(x).

Notation

We adopt the following notation:
• M denotes the set of all Mersenne prime polynomials over F2.

• For S ∈ F2[x], define:

– S as the polynomial obtained by replacing x in S with x+ 1: S(x) = S(x+ 1),

– αl(S) as the coefficient of xs−l in S, where 0 ≤ l ≤ s, and α0(S) = 1.

• N (resp. N∗) denotes the set of nonnegative (resp. positive) integers.

• For a Mersenne prime polynomial M := 1 + xa(x + 1)b and a prime p := 2h + 1,
we use the following notation:

U2h := σ(σ(M2h)), W := WM := U2h + σ(M2h) + 1,

R := RM := σ(M2h−1) +W, degM := deg(M) = a+ b,

c := cM := 2hdegM −deg(W ), c ≡ deg(W ) mod 2,

m := mM ,

where m is the smallest odd integer such that αm(W ) = 1, provided that deg(W ) is
even (see Lemma 2.6).
A polynomial S splits if 0 and 1 are its only roots in F2. We use #Γ to denote the
cardinality of a set Γ.

Main results

By Corollary 2.8, for a prime p ≥ 5, we define:

Σ1
p := {M ∈ M : cM = degM}, Σ2

p := {M ∈ M : cM = degM +1, cM odd},
Σ3

p := {M ∈ M : cM +mM = degM , cM even},
Σ4

p := {M ∈ M : cM +mM = degM +1, cM even and mM ≥ 3},
Σp := Σ1

p ∪ Σ2
p ∪ Σ3

p ∪ Σ4
p.

Theorem 1.1. Let p ≥ 5 be a prime number. Then, for any M ̸∈ Σp, Φp(M) =
σ(Mp−1) is divisible by a non-prime Mersenne polynomial.

This theorem provides progress toward proving Conjecture 1.2, which asserts:

Conjecture 1.2 ([10, Conjecture 5.2]). Let h ∈ N∗ and M ∈ M such that M ̸∈
{1 + x + x3, 1 + x2 + x3} or h ≥ 2. Then, σ(M2h) is divisible by a non-prime
Mersenne polynomial.
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Remark 1.3. The conditions defining the sets Σj
p are restrictive. For various p and

d, the cardinality #Λj
p,d (where Λj

p,d := {M ∈ Σj
p : 5 ≤ deg(M) ≤ d}) is often small

or zero. The following table summarizes some cases, where Md denotes the set of
Mersenne prime polynomials with 5 ≤ deg(M) ≤ d:

p d #Λ1
p,d #Λ2

p,d #Λ3
p,d #Λ4

p,d #Md

5 100 4 0 0 0 226
7 100 0 0 2 2 226
11 100 2 0 2 0 226
13 100 0 2 0 0 226
17 100 2 0 0 0 226
19 100 0 0 0 0 226
23 100 0 0 0 0 226
29 100 4 0 2 0 226
53 60 4 0 4 0 138
59 60 0 0 0 0 138
61 60 4 2 0 0 138
67 60 0 0 0 0 138
71 60 0 2 0 0 138

Table 1

As shown in Table 1, the sets Σj
p contribute only a small fraction of the Mersenne

prime polynomials in M, particularly for large p or degrees d. This indicates the
broad applicability of Theorem 1.1 to Mersenne polynomials outside Σp. These results
not only address specific cases of Conjecture 1.2 but also suggest potential paths for
proving it in greater generality.

We mainly prove Theorem 1.1 by contradiction, either to Corollary 2.5 or to
Lemma 2.6 (iii).

The paper is technical in nature but fundamentally relies on a simple argument:
two polynomials A(x), B(x) ∈ F2[x] are equal if and only if all their coefficients are
identical.

