
MATEMATIČKI VESNIK
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Abstract. In this paper, we establish new results on the existence, uniqueness, and
convergence for a one-parameter family of mappings, where each member has a unique fixed
point that is also the unique common fixed point of the entire family. These results apply to
both contractive-type mappings and those that do not adhere to any contractive conditions.
Our theorem includes, as special cases, the results of [B. D. Gel’man, Caristi’s inequality and
α-contraction mappings, Funct. Anal. Appl., 53 (2019), 224–228], [R. P. Pant, V. Rakočević,
D. Gopal, A. Pant, M. Ram, A general fixed point theorem, Filomat, 35 (2021), 4061–4072],
as well as the well-known fixed-point theorems of Banach, Kannan, Chatterjea, and Ćirić.

1. Introduction

The following Caristi or Caristi-Kirk fixed point theorem was proved in [3, 4].

Theorem 1.1. Let f be a self-mapping of a complete metric space (X, d). Suppose
there exists a lower semi-continuous function φ : X → R+ such that for each x ∈ X

d(x, fx) ≤ φ(x)− φ(fx).

Then f possesses a fixed point.

The Caristi fixed point theorem is fundamental in fixed point theory, influencing
areas like convex minimization, variational inequalities, and control theory through
Ekeland’s approach [8]. For more details and generalizations, see [9] and the references
therein.

In [9], Gel’man established several generalizations of Caristi’s theorem in both
single-valued and set-valued settings by augmenting the contraction condition with
a function of two vector arguments, which is neither required to be a metric nor a
continuous function. Let (X, d) be a complete metric space. Suppose f : X → X is a
continuous mapping, and α : X ×X → R is a given function. A mapping f : X → X
is called an α-contraction (contraction with respect to a function α) if it is continuous
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2 Fixed points of a family of general mappings

and there exists a constant k ∈ (0, 1) such that α(fx, fy) ≤ kα(x, y), for all x, y ∈ X.
Not every α-contraction mapping necessarily has a fixed point [9].

Theorem 1.2 ([9]). Let f be a continuous self-mapping of a complete metric space
(X, d). If there exists a constant c > 0 such that

α(fx, fy) + cd(x, y) ≤ α(x, y),

for all x, y ∈ X, then for any initial point x0 ∈ X, the sequence of successive approx-
imations xn+1 = fxn converges to a point x∗, which is the unique fixed point of f .
Furthermore, the following estimate holds:

d(x∗, x0) ≤
α(x0, fx0)− γ0

c
,

where α is bounded from below and γ0 = inf(x,y)∈X×X α(x, y).

Let (X, d) be a metric space and f : X → X be a mapping. The orbit of a point
x0 ∈ X under f is the set O(f, x0) = {x0, f(x0), f

2(x0), . . . , f
n(x0), . . .}.

Definition 1.3. Let (X, d) be a metric space. A mapping f : X → X is called:
1. orbitally continuous [7] if limi→∞ fmix = u for some u ∈ X implies limi→∞ f(fmix)
= f(u) for each x ∈ X;

2. weakly orbitally continuous [14] if the set {y ∈ X : limi→∞ fmiy = u, for some
u ∈ X implies limi→∞ f(fmiy) = f(u)} is nonempty whenever the set {x ∈ X :
limi→∞ fmix = u} is nonempty;

3. k-continuous [13], for k = 1, 2, 3, . . ., if limn→∞ fk(xn) = f(z), whenever {xn} is
a sequence in X such that limn→∞ fk−1(xn) = z for some z ∈ X;

4. asymptotically k-continuous or asymptotically continuous [15] if limk,n→∞ f(fk(xn))
= f(z), whenever {xn} is a sequence in X such that limk,n→∞(fk(xn)) = z for some
z ∈ X.

For k > 1, the continuity conditions for fk and the k-continuity of f are inde-
pendent. While k-continuity of f ensures that f is asymptotically k-continuous, the
converse does not hold [15]. A review by the first author [2] contrasts various weaker
forms of continuity and their significance in fixed point theory.

