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SUFFICIENT CONDITIONS FOR ELLIPTIC PROBLEM OF
OPTIMAL CONTROL IN R™ IN ORLICZ SOBOLEV SPACES

S. Lahrech and A. Addou

Abstract. This paper is concerned with the local minimization problem for a variety of
non Frechet-differentiable Gateaux functional J(f) = [, v(z, u, f) dz in the Orlicz-Sobolev space
(W3 L (), ||]|ar), where u is the solution of the Dirichlet problem for a linear uniformly el-
liptic operator with nonhomogenous term f and ||.||a is the Orlicz norm associated with an
N-function M.

We use a recent extension of Frechet-Differentiability (approach of Taylor mappings see [2]),
and we give various assumptions on v to guarantee a critical point is a strict local minimum.

Finally, we give an example of a control problem where classical Frechet differentiability
cannot be used and their approach of Taylor mappings works.

1. Preliminaries

1.1. Some definitions and well-know facts from Orlicz space. We
begin by listing briefly some definitions and well-known facts from Orlicz space
theory (see [1]).

Let Q be an open subset of R", with Lebesgue measure dz, and let M be an
N-function (i.e. a real-valued continuous, convex, even function of ¢t € R satisfying
M(t) M(t)

M(t)>0fort>0, =2 = 0ast— 0and —= — 400 as t — +00).

The Orlicz class Ly () is defined as the set of (equivalence classes of) real-
valued measurable functions u on Q such that [, M(u(z))dz < 400, and the Orlicz
space L3,(€) as the linear hull of Ly ().

L3,(§2) is a Banach space with respect to the Luxembourg norm:

lulloany =inf{k >0 /QM(%) iz < 1}.

L%,($2) is a Banach space with respect to the Orlicz norm:

||u||M=sup{\ [ wanterde| [ Wy <1},

where M is the N-function conjugate to M.
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The Orlicz norm ||.||as is equivalent to [|.[|[(ary: ||-Il(ary < II-Ilar < 2||-ll(ar)-

Let W™L%,(§2) be the Orlicz-Sobolev space of functions u such that « and its
distribution derivatives up to order m lie L},(Q).

Wm™L%,(§2) is a Banach space with respect to the norm:

1
2
fullnr = (107l

la|<m

1.2. Orlicz-Sobolev Spaces. We define a further Orlicz-Sobolev space
WL, () to be the closure of C§°(Q) in (W™L3,(2),0(IIL s, IIE ).

1.3. Description of the optimization problem. Let A be an elliptic
operator of second order:

Au= Y (=1)!'DYas(2)Du),
[1]<1,]s]<1

where a;s(z) € D(Q). Suppose that Q is sufficiently smooth and bounded domain
in R™.
Let us consider the problem :
Au = f,
u|aQ =0. (1.2)

~—~
—_
—
~

For this problem, let us state Agmon-Douglis-Niremberg’s theorem:

THEOREM 1.1. (Agmon-Douglis-Niremberg) Let 1 < ¢ < oo; then we have
that Vf € LY(Q), there exists a unique solution u € W9(Q) N W, 9(Q) of prob-
lem (1.1), (1.2). Moreover, Ym > 0 if f € W™4(Q), then u € W™T29(Q) and
llullwm+2.aiq)y < cll fllwm.aca)-

Let M be an N-function such that [t|P < M (t) for t > ¢y, where p > n and
to > 0. Let f € F C WJ§L%,(92) be a control and let u the solution of problem
(1.1), (1.2) in WyP(Q) N W2P(5) associated to f.

Let us consider Ji(f) = [ ve(z,u, f)dx + ck||f||f,v1,2(9), (k=0,1,2,...,81)
and Ji(f) = fQ ve(x,u, f)de, (k=s1+ 1,81 +2,...,81 + $2), where the sequence
of functions v : 2 x R x R — R is measurable on 2 x R x R and has second
derivative with respect to (u, f) on R x R for almost all z € Q.

We consider three problems of minimizing the functional Jy(f) :

1)  Jo(f) — min, (1.3)
i) Jo(f) — min, J(f) =0, where J = (Js, 41, Js;452)» (1.4)
191) Jo(f) = min, J(f)=0, Ju(f) <0, (k=1,2,...,51). (1.5)

We must choose a control fO in order that the solution 4’ of the problem (1.1),
(1.2) with f = f° satisfies the inequality of the type: J(f) < 0,(1 < k < 51) and
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the equality of the type: Ji(f) =0,(s1+1 < k < 81+ s2) and the functional Jo(f)
takes a minimum value. This control f° will be called optimal.

1.4. Taylor mappings and lower semi-Taylor mappings. Let M be an
N-function, ||.[lw1zs (o) the usual norm in WyL3,(2), F a subset of Wg L3,(9),
7 a topology in F, Y a normed space, and ||.||y a norm in Y. According to
[2], a mapping r: F — Y (respectively, r: F — R) is said to be infinites-
imally (7, ||-[lwzs,())-small (respectively, infinitesimally lower (7, ||.|lw:Lx (2))-
semismall) of order p; at f € F if: Ve > 0, 3 Oy € 7, Vh € W§L},(Q) we
have

FHheOs = Ir(f +Wlly <elhlfn g
(respectively, Ve > 0,3 Oy € 7,V h € W L},() we have
fHhe0; = Ir(f +h)lly > —elhl%h s (o)
here and below, Oy is a neighborhood of f in (F, 7).

A mapping J: F' — Y (respectively, J: F — R) is called a (7, ||.[[w1Ls,(2))-
Taylor (respectively, lower (7,||.|[w1L: (o))-semi-Taylor) mappings of order pi
at f € F if there exist k linear symmetric (not necessarily continuous) map-
pings JE)I(f): (WELL(Q))F — Y (respectively, J®(f): (WaL%, () — R,
k=1,...,p1, such that

J(f+h)=JI(f) =

= TN+ 27 T () (R, h) + -+ ()T TP (F)(h, . h) +7(f + h),
where 7: ' — Y (respectively, r: F' — R) is an infinitesimally (7, ||.|lw1L: (0))-
small (respectively, infinitesimally lower (7, [|.||w1 L3 ())-semismall) mapping of or-
der p; at f € F.

We note that J(f),..., J®)(f) are not in general single-valued. The set of
tuples (J(f),..., J®I(f)) is denoted by S,(J, f).

Let us solve the problems (1.3), (1.4) and (1.5). For the problem (1.5) let us
introduce the Lagrange functions:

LU A D0) = 35 M) + 7 T(F)) (1.6)
£A(F0" A0 = X NI () + 7 TO()), (1.7)
Lor(ha" A 0) = 3 TP+, IO, (1.8)

where \g € R, y* € (R®)", A € (R™)".
Also for the problem (1.4), let us introduce the Lagrange functions:

L(»f,y"20) = XoJo(f) + ¥*, J(f)), (1.9)
Li(f,5% 20) = XISV () + (v, TV (), (1.10)
Lir(fy% 20) = M) + (™, TA(f)), (1.11)

where \g € R, y* € (R*?)".
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Let us give the following theorem where the proof can be traced back to [1].

THEOREM 1.2. Let M be an N-function, 2 a bounded domain in R™. Suppose
that w € L}, (Q) and |lullpm < 1, then [o M(u(x))dz < oo.

Let us give also the following lemma where the proof can be traced back to [2].

LEMMA 1.1. Let (2, X, 1) be a measure space with o-finite measure, and let X
be a complete linear metric space continuously imbedded in the metric space M ()
of equivalence classes of measurable almost everywhere finite functions x: & — R,
with the metrizable topology T(meas) of convergence in measure on each set of ¥
finite measure.

Suppose that X contains with each element x(s) the function |x(s)|, the metric
in X is translation-invariant, and p(z,0) = p(|z|,0) for each x € X. Then for each
sequence x, — 0 in X there exist a subsequence x,, and an element z € X such
that: |z, (s)| < 2(s), k=1,2, ... in the sense of the natural order on classes of
functions.

Using the same argument as in Lemma 1.1 and the result of Theorem 1.2, we
obtain the following lemma.

LEMMA 1.2. Let M be an N-function, Q a bounded domain in R™. Then
for each sequence u, — 0 in (Li;(),||.|la) there exist a subsequence un, and
an element z € L3,(Q) such that |un, (s)| < 2(s), k =1,2,..., in the sense of the
natural order on classes of functions. Moreover, 2z € Ly () i.e. o M(22(x)) dx <
+o00.

Proof. Suppose that u, — 0 in (L3,(),||.]|ar). Then, there exists a subse-
quence uy, such that |Jun, |[n < 5. Let us put Sn(2) = 34—, |un, (#)|. We show
that the sequence S,(z) is Cauchy in (L3,(Q),||.||s). Let m > n. Then

I1Sn(z) = Sm(@)llr = || 22 [un, ()] ‘ <2 2 lun(@)lln <2 > o
k=n+1 M k=n+1 k=n+1
Since (L3,(), ||-lar) is complete, So(z) = 2755 |un, (x)| € Li,(Q). Consequently,

there exists ko € N such that || EZ;X,;O [tn,, (@)l < 3.

It can be assumed that S,(x) — So(z) almost everywhere in Q. Let us put
Z(z) = E;:;X;CO |tn,, (z)]- Obviously, Vk > ko |un, ()] < Z(z) almost everywhere in
Q. Further, || Z(z)||x < §. By theorem (1.2), it follows that [, M(2z(x)) dz < +oo.
Thus we achieve the proof. m

LEMMA 1.3. Suppose that Q is sufficiently smooth and bounded domain in
R"™. Let M be an N-function such that |t[P < M(t) for t > to, where p > n
and to > 0. Then, 3 ¢ > 0 Vf € WyL3,(Q) IR(Hllc@wy < cllfllwirs, @) and
Ifllc@y < cllfllwrrs, (o), where R(f) is the solution of problem (1.1), (1.2) in

W2P(Q) N W, ().
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Proof. Let f € W§L%,(Q). Since |t|P < M(t), then f € LP(2). Thus, there
exists a unique solution u € W2?(2) N W, () of problem (1.1), (1.2). Moreover,
lullwe) < cllfllzr(n), where ¢ > 0.

On the other hand, W, ?(2) — C(). Therefore, u € C(Q). Let us put
R(f) = u. So, since WOI’Z’(Q) — C(f), then

IR(llcoy < allR(Hllwir@) < el FIILP(Q) < esllfllzs, ) < call fllwrrs, @)

where ¢y, ¢a,c3,c4 > 0.

On the other hand, we have Wl L%, (Q) — Wy P(Q) — C(Q). Thus, there
exists ¢5 > 0 such that || fllc@) < esