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SOME CHARACTERIZATIONS OF THE LORENTZIAN
SPHERICAL TIMELIKE AND NULL CURVES

Miroslava Petrovié-Torgasev and Emilija Suéurovié

Abstract. In [5] and [6] the authors have characterized the Lorentzian spherical spacelike
curves in the Minkowski 3-space E3. In this paper, we shall characterize the Lorentzian spherical
timelike and null curves in the same space.

1. Introduction

In the Euclidean space E® a spherical unit speed curves and their characteriza-
tions are given in [3], [9] and [10]. In [5] and [6] the authors have characterized the
Lorentzian spherical spacelike curves in the Minkowski 3-space E3. In this paper,
we shall characterize the Lorentzian spherical timelike and null curves in the same
space.

2. Preliminaries

The Minkowski 3-space E} is the Euclidean 3-space E® provided with the
Lorentzian inner product

g(a,b) = —a1b1 + azb2 + asbs,

where a = (a1, a2, a3) and b = (by, by, b3).

An arbitrary vector a = (a1, a2,a3) in E13 can have one of three Lorentzian
causal characters: it is spacelike if g(a,a) > 0 or a = 0, timelike if g(a,a) < 0 and
null (lightlike) if g(a,a) = 0 and a # 0. Similarly, an arbitrary curve a = a(s) in
E} is locally spacelike, timelike or null (lightlike), if all of its velocity vectors o’(s)
are respectively spacelike, timelike or null, for each s € I C R. Recall that the
pseudo-norm of an arbitrary vector a € E3 is given by

lall=+V1g(a,a)|,
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22 Characterizations of the Lorentzian curves

and that the velocity v of the curve « is given by v = ||&/(s)||. Therefore, « is a
unit speed curve if and only if g(a'(s),a’(s)) = £1.
The Lorentzian sphere of center m = (my,ma, m3) and radius r € Rt in the
space E3} is defined by
Sl2 = {a = (a17a27a3) € Ef |g(a —m,a— m) = Tz}'
The vectors a,b € E} are orthogonal if and only if g(a,b) = 0.

Denote by {T'(s), N(s),B(s)} the moving Frenet frame along the curve a@ =
a(s) parameterized by a pseudo-arclength parameter s, i.e. g(a/(s),a/(s)) = £1.
In particular, null curve a(s) in E} is parameterized by a pseudo-arclength s if
g(a’(s),a"(s)) = 1. Let T'(s) = &(s), N(s) = a"(s)/|la”(s)|| and B(s) be the
tangent, the principal normal and the binormal vector of the curve a(s) respectively.
If « is a timelike curve, i.e. if T" is a timelike vector, then the Frenet formulae read:

T'=kN, N =kT+71B, B =-7N,
g(T,T)=—17 g(N,N)=g(B,B)=1, g(T,N):g(T,B):g(Z\ﬂB):O.

On the other hand, if « is a null curve, i.e. if T is a null vector, then the Frenet
formulae read:

T'=kN, N'=1T—-kB, B =-1N,
9(T,T)=g(B,B)=0, g¢g(N,N)=1, g¢(T,N)=g(N,B)=0, ¢(T,B)=1
where k takes only two values: k = 0 when a is a straight null line or Kk =1 in all

other cases. The functions k = k(s) and 7 = 7(s) are called the curvature and the
torsion of « respectively [8].

3. The Lorentzian spherical timelike curves

THEOREM 3.1. Let a(s) be a plane unit speed timelike curve with a curvature
k = k(s). Then « lies on the Lorentzian sphere of center m and radius v € Rt in
E} if and only if k = constant # 0 and

a—m=(1/k)N £ +/r? - (1/k)?B.
Proof. Let us first suppose that « lies on the Lorentzian sphere of center m and

radius 7 € Rt. Then g(a — m,a —m) = r2, for each s € I C R. By differentiation
with respect to s of the previous relation, we find that

g(T,aa —m) =0. (3.1)
Further, the differentiation with respect to s of (3.1) gives
9(T' o —m) + g(T,T) = 0,
kg(N,a—m) =1,

where we have used the corresponding Frenet formula. It follows that x # 0 for
each s € I C R and that
g(N,a —m) =1/k. (3.2)
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Next, decompose the vector &« — m as
a—m =aTl +bN + ¢B, (3.3)
where a = a(s), b = b(s) and ¢ = ¢(s) are arbitrary functions. Then the relations
(3.1) and (3.2) imply that
9(T,a—m)=—-a=0, gN,a—m)=b=1/k, g(B,a—m)=c.
Further, the differentiation of (3.2) with respect to s gives
g(N';a—m)+g(N,d') = (1/k)".

By assumption « is a plane curve. Hence 7 = 0 and using the corresponding
Frenet formula we get that kg(T,a@ — m) = (1/k)’. Then the relation (3.1) implies
(1/k)" = 0 and thus 1/k = constant € R, i.e. kK = constant € R. Since k # 0 for
each s, it follows that k = constant # 0. Further, the substitution of the coefficients
a, b and c in (3.3) gives

a—m=(1/k)N +cB.

Now it is easy to see that g(a — m,a —m) = (1/k)? + ¢ = r?, so it follows that
c= ﬂ:\/m. Consequently,
a—m=(1/k) N £+/r? - (1/k)?B.
Conversely, if k = constant # 0 and
a—m=(1/k)N £+/r2 - (1/k)?B,
m € E3 is an arbitrary vector and r € R, we shall prove that m = constant. Since
m=oa—(1/k) N £+/r2 - (1/k)?B,

by differentiation with respect to s of the previous equation and using the corre-
sponding Frenet formulae we get m’ = 0. It follows that m = constant and that
g(a —m,a —m) = r2. Therefore, « lies on the Lorentzian sphere of center m and
radius 7. m

REMARK. In [8] a classification of all W-curves (i.e. a curves for which a
curvature and a torsion are constants) in space E is given. Since a is a curve with
k = constant # 0 and 7 = 0, by that classification it is a part of an orthogonal
hyperbola.

THEOREM 3.2. Let a(s) be a unit speed timelike curve in E} with a curvature
k(s) # 0 and a torsion 7(s) # 0 for each s € I C R. Then a lies on the Lorentzian
sphere of radius r € Rt if and only if

(1/6)* + ((1/7)(1/w))? = 7.

Proof. Let us first suppose that « lies on the Lorentzian sphere of center m
and radius r. Then g(a — m,a —m) = r2. By three differentiations with respect
to s of the previous equation and using the corresponding Frenet formulae, we get

9(B,a—m)=(1/7)(1/k)".
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Next, decompose the vector &« — m as
a—m=al +bN +cB, (3.4)
where a = a(s), b = b(s) and ¢ = ¢(s) are arbitrary functions. Then
9g(T,a—m)=-a=0, g(Na-m)=b=1/k, g(B,a—m)=c=(1/7)(1/k)".
Therefore, substitution of the coefficients a, b and ¢ in (3.4) gives
a—m=(1/k) N+ (1/7)(1/k)'B.

Thus
gla —m,a—m)=r’=(1/k)* + ((1/7)(1/K)")*.
Conversely, if
(1/K)* +((1/1)A/K))? =12, (3.5)
where r € R, we may consider the vector m € E} of the form

m=a—(1/k)N —(1/7)(1/k)'B. (3.6)

We shall prove that m = constant. By differentiation with respect to s of the
previous equation, we have that

m' =T —(1/k)'N = (1/8)(sT +7B) = ((1/7)(1/k)')'B + (1/7)(1/K)'(TN)
= (=7/k=((1/7)(1/K)")) B.

(3.7)
By differentiation with respect to s of the assumption (3.5), we have
(2/k)(1/K) + (2/7)(1/K)'(1/7)(1/K)) =0
and thus
(r/k) + ((1/7)(1/K)) =0. (3.8)

Substituting the last relation in (3.7), we find that m’ = 0 for each s € I C R and
thus m = constant. The relation (3.6) implies that

gla—m,a—m) = (1) +((1/7)(1/x)}* = 1%
Hence « lies on the Lorentzian sphere of center m and radius r. m

THEOREM 3.3. Let a(s) be a unit speed timelike curve, with a curvature k(s) #
0 and a torsion 7(s) # 0 for each s € I C R. Then « lies on a Lorentzian sphere

in E} if and only if
(r/k) = =((1/7)(1/K)")".

Proof. Let us first assume that « is a curve lying on the Lorentzian sphere of
radius 7 € RT. Then by the Theorem 3.2 it follows that the relation (3.5) holds,
so differentiation with respect s of the relation (3.5) implies the relation (3.8).
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Conversely, suppose that the equation (3.8) holds for each s € I C R. Since
(3.8) is the differential of the equation

(1/k)? 4+ ((1/7)(1/K)")? = ¢ = constant > 0,
we may take ¢ = 72, r € Rt. Finally, by Theorem 3.2 it follows that image of the

curve « lies on a Lorentzian sphere of radius . m

THEOREM 3.4. A unit speed timelike curve a(s) with k(s) # 0 and 7(s) # 0
for each s € I C R lies on a Lorentzian sphere in E3 if and only if k(s) > 0 and
there is a differentiable function f(s) such that fr = (1/k) and f' +7/k = 0.

Proof. Let us first assume that a(s) is a curve lying on the Lorentzian sphere.
Then by the Theorem 3.3 we have that 7/k = —((1/7)(1/k)")". Next, define the
differentiable function f = f(s) by

f=@/n)/k).
Consequently, f' = —7/k. Since k(s) = ||T”|| > 0 and «(s) # 0 for each s € I C R,
it follows that k(s) > 0.

Conversely, assume that « is a curve for which k > 0 for each s € I C R
and that there is a differentiable function f(s) such that fr = (1/k)" and
f' = —7/k. Next, since f = (1/7)(1/k)’, we have that

((1/7)(1/K)") = —7/k.
Hence by the Theorem 3.3 it follows that « lies on a Lorentzian sphere. m

THEOREM 3.5. A unit speed timelike curve a(s) with k(s) # 0 and 7(s) # 0
lies on a Lorentzian sphere in E} if and only if there are constants A, B € R such
that the equation

K,(ACOS (/ 7(s)ds) + Bsin (/ T(s)ds)) =1.
0 0
holds for each s € I C R.

Proof. Let us first suppose that a(s) is a curve lying on a Lorentzian
sphere. Then by the Theorem 3.4 there is a differentiable function f(s) such that
fr=(1/k) and f' = —7/k. Next, define the C? function #(s) and the C! functions
g(s) and h(s) by 6(s) = [, 7(s)ds,

g(s) = (1/k)cos — f(s)sinf, h(s)=(1/k)sinf + f(s)cosb. (3.9)

Differentiation with respect to s of the functions 6, g and h easily gives 0'(s) = 7(s),
g'(s) = h'(s) = 0 and therefore g(s) = A, h(s) = B, so the relation (3.9) becomes

(1/K)cosf — f(s)sinf = A, (1/k)sinf + f(s)cosf = B.

Multiplying the first of the previous equations with cos# and the second with sin 8
and adding, we find that 1/k = Acosf + Bsinf. Thus the equation

.'<0(Acos(/0S 7(s)ds) +Bsin(/057(s)ds)) =1,

is satisfied.



26 Characterizations of the Lorentzian curves

Conversely, let A and B be the real constants, such that the equation

n(A cos (/OS 7(s)ds) + Bsin (/OS T(s)ds)) =1 (3.10)

holds for each s € I C R. Then obviously «(s) # 0 and therefore k(s) = ||T"|| > 0
for each s. The differentiation with respect to s of the relation (3.10) gives

T( — Asin (/OS 7(s)ds) + B cos (/OS T(s)ds)) =(1/k)". (3.11)

Next, define the differentiable function f(s) by

f(s) = —Asin (/OST(s)ds) + Beos (/Osf(s)ds). (3.12)

Then the relations (3.11) and (3.12) give (1/k)’' =7f, that is f = (1/7)(1/&)". By
differentiation with respect to s of (3.12) and using (3.10), we find that

f = —T(A cos (/ 7(s)ds) + Bsin (/ T(s)ds)) = —7/K.
0 0
Therefore, by the Theorem 3.4 it follows that «(s) lies on a Lorentizan sphere. m

4. The Lorentzian spherical null curves

THEOREM 4.1. There are no null curves a(s) lying on the Lorentzian sphere
Proof. Assume that a(s) is a null curve lying on the Lorentzian sphere of
center m € E and radius 7 € R*. Then we have

gla—m,a —m) =712, (4.1)

for each s € I C R. If « is a straight null line with the equation a(s) = p + sq,
p,q € E3}, then by differentiation with respect to s of the relation (4.1) we get
g9(p + sqg — m,q) = 0 and therefore g(q,p) = g(g, m) = constant. It follows that
p = m and consequently &« — m = sq. But then g(a — m,a —m) = 0, which is a
contradiction. On the other hand, if « is not a straight null line, by differentiation
with respect to s of the relation (4.1), we find that

9g(T,aa —m) =0. (4.2)
By differentiation with respect to s of the relation (4.2), we get
g(T",a—m)+g(T,T) =0, kg(N,a—m) =0,
and since in this case we have k = 1 for each s € I C R, it follows that

g(N,aa—m) =0. (4.3)
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By differentiation of (4.3) and using the corresponding Frenet formula, we find that
79(T,a — m) — kg(B,aa —m) =0,
which together with the relation (4.2) gives —kg(B,a —m) = 0, and consequently
g(B,a—m) =0. (4.4)
Next, decompose the vector a« —m as
a—m =aTl +bN + ¢B, (4.5)

where a = a(s), b = b(s) and ¢ = ¢(s) are arbitrary functions. Then by the relations
(4.2), (4.3) and (4.4), we have that

gT,a—m)=c=0, g(N,a—m)=b=0, g(B,a—m)=a=0.

Therefore, the equation (4.5) implies that o = m, which is a contradiction. m
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