The following theorem generalizes several well-known fixed point theorems and is
due to Pant et al. [12] (see also [1] for the case of a pair of mappings).

Theorem 1.4. Let f be a self-mapping of a complete metric space (X, d). Suppose
φ : X → [0,∞) is such that for all x, y ∈ X we have

d(fx, fy) ≤ φ(x)− φ(fx) + φ(y)− φ(fy). (1)

If f is weakly orbitally continuous or f is orbitally continuous or f is k-continuous,
then f has a unique fixed point.

Remark 1.5. It is pertinent to mention that the condition (1) includes both contrac-
tive and non-contractive mappings [12].
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In this paper, motivated by the work of Pant et al. [11], we establish fixed point the-
orems for a one-parameter family of self-mappings, extending the work of Gel’man [9]
and Pant et al. [12], who studied various classes of single self-mappings in the context
of a complete metric space. Each member of this family has a unique fixed point,
which is also the unique common fixed point of the entire family. Our main theorem
yields several well-known fixed point results for families of mappings as corollaries.

2. Main results

We begin this section with the following result.

Theorem 2.1. Let {fr : 0 ≤ r ≤ 1} be a family of self-mappings on a complete metric
space (X, d). Suppose there exists a constant c > 0 and a function α : X × X → R
that is bounded from below, with γ0 = inf(x,y)∈X×X α(x, y), such that

α(frx, fry) + cd(x, y) ≤ α(x, y), (2)

for all x, y ∈ X. If each fr is k-asymptotically continuous for some integer k ≥ 1,
or if each fr is weakly orbitally continuous, then each fr has a unique fixed point.
Moreover, if every pair of mappings (fr, fs) satisfies the condition

α(frx, fsy) + cd(x, y) ≤ α(x, y), (3)

for all x, y ∈ X, then the family of mappings has a unique common fixed point, which
is also the unique fixed point of each fr.

Proof. Let x0 ∈ X, and construct a sequence {xn} iteratively by xn+1 = fr(xn),
that is, xn+1 = fn

r (x0) for some fixed r ∈ [0, 1]. Define un = α(xn, xn+1) for all
n = 0, 1, 2, 3, . . .. From (2), we have α(frxn, frxn+1) + cd(xn, xn+1) ≤ α(xn, xn+1),
which implies cd(xn, xn+1) ≤ un − un+1. Thus, the sequence {un} is non-increasing
and bounded below by γ0, meaning that {un} converges.

To show that {xn} is a Cauchy sequence, we sum the inequality

d(xn, xn+1) ≤
un − un+1

c

over n and obtain
∞∑

n=0

d(xn, xn+1) ≤
u0 − limn→∞ un

c
≤ u0 − γ0

c
.

This implies that the sequence {xn} is Cauchy. By the completeness of X, there
exists a limit point zr ∈ X such that limn→∞ xn = fn

r x0 = zr. Also, limn→∞ fk
r xn =

zr for each integer k ≥ 1 and limk,n→∞ fk
r xn = zr.

Suppose fr is k-asymptotically continuous. Since limk,n→∞ fk
r xn = zr, k-asymptotic

continuity of fr implies limk,n→∞ fr(f
k
r xn) = fr(zr). This implies fr(zr) = zr, since

limk,n→∞ fr(f
k
r xn) = limk,n→∞ fk+1

r (zr) = zr. Therefore, zr is a fixed point of fr.
Next, suppose that fr is weakly orbitally continuous. Since fn

r x0 converges for
each x0 ∈ X, weak orbital continuity of fr implies that there exists y0 ∈ X such
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that limn→∞ fn
r y0 = zr and limn→∞ fr(f

n
r y0) = frzr for some zr in X. This implies

zr = fr(zr), so zr is a fixed point of fr.
Suppose u and v are both fixed points of fr. Using the inequality (2), we get

α(fru, frv) + cd(u, v) ≤ α(u, v), which simplifies to cd(u, v) ≤ 0 since fru = u and
frv = v. Therefore, d(u, v) = 0, implying that u = v. Hence, each fr has a unique
fixed point.