Beard et al. [3] have previously employed a variant of this argument for the case
B(x) = σ(A(x)). Canaday [7] introduced and demonstrated that certain combina-
tions of coefficients remain invariant or undergo predictable changes when A(x) is
transformed into B(x) = σ(A(x)). In this paper, we further investigate these coeffi-
cient properties in Section 2, aiming to derive more general results pertinent to our
problem.
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2. Useful facts

In Section 3, we will use Lemmas 2.1, 2.2, 2.9, and Corollary 2.12 – sometimes without
explicit mention.

Lemma 2.1. Let S, T ∈ F2[x] be such that s = deg(S) > t = deg(T ). Then
(i) αl(S + T ) = αl(S) for any 0 ≤ l < s− t and αl(S + T ) = αl(S) + αl−(s−t)(T ) for
any s− t ≤ l ≤ s.

(ii) αl(σ(S)) = αl(S) for any 0 ≤ l ≤ r, if no irreducible polynomial of degree at
most r divides S.

Proof. (i) follows from the definition of αl and (ii) from (i), since σ(S) = S+T where
t = deg(T ) ≤ deg(S)− r − 1 < s− r. □

Lemma 2.2. Let M = xa(x+ 1)b + 1 ∈ M and h ≥ 1. Then
(i) αl(σ(M

2h)) = αl(M
2h) if 1 ≤ l ≤ a+ b− 1,

(ii) αl(σ(M
2h)) = αl(M

2h +M2h−1) if a+ b ≤ l ≤ 2(a+ b)− 1.

Proof. Since σ(M2h) = M2h +M2h−1 + T , with deg(T ) ≤ (a+ b)(2h− 2) = 2h(a+
b)− 2(a+ b), Lemma 2.1 (ii) implies that αl(σ(M

2h)) = αl(M
2h) if 1 ≤ l ≤ a+ b− 1,

and αl(σ(M
2h)) = αl(M

2h +M2h−1) if a+ b ≤ l ≤ 2(a+ b)− 1. □

Lemma 2.3. [11, Lemma 4.6] Let M = xa(x+1)b+1 ∈ M and h ≥ 1. Then, σ(M2h)
is square-free and it is not a Mersenne prime polynomial.

For the remainder of the paper, we fix M = xa(x + 1)b + 1 ∈ M and a prime
p = 2h+1. We will frequently refer to the notation introduced in Section 1, including
the polynomials W , R, U2h, and the integers c and m.

Assuming that σ(M2h) is divisible only by Mersenne prime polynomials, we will
derive several contradictions. By Lemma 2.3, we can write:

σ(M2h) =
∏
j∈J

Mj , Mj = 1 + xaj (x+ 1)bj , (1)

where Mj is irreducible and Mi ̸= Mj if i ̸= j.

Lemma 2.4. [11, Lemma 4.8] One has M ̸= 1 + x+ x2, i.e., a ≥ 2 or b ≥ 2.

Corollary 2.5. (i) The integers u =
∑
j∈J

aj and v =
∑
j∈J

bj are both even.

(ii) The polynomial U2h splits. It is a square so that αk(U2h) = 0 for any odd positive
integer k.

Proof. (i) See [11, Corollary 4.9].
(ii) Assumption (1) implies that

U2h = σ(σ(M2h)) = σ(
∏
j∈J

Mj) =
∏
j∈J

xaj (x+ 1)bj = xu(x+ 1)v,

where u and v are even. □
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Lemma 2.6. The polynomials M,W and R satisfy:
(i) degM ≥ 5 and ω(σ(M2h)) ≥ 3.

(ii) W ̸= 0 and it is not a square.

(iii) R is a square so that αk(R) = 0 for any odd positive integer k.

(iv) M2h−1 +W is not a square.

(v) There exists a least odd integer m ≥ 1 such that αm(W ) = 1 if deg(W ) is even.

(vi) There exists a least even integer e ≥ 2 such that αe(W ) = 1 if deg(W ) is odd.

Proof. (i) The cases where deg(M) ≤ 4 or ω(σ(M2h)) ≤ 2 are already addressed
in [13].

