ON SPLITTING RINGS FOR AZUMAYA SKEW GROUP RINGS #### George Szeto and Lianyong Xue **Abstract.** Let B be a ring with 1, G an automorphism group of B of order n for some integer n, B*G the skew group ring over B with a free basis $\{g \mid g \in G\}$, B^G the set of elements in B fixed under G, and \overline{G} the inner automorphism group of B*G induced by G. It is shown that when the center G of G is a G-Galois algebra over G^G with Galois group $G|_{G} \cong G$ or G is a G-Galois extension of G and G is an Azumaya algebra if and only if so is G is an Azumaya algebra. #### 1. Introduction Let B be a ring with 1, C the center of B, G an automorphism group of B of order n for some integer n, B*G a skew group ring over B with a free basis $\{g \mid g \in G\}$, B^G the set of elements in B fixed under G, \overline{G} the inner automorphism group of B*G induced by G, that is, $\overline{g}(f) = gfg^{-1}$ for each $f \in B*G$ and $g \in G$. We note that \overline{G} restricted to B is G. In [1] and [2], the Azumaya skew group ring B*G over C^G was characterized in terms of Azumaya Galois extension B of B^G and the H-separable extension B*G of B respectively. Also in [3], the commutator subring of B in B*G was studied. In the present paper, under a Galois condition on B, the Azumaya skew group ring B*G is characterized in terms of the Azumaya fixed subring $(B*G)^{\overline{G}}$ under \overline{G} and the Azumaya coefficient ring B, that is, when C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$ or B is a G-Galois extension of B^G and $n^{-1} \in B$, then, B*G is an Azumaya algebra if and only if so is $(B*G)^{\overline{G}}$. Let A be an Azumaya algebra. It is well known that any separable maximal commutative subalgebra of A is a splitting ring for A ([4], Theorem 5.5, p. 64). In this paper, we call F a splitting ring for A if F is a separable maximal commutative subalgebra of A. We then show that when C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$, F is a splitting ring for the Azumaya algebra B * G containing C if and only if F is a splitting ring for the Azumaya algebra B. Moreover, AMS Subject Classification: 16 S 30, 16 W 20 Keywords and phrases: Skew group rings, Azumaya algebras, Galois extensions, splitting rings when B is a G-Galois extension of B^G and $n^{-1} \in B$, F is a splitting ring for the Azumaya algebra B*G containing the center of $(B*G)^{\overline{G}}$, then, F is a splitting ring for $(B*G)^{\overline{G}}$ if and only if G is Abelian. At the end, two examples are constructed to demonstrate the results. This paper was written under the support of a Caterpillar Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the support. #### 2. Basic definitions and notations Throughout this paper, B will represent a ring with 1, G an automorphism group of B, C the center of B, B*G a skew ring in which the multiplication is given by gb = g(b)g for $b \in B$ and $g \in G$, B^G the set of elements in B fixed under G, Z the center of B*G, \overline{G} the inner automorphism group of B*G induced by G, that is, $\overline{g}(f) = gfg^{-1}$ for each $f \in B*G$ and $g \in G$. We note that \overline{G} restricted to B is G. Let A be a subring of a ring B with the same identity 1. We denote $V_B(A)$ the commutator subring of A in B. We call B a separable extension of A if there exist $\{a_i,b_i \text{ in } B,\ i=1,2,\ldots,m \text{ for some integer } m\}$ such that $\sum a_ib_i=1$, and $\sum ba_i\otimes b_i=\sum a_i\otimes b_ib$ for all b in B where \otimes is over A, and a ring B is called a H-separable extension of A if $B\otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. An