Now consider the second part of the theorem. If every pair of mappings fr and fs
satisfies condition (3), then for the fixed points ur of fr and us of fs, we have:

α(frur, fsus) + cd(ur, us) ≤ α(ur, us).

Since frur = ur and fsus = us, this reduces to cd(ur, us) ≤ 0, which implies ur = us

for all r, s ∈ [0, 1]. Thus, the fixed point is common to both fr and fs, and this
common fixed point is unique for all the mappings {fr : 0 ≤ r ≤ 1}. □

The following proposition is crucial for the proof of the next theorem.

Proposition 2.2. Let {fr : 0 ≤ r ≤ 1} be a family of self-mappings on a metric
space (X, d). Suppose φ : X → [0,∞) is a function such that for each x, y ∈ X, the
inequality

d(frx, fry) ≤ φ(x)− φ(frx) + φ(y)− φ(fry), (4)

holds. Then, for each x ∈ X, the sequence of iterates {fn
r x} is a Cauchy sequence.

Proof. Let x0 ∈ X. Define a sequence {xn} by x1 = frx0, x2 = frx1, . . . , xn =
frxn−1, i.e., xn = fn

r x0. Then,

d(x1, x2) = d(frx0, frx1) ≤ φ(x0)− φ(frx0) + φ(x1)− φ(frx1)

= φ(x0)− φ(x1) + φ(x1)− φ(x2) = φ(x0)− φ(x2).

Similarly,

d(x2, x3) ≤ φ(x1)− φ(x3),

d(x3, x4) ≤ φ(x2)− φ(x4),

...

d(xn−1, xn) ≤ φ(xn−2)− φ(xn),

d(xn, xn+1) ≤ φ(xn−1)− φ(xn+1).

Adding these inequalities, we get

d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, xn) + d(xn, xn+1)

≤ φ(x0) + φ(x1)− φ(xn)− φ(xn+1) ≤ φ(x0) + φ(x1).

Taking the limit as n → ∞, we get
∑∞

n=1 d(xn, xn+1) ≤ φ(x0) + φ(x1). This implies
that {xn} is a Cauchy sequence. □

Theorem 2.3. Let {fr : 0 ≤ r ≤ 1} be a family of self-mappings on a complete
metric space (X, d). Suppose φ : X → [0,∞) is a function satisfying (4). If fr is k-
asymptotically continuous for some integer k ≥ 1 or fr is weakly orbitally continuous,
then fr has a unique fixed point. Moreover, if every pair of mappings (fr, fs) satisfies
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the condition

d(frx, fsy) ≤ φ(x)− φ(frx) + φ(y)− φ(fsy), (5)

then the mappings have a unique common fixed point, which is also the unique fixed
point of each fr.

Proof. Let x0 ∈ X. Define the sequence {xn} recursively by xn = frxn−1, i.e.,
xn = fn

r x0 for n = 1, 2, 3, . . . . By Proposition 2.2, {xn} is a Cauchy sequence. Since
X is complete, there exists some zr ∈ X such that limn→∞ xn = zr. Additionally,
limn→∞ fk

r xn = zr for each integer k ≥ 1, and limk,n→∞ fk
r xn = zr.

Suppose fr is k-asymptotically continuous. Then, since limk,n→∞ fk
r xn = zr, k-

asymptotic continuity implies limk,n→∞ fr(f
k
r xn) = fr(zr). This implies zr = fr(zr),

since limk,n→∞ fk+1
r xn = zr. Therefore, zr is a fixed point of fr.

Next, suppose fr is weakly orbitally continuous. Since the sequence fn
r x0 converges

for each x0 ∈ X, weak orbital continuity of fr implies that there exists y0 ∈ X such
that fn

r y0 → zr and fr(f
n
r y0) → frz for some zr ∈ X. This implies that zr = frzr.

If u and v are fixed points of fr, then using (4), we get

d(u, v) = d(fru, frv) ≤ φ(u)− φ(fru) + φ(v)− φ(frv) = 0.

Therefore, u = v, implying that fr has a unique fixed point.
Moreover, if ur and us are the fixed points of fr and fs respectively, then by (5),

we get

d(ur, us) = d(frur, fsus) ≤ φ(ur)− φ(frur) + φ(us)− φ(fsus) = 0.

Hence, ur = us and each mapping fr has a unique fixed point, which is the unique
common fixed point for the entire family of mappings. □

We now give an example to illustrate the above theorem.

Example 2.4. Let X = [0, 2] and let d be the Euclidean metric. Define fr : X → X,
0 ≤ r ≤ 1, by

fr(x) =

{
1 if x ≤ 1,

r[2− x] if 1 < x ≤ 2,

where [a] denotes the greatest integer less than or equal to the non-negative real
number a.

Also, let φ : X → [0,∞) be defined by

φ(x) =

{
1− x if x ≤ 1,

1 + x if x > 1.

Then the mappings fr satisfy all the conditions of the above theorem and have a
unique common fixed point x = 1, which is also the unique fixed point of each map-
ping. The mapping fr is discontinuous at the fixed point for 0 ≤ r < 1. Moreover, f2

r

is continuous for each r, and fr is 2-continuous for each r; hence, fr is k-asymptotically
continuous.

The following theorems demonstrate that the well-known fixed point theorems for
families of mappings by Banach, Kannan [10], Chatterjea [5], and Ćirić [6] are special
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cases of Theorem 2.3 (see [12]).

Theorem 2.5. Suppose {fr : 0 ≤ r ≤ 1} is a family of self-mappings of a complete
metric space (X, d) that satisfies the Kannan contraction condition, i.e.,

d(frx, fry) ≤
k

2
[d(x, frx) + d(y, fry)], 0 < k < 1,

for all x, y ∈ X. Then, for each mapping fr in the family, the conditions of Theo-
rem 2.3 are satisfied and fr has a unique fixed point.

Proof. For any x ∈ X, we have d(frx, f
2
r x) ≤ k

2

[
d(x, frx) + d(frx, f

2
r x)

]
. This implies

(2− k)d(frx, f
2
r x) ≤ kd(x, frx), that is,(

2− k

k

)
d(frx, f

2
r x) ≤ d(x, frx). (6)

Now, for any x, y ∈ X, we have

d(frx, fry) ≤
k

2
[d(x, frx) + d(y, fry)]

=
k(2− k)

4(1− k)
[d(x, frx) + d(y, fry)]−

k2

4(1− k)
[d(x, frx) + d(y, fry)].

Using (6), the above inequality yields

d(frx, fry) ≤
k(2− k)

4(1− k)
[d(x, frx) + d(y, fry)]−

k(2− k)

4(1− k)
[d(frx, f

2
r x) + d(fry, f

2
r y)]

≤ k(2− k)

4(1− k)
[d(x, frx)− d(frx, f

2
r x) + d(y, fry)− d(fry, f

2
r y)].

Let us define a function φ : X → [0,∞) by φ(x) = k(2−k)
4(1−k)d(x, frx) then last

inequality gives d(frx, fry) ≤ φ(x)− φ(frx) + φ(y)− φ(fry).
Since d(frx, f

2
r x) ≤ d(x, frx), it follows that φ(frx) ≤ φ(x). Therefore, fr satisfies

the conditions of Theorem 2.3 and possesses a unique fixed point. □

The following theorem shows that Chatterjea’s theorem can be regarded as a
specific case of Theorem 2.3.

Theorem 2.6. Suppose {fr : 0 ≤ r ≤ 1} is a family of self-mappings of a complete
metric space (X, d) that satisfies the Chatterjea contraction condition, i.e.,

d(frx, fry) ≤
k

2
[d(x, fry) + d(y, frx)], 0 < k < 1, (7)

for all x, y ∈ X. Then, for each mapping fr in the family, the conditions of Theo-
rem 2.3 are satisfied and fr has a unique fixed point.

Proof. For any x ∈ X, we have

d(frx, f
2
r x) ≤

k

2

[
d(x, f2

r x) + d(frx, frx)
]
≤ k

2

[
d(x, frx) + d(frx, f

2
r x)

]
.

This implies (
2− k

k

)
d(frx, f

2
r x) ≤ d(x, frx). (8)
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Now, for any x, y ∈ X, we have

d(frx, fry) ≤
k

2
[d(x, fry) + d(y, frx)]

≤ k

2
[d(x, frx) + d(frx, fry) + d(y, fry) + d(fry, frx)].

That is,

d(frx, fry) ≤
k

2(1− k)
[d(x, frx) + d(y, fry)]

=
k(2− k)

4(1− k)2
[d(x, frx) + d(y, fry)]−

k2

4(1− k)2
[d(x, frx) + d(y, fry)].

Using (8), the above inequality holds:

d(frx, fry) ≤
k(2− k)

4(1− k)2
[d(x, frx) + d(y, fry)]−

k2(2− k)

4k(1− k)2
[d(frx, f

2
r x) + d(fry, f

2
r y)]

=
k(2− k)

4(1− k)2
[d(x, frx)− d(frx, f

2
r x) + d(y, fry)− d(fry, f

2
r y)].

Let us define a function φ : X → [0,∞) by φ(x) = k(2−k)
4(1−k)2 d(x, frx) then last

inequality gives

d(frx, fry) ≤ φ(x)− φ(frx) + φ(y)− φ(fry).

Since d(frx, f
2
r x) ≤ d(x, frx), it follows that φ(frx) ≤ φ(x). Therefore, fr satisfies

the conditions of Theorem 2.3 and possesses a unique fixed point. □

The following theorem establishes that Ćirić fixed point theorem is a particular
instance of Theorem 2.3.

Theorem 2.7. Suppose {fr : 0 ≤ r ≤ 1} is a family of self-mappings of a complete
metric space (X, d) that satisfies the Ćirić contraction condition, i.e.,

d(frx, fry)≤ kmax

{
d(x, y), d(x, frx), d(y, fry),

d(x, fry)+d(y, frx)

2

}
, 0<k< 1, (9)

for all x, y ∈ X. Then, for each mapping fr in the family, the conditions of Theo-
rem 2.3 are satisfied and fr has a unique fixed point.

Proof. It follows from condition (9) that

1

k
d(frx, f

2
r x) ≤ d(x, frx) (10)

and d(frx, fry) ≤ k[d(x, frx) + d(y, fry) + d(frx, fry)]. (11)

Inequality (11) gives

d(frx, fry) ≤
k

(1− k)
[d(x, frx) + d(y, fry)]

=
k

(1− k)2
[d(x, frx) + d(y, fry)]−

k2

(1− k)2
[d(x, frx) + d(y, fry)].

Utilizing (10) in the above inequality, this yields (4) for φ(x)= k
(1−k)2 d(x, frx).

Therefore, fr satisfies the conditions of Theorem 2.3 and possesses a unique fixed
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point. It demonstrates that Theorem 2.3 includes Ćirić’s theorem as a specific case.
□

3. Conclusion

We have established new fixed point results on the existence, uniqueness, and conver-
gence for a one-parameter family of mappings, each with a unique fixed point that is
the common fixed point of the family. Our results encompass both contractive-type
mappings and non-contractive conditions, and include, as special cases, the well-
known fixed-point theorems of Banach, Kannan [10], Chatterjea [5] and Ćirić [6] as
well as the results of Gel’man [9] and Pant et al. [12].

Acknowledgement. The authors thank the editor and reviewer for their valu-
able suggestions, which have greatly improved the quality of this paper.
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