(ii) If 0 = W = U2h + σ(M2h) + 1, then σ(M2h) = U2h + 1 is a square by
Corollary 2.5 (ii). This contradicts Lemma 2.3. If W is a square, then σ(M2h) =
U2h + 1 +W is also a square, which is impossible.

(iii) We have R = σ(M2h−1) +W = U2h + 1 +M2h which is a square.
(iv) If M2h−1 +W = R+ σ(M2h−2) is a square, then σ(M2h−2) is a square, with

2h− 2 ≥ 2. It is impossible.
(v) This part follows from the fact that W is not a square.
(vi) If for any even e, αe(W ) = 0, then W +xdeg(W ) is a square. So, by differenti-

ating relative to x, we obtain 0 = (W +xdeg(W ))′ = W ′+xdeg(W )−1. We get then the
following contradiction: xdeg(W )−1 = W ′ = (R + σ(M2h−1))′ = 0 + (σ(M2h−1))′ =
(σ(M2h−1))′. □

Corollary 2.7. If c ̸= a+ b, then min(c, a+ b) is even.

Proof. If c < a + b, then deg(W ) > deg(σ(M2h−1)) and 2h(a + b) − c = deg(W ) =
deg(R) which is even.

If c > a+b, then deg(W ) < deg(σ(M2h−1)) and (2h−1)(a+b) = deg(σ(M2h−1)) =
deg(R) which is even. □

Corollary 2.8. If c = a + b + 1 (resp. c + m = a + b or c + m = a + b + 1 with
m ≥ 3), then c is odd (resp. even).

Proof. If c = a+ b+ 1, then c > a+ b. So, a+ b = min(c, a+ b) is even.
If c+m = a+b or c+m = a+b+1 with m ≥ 3 , then c < a+b. So, c = min(c, a+b)

is even. □

Lemma 2.9. One has the following:
(i) For any odd integer l ≥ 1, αl(M

2h) = 0.

(ii) If b is odd, then α1(M
2h−1) = 1.

Proof. (i) This result holds because M2h is a square.
(ii) α1(M

2h−1) = α1(x
(2h−1)b · (x + 1)(2h−1)b) = α1((x + 1)(2h−1)b) = 1, since

(2h− 1)b is odd. □

Through direct computations, we obtain the following two lemmas.
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Lemma 2.10. Let S, T ∈ F2[x] such that deg(S) = deg(T ).
If deg(S) is even (resp. odd), then S + T is a square if and only if for any odd

(resp. even) positive integer ℓ, one has αℓ(S) = αℓ(T ).

Lemma 2.11. Let S, T ∈ F2[x] such that deg(S) = deg(T ). Then deg(S + T ) =
deg(S)− ℓ where ℓ is the least integer such that αℓ(S) ̸= αℓ(T ).

Corollary 2.12. (i) If a+ b is odd, then αa+b(M
2h +M2h−1) = 1.

(ii) If a+ b is even, then α1(σ(M
2h−1)) = 1 = αa+b+1(M

2h +M2h−1).

Proof. We apply Lemma 2.1 with S = M2h, T = M2h−1. We get s = 2h(a+ b) and
t = (2h−1)(a+b) so that s− t = a+b. Observe that for any odd integer l, αl(S) = 0,
since S is a square.

(i) If a+ b is odd, then αa+b(S + T ) = αa+b(S) + α0(T ) = 0 + 1 = 1.
(ii) If a+b is even, then a and b are both odd. So, α1(σ(M

2h−1)) = α1(M
2h−1) = 1

by Lemma 2.9 (ii). Thus, αa+b+1(M
2h + M2h−1) = αa+b+1(S) + α1(T ) = 0 +

α1(M
2h−1) = 1. □

Corollary 2.13. The integer c is the least one such that αc(U2h)+αc(σ(M
2h)) = 1.

Proof. Remark that deg(S + T ) = deg(W ) = 2hdeg(M)− c = deg(S)− c and apply
Lemma 2.11 with S = U2h and T = σ(M2h) + 1. □

3. The proof

We consider four cases under the assumption that M /∈ Σp. However, Corollary 2.8
eliminates Case IV.
Case I c ≥ a+ b+ 2;

Case II c+m < a+ b;

Case III c < a+ b < c+m;

Case IV (c = a+b+1, with c even) or (c+m = a+b, with c odd) or (c+m = a+b+1,
with c odd and m ≥ 3).

For the remaining three cases, we establish four lemmas that contradict Corol-
lary 2.5 (ii) or Lemma 2.6 (iii).

Case I c ≥ a + b + 2

Lemma 3.1. If a+b is odd (resp. even), then αa+b(U2h) = 1 (resp. αa+b+1(U2h) = 1).

Proof. Write: U2h = (σ(M2h)) + (W + 1) = S + T , with deg(S)− deg(T ) = c.
One has a+ b, a+ b+ 1 < c and a+ b, a+ b+ 1 < 2(a+ b)− 1.
By Lemma 2.1 and Corollary 2.12, we get:

αa+b(U2h) = αa+b(σ(M
2h)) = αa+b(M

2h +M2h−1) = 1 if a+ b is odd,

αa+b+1(U2h) = αa+b+1(σ(M
2h)) = αa+b+1(M

2h +M2h−1) = 1 if a+ b is even.

□
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Case II c + m < a + b

Lemma 3.2. The integer c+m is odd and αc+m(U2h) = 1.

Proof. Since c < a+ b, Corollary 2.7 implies that both c and deg(W ) are even.
We consider the odd integer m (of Lemma 2.6 (iv)) such that αm(W ) = 1. Hence,

c+m = 2hdegM −deg(W ) +m is odd.
We recall that W = 1 + σ(M2h) + U2h = 1 + σ(M2h) + xu(x + 1)v and R =

σ(M2h−1)+W is a square. Write U2h = S+T with S = M2h and T = W+σ(M2h−1)+
1. One has that deg(S)− deg(T ) = 2h(a+ b)− deg(W ) = c. Lemma 2.1 implies that
αc+m(U2h) = αc+m(M2h) + αm(T ) = 0 + αm(T ) = αm(T ). But, m < a + b − c =
deg(W )−deg(σ(M2h−1)+1). Again, from Lemma 2.1, one has αm(T ) = αm(W ) = 1.
So, αc+m(U2h) = 1. □

Case III c < a + b < c + m
As above, c and deg(W ) are both even.

Lemma 3.3. If c+m > a+ b and a+ b odd, then αa+b−c(R) = 1.

Proof. Set R = S + T with S = W and T = σ(M2h−1). One has deg(S)− deg(T ) =
a+b−c and a+b−c < m. Therefore, αa+b−c(W ) = 0 and αa+b−c(R) = αa+b−c(W )+
α0(σ(M

2h−1)) = 0 + 1 = 1. □

Lemma 3.4. If c+m > a+ b+ 1 and a+ b even, then αa+b−c+1(R) = 1.

Proof. Again, set S = W and T = σ(M2h−1). One has deg(S)− deg(T ) = a+ b− c
and a + b − c + 1 < m. By Corollary 2.12, we obtain α1(σ(M

2h−1)) = 1. So,
αa+b−c+1(R) = αa+b−c+1(W ) + α1(σ(M

2h−1)) = 0 + 1 = 1. □

3.1 Final remark

We have shown that if M /∈ Σp, this leads to a contradiction regarding the squareness
of W and R: αℓ(W ) = 1 or αℓ(R) = 1, where ℓ is odd and ℓ ≤ deg(M).

When M ∈ Σp, computational evidence reveals the same contradiction, but for
ℓ > deg(M). For this case, alternative methods are required.
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