Azumaya algebra is a separable extension of its center. B is called a G-Galois extension of B^G if there exist elements $\{c_i,d_i \text{ in } B,\ i=1,2,\ldots,m\}$ for some integer m such that $\sum_{i=1}^m c_ig(d_i)=\delta_{1,g}$. The set $\{c_i,d_i\}$ is called a G-Galois system for B. B is called a DeMeyer-Kanzaki G-Galois extension if B is an Azumaya G-algebra and G is G-Galois algebra with $G|_{G}\cong G$. If G is an Azumaya G-algebra and G is a commutative G-algebra such that G-G-Balois extension if G-Galois G-Ga ### 3. Characterizations of Azumaya skew group rings In this section we shall characterize an Azumaya skew group ring B*G in terms of $(B*G)^{\overline{G}}$ and B under a Galois condition that C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$ or B is a G-Galois extension of B^G and $n^{-1} \in B$. We begin with a Lemma. Lemma 3.1. If C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$, then - (a) B * G is H-separable over B. - (b) B*G is H-separable over $(B*G)^{\overline{G}}$. - (c) The center of B * G, $Z = C^G$. - (d) $V_{B*G}(C) = B$. - *Proof.* (a) Since C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$ and $C \subseteq V_{B*G}(B)$, $V_{B*G}(B)$ is \overline{G} -Galois extension of $(V_{B*G}(B))^{\overline{G}}$ with the same Galois system as C. Hence, B*G is H-separable extension of B by ([3], Theorem 1). - (b) Since C is a G-Galois extension of C^G with Galois group $G|_C \cong G$, B*G is a \overline{G} -Galois extension of $(B*G)^{\overline{G}}$ with the same Galois system as C. But \overline{G} acts on B*G is inner, so B*G is H-separable extension of $(B*G)^{\overline{G}}$ by ([7], Corollary 3). - (c) By (a), B * G is H-separable over B. Moreover, B is a direct summand of B * G as a left B-module, so B satisfies the double centralizer property in B * G ([8], Proposition 1.2), that is, $B = V_{B*G}(V_{B*G}(B))$. This implies that the center of B * G is contained in B. Thus, $Z = C^G$. - (d) Clearly, $B \subseteq V_{B*G}(C)$. Conversely, for each $\sum_{g \in G} b_g g$ in $V_{B*G}(C)$, we have $c(\sum_{g \in G} b_g g) = (\sum_{g \in G} b_g g)c$ for each c in C, so $cb_g = b_g g(c)$, that is, $b_g (c-g(c)) = 0$ for each $g \in G$ and $c \in C$. But C is a commutative G-Galois extension of C^G , so the ideal of C generated by $\{c-g(c) \mid c \in C\}$ is C ([4], Proposition 1.2-(5)). Thus $b_g = 0$ for each $g \neq 1$. But then $\sum_{g \in G} b_g g = b_1 \in B$. Hence $V_{B*G}(C) \subseteq B$, and so $V_{B*G}(C) = B$. Theorem 3.2. Assume C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$. The the following statements are equivalent: - (1) B * G is Azumaya. - (2) $(B*G)^{\overline{G}}$ is Azumaya. - (3) B is Azumaya. - Proof. (1) \iff (2). Since C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$, there exists an element $c \in C$ such that $\operatorname{Tr}_G(c) = 1$, where $\operatorname{Tr}_G(\cdot)$ is the trace of G ([4], Corollary 1.3-(1)). By Lemma 3.1-(b), B*G is H-separable over $(B*G)^{\overline{G}}$ and B*G is a finitely generated and projective left module over $(B*G)^{\overline{G}}$ ([5], Theorem 1), so (2) \Longrightarrow (1) by ([6], Theorem 1). Conversely, since the restriction of \overline{G} to C is G, $(B*G)^{\overline{G}}$ is a direct summand of B*G as a $(B*G)^{\overline{G}}$ -bimodule by using the fact that $\operatorname{Tr}_G(c) = 1$. Thus the separability of B*G over C implies the separability of C0 in [5]. Since C1 is contained in the center of C1 by the argument as given on p. 120 in [5]. Since C2 is contained in the center of C3 by the argument as given on p. 120 in [5]. Since C4 is contained in the center of C5 by the argument as given on p. 120 in [5]. - $(1) \Longrightarrow (3)$. Assume B*G is Azumaya. Since C is a G-Galois algebra over C^G , $Z=C^G$ by Lemma 3.1-(c). Hence B*G is an Azumaya C^G -algebra. By Lemma 3.1-(d), $V_{B*G}(C)=B$. Therefore, B is a separable C^G -algebra (for C is a separable C^G -algebra) by the commutator theorem for Azumaya algebras ([4], Theorem 4.3, p. 57). Thus B is an Azumaya algebra. - (3) \Longrightarrow (1). Since C is a $G|_{C}$ -Galois algebra over C^{G} , B*G is a H-separable extension of B by Lemma 3.1-(a). By hypothesis, B is an Azumaya C-algebra, so B*G is a separable extension over C by the transitivity of separable extensions. Noting that C is a separable C^{G} -algebra (for it is G-Galois), we conclude that B*G is a separable extension of C^G . Moreover, by Lemma 1-(c), $Z = C^G$, so B * G is an Azumaya C^G -algebra. Theorem 3.3. Let B be a G-Galois extension of B^G and $n^{-1} \in B$. Then, B*G is an Azumaya algebra if and only if so is $(B*G)^{\overline{G}}$. In this case, the center of $(B*G)^{\overline{G}}$ is the center of ZG where Z is the center of B*G. *Proof.* Since $n^{-1} \in B$, $\operatorname{Tr}_G(n^{-1}) = 1$. By hypothesis B is a G-Galois extension of B^G , so B*G is a \overline{G} -Galois extension of $(B*G)^{\overline{G}}$ with an inner Galois group \overline{G} with the same Galois system as B. Thus the argument in the proof of $(1) \iff (2)$ in Theorem 3.2 implies that B*G is an Azumaya algebra if and only if so is $(B*G)^{\overline{G}}$. Next, we calculate the center of $(B*G)^{\overline{G}}$. Let Z be the center of B*G. Then the center of $(B*G)^{\overline{G}} = V_{(B*G)^{\overline{G}}}((B*G)^{\overline{G}}) = (B*G)^{\overline{G}} \cap V_{B*G}((B*G)^{\overline{G}}) = (B*G)^{\overline{G}} \cap V_{B*G}(V_{B*G}(ZG))$. Since $n^{-1} \in B$, ZG is a separable Z-algebra. Hence $V_{B*G}(V_{B*G}(ZG)) = ZG$ because B*G is an Azumaya Z-algebra ([4], Theorem 4.3, p. 57). Thus, the center of $(B*G)^{\overline{G}} = (B*G)^{\overline{G}} \cap (ZG) = V_{B*G}(ZG) \cap (ZG) = V_{ZG}(ZG) = 0$ the center of ZG. ## 4. Splitting rings In this section, we shall show that some splitting rings for B*G, $(B*G)^{\overline{G}}$ and B are the same. Recall that a splitting ring is a separable maximal commutative subalgebra. We first give a result on the splitting rings for any Azumaya algebra. Theorem 4.1. Let A be an Azumaya C-algebra and D a separable commutative subalgebra of A. Then (i) $V_A(D)$ is an Azumaya D-algebra, and (ii) F is a splitting ring for A containing D if and only if F is a splitting ring for $V_A(D)$ over D. - *Proof.* (i) Since A is an Azumaya C-algebra and D a separable subalgebra of A, $V_A(V_A(D)) = D$ and $V_A(D)$ is separable subalgebra of A by the commutator theorem for Azumaya algebras ([4], Theorem 4.3, p. 57). Since D is a commutative subalgebra of A, $C \subset D \subset$ the center of $V_A(D)$. Hence $V_A(D)$ is separable over D. Moreover, the center of $V_A(D) = V_{V_A(D)}(V_A(D)) \subset V_A(V_A(D)) = D$; and so the center of $V_A(D) = D$, that is, $V_A(D)$ is an Azumaya D-algebra. - (ii) (\Longrightarrow) Let F be a splitting ring for A containing D. Then $D \subset F$ and $F = V_A(F)$, and so $F = V_A(F) \subset V_A(D)$. Hence $V_{V_A(D)}(F) = V_A(D) \cap V_A(F) = V_A(F) = F$. Thus F is a maximal commutative subalgebra of $V_A(D)$. Moreover, since F is separable over C and $C \subset$ the center of $V_A(D) = D \subset F =$ the center of F, F is separable over D. Thus, F is splitting ring for $V_A(D)$ over D. - (\iff) Let F be splitting ring for $V_A(D)$ over D. Then $D \subset F$ and $F = V_{V_A(D)}(F)$, and so $V_A(F) \subset V_A(D)$. Hence $V_A(F) = V_A(D) \cap V_A(F) = V_{V_A(D)}(F) = F$. Thus F is a maximal commutative subalgebra of A. Moreover, since F is separable over D and D is separable over C, F is separable over C. Therefore, F is splitting ring for A. ■ Theorem 4.2. Assume B is a DeMeyer-Kanzaki G-Galois extension (that is, B is an Azumaya C-algebra and C is a G-Galois extension of C^G with $G|_C \cong G$). Then, F is a splitting ring for the Azumaya algebra B*G containing C if and only if F is a splitting ring for the Azumaya algebra B. Proof. (\Longrightarrow) Assume F is a splitting ring for the Azumaya algebra B*G containing C. Then $C\subseteq F$ and $F=V_{B*G}(F)$. Hence $F=V_{B*G}(F)\subseteq V_{B*G}(G)$. Since C is a G-Galois extension of C^G , $V_{B*G}(C)=B$ by Lemma 3.2-(d). Thus $V_{B*G}(F)\subseteq V_{B*G}(C)=B$. Therefore $V_{B*G}(F)=V_{B}(F)$. But then $F=V_{B*G}(F)=V_{B}(F)$; and so F is a splitting ring for B. (\Leftarrow) Let F be a splitting ring for the Azumaya algebra B. Then $C \subseteq F$ and $F = V_B(F)$. Hence $V_{B*G}(F) \subseteq V_{B*G}(C)$. By Lemma 3.2-(d) again, $V_{B*G}(C) = B$, so $V_{B*G}(F) \subseteq V_{B*G}(C) = B$. Thus $V_{B*G}(F) = V_B(F)$; and so $F = V_B(F) = V_{B*G}(F)$. Therefore, F is a splitting ring for the Azumaya algebra B*G containing C. ■ Next, we consider another Galois condition on B. THEOREM 4.3. Let B be a G-Galois extension of B^G , $n^{-1} \in B$ and B * G an Azumaya algebra. Then, F is a splitting ring for B * G containing D, where D is the center of $(B * G)^{\overline{G}}$ if and only if F is a splitting ring for $V_{B*G}(D)$. *Proof.* This is an immediate consequence of Theorem 4.1-(ii) for the Azumaya algebra B*G. ■ COROLLARY 4.4. Assume B is a G-Galois extension of B^G , $n^{-1} \in B$ and B*G an Azumaya algebra. Let G be an Abelian group. Then, F is a splitting ring for B*G containing ZG if and only if F is a splitting ring for $(B*G)^{\overline{G}}$. *Proof.* Since G is Abelian, $n^{-1} \in B$ and Z is the center of B*G, ZG is a commutative separable subalgebra. Let D=ZG. Then D is the center of $(B*G)^{\overline{G}}$ by Theorem 3.4. Moreover, $V_{B*G}(D)=V_{B*G}(ZG)=(B*G)^{\overline{G}}$, so by Theorem 4.3, F is a splitting ring for B*G containing ZG (= D) if and only if F is a splitting ring for $(B*G)^{\overline{G}}$ (= $V_{B*G}(D)$). ■ Theorem 4.5. Assume B is a G-Galois extension of B^G , $n^{-1} \in B$ and B*G is Azumaya algebra. Let F be a splitting ring for B*G containing D, where D is the center of $(B*G)^{\overline{G}}$. Then, F is a splitting ring for $(B*G)^{\overline{G}}$ if and only if G is Abelian. Proof. (⇒) Since F is a splitting ring for B*G, $F=V_{B*G}(F)$. Now, $F=V_{(B*G)^{\overline{G}}}(F)$, so $F=V_{(B*G)^{\overline{G}}}(F)=(B*G)^{\overline{G}}\cap V_{B*G}(F)=(B*G)^{\overline{G}}\cap F$. Thus $F\subset (B*G)^{\overline{G}}$, and so $F\subset V_{B*G}(ZG)$. Therefore, $V_{B*G}(V_{B*G}(ZG))\subset V_{B*G}(F)=F$. Since $n^{-1}\in B$, ZG is a separable Z-algebra. Hence $V_{B*G}(V_{B*G}(ZG))=ZG$ because B*G is an Azumaya Z-algebra ([4], Theorem 4.3, p. 57). Thus, $ZG\subset F$. But F is commutative, so G is Abelian. (\iff) Assume G is Abelian. Since Z is the center of B*G, ZG is commutative. Hence $ZG \subset F$, and so $F = V_{B*G}(F) \subset V_{B*G}(ZG)$. Thus $F = V_{B*G}(F) =$ $V_{B*G}(ZG) \cap V_{B*G}(F) = (B*G)^{\overline{G}} \cap V_{B*G}(F) = V_{(B*G)^{\overline{G}}}(F)$. Therefore, F is a splitting ring for $(B*G)^{\overline{G}}$. By Corollary 4.4 and Theorem 4.5, under the hypothesis of Theorem 4.3, two of the following statements imply the third: - (1) F is a splitting ring for B*G containing the center of $(B*G)^{\overline{G}}$. - (2) F is a splitting ring for $(B*G)^{\overline{G}}$. - (3) G is Abelian. We conclude the present paper with two examples of skew group rings B * G to show the relationship of the splitting rings between B * G, B and $(B * G)^{\overline{G}}$. Example 1. Let B=Q[i,j,k]=Q+Qi+Qj+Qk be the quaternion algebra over the rational field $Q,\,G=\{\,g_1=1,g_i,g_j,g_k\mid g_i(x)=ixi^{-1},g_j(x)=jxj^{-1},g_k(x)=kxk^{-1}\text{ for all }x\in B\,\},$ and A=B*G. Then - (1) B is a G-Galois extension of B^G with G-Galois system $\{\frac{1}{2}, -\frac{1}{2}i, -\frac{1}{2}j, -\frac{1}{2}k; \frac{1}{2}, \frac{1}{2}i, \frac{1}{2}j, \frac{1}{2}k\}$ and $4^{-1} \in B$. - (2) $B^G = Q$, so A is an Azumaya Q-algebra ([1], Theorem 3.1). - (3) D = Q[i] = Q + Qi is a commutative separable Q-subalgebra of A. - (4) $V_A(D) = D + Dg_i + (Qj + Qk)g_j + (Qj + Qk)g_k$ is an Azumaya *D*-algebra by Theorem 4.1-(i). - (5) $F = D + Dg_i$ is a splitting ring for $V_A(D)$, so, by Theorem 4.1-(ii), $F = D + Dg_i$ is also a splitting ring for A. - (6) $(B*G)^{\overline{G}} = V_{B*G}(QG) = QG$ which is a commutative separable subalgebra, so QG is a splitting ring for $(B*G)^{\overline{G}}$ (= QG) and for B*G by Theorem 4.3 (or Corollary 4.4 for G is Abelian). EXAMPLE 2. Let $M_2(Q)$ be the matrix ring of order 2 over the rational field Q, $B = M_2(Q) \oplus M_2(Q)$, $g: B \to B$ by g(a,b) = (b,a) for all $(a,b) \in B$. Then, - (1) q is an automorphism of B of order 2. - (2) Let $G = \{1, g\}$. Then B is a G-Galois extension of B^G with the Galois system $\{a_1 = (I, 0), a_2 = (0, I); b_1 = (I, 0), b_2 = (0, I)\}$, that is, $a_1b_1 + a_2b_2 = (I, I)$ and $a_1g(b_1) + a_2g(b_2) = (0, 0)$, where I is the identity of $M_2(Q)$ and 0 is the zero matrix in $M_2(Q)$. - (3) Let C be the center of B. Then $C = Q \oplus Q$, and C is a G-Galois extension of C^G with the same Galois system as B and $C|_G \cong G$. - (4) B*G is an Azumaya C^G -algebra where $C^G=\{\,(a,a)\mid a\in Q\,\}$ since B is an Azumaya C-algebra by Theorem 3.2. - $(5) (B*G)^{\overline{G}} = C^G + C^G q.$ - (6) Since C is a commutative separable subalgebra of B * G, $V_{B*G}(C)$ is an Azumaya C-algebra by Theorem 4.1-(i). - (7) $V_{B*G}(C) = B$ by Lemma 3.1-(d). (8) Let $F = Q \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + Q \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Then F is a separable maximal commutative subalgebra of $M_2(Q)$, and so $F \oplus F$ is a separable maximal commutative subalgebra of B, that is, $F \oplus F$ is a splitting ring for B. Thus, $F \oplus F$ is a splitting ring for B * G by Theorem 4.2. #### REFERENCES - Alfaro, R. and Szeto, G., On Galois extensions of an Azumaya algebra, Comm. in Algebra 25 (6) (1997), 1873-1882. - [2] Alfaro, R. and Szeto, G., Skew group rings which are Azumaya, Comm. in Algebra 23 (6) (1995), 2255-2261. - [3] Alfaro, R. and Szeto, G., The centralizer on H-separable skew group rings, Rings, Extension and Cohomology, Vol. 159, 1995. - [4] De Meyer, F. R. and Ingraham, E., Separable Algebras over Commutative Rings, Vol. 181, Springer Verlag, Berlin, Heidelberg, New York, 1971. - [5] De Meyer, F. R., Some notes on the general Galois theory of rings, Osaka J. Math 2 (1965), 117-127. - [6] Okamoto, H., On projective H-separable extensions of Azumaya algebras, Results in Mathematics 14 (1988), 330-332. - [7] Sugano, K., On a special type of Galois extensions, Hokkaido J. Math. 9 (1980), 123-128. - [8] Sugano, K., Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-270. (received 08.11.1999.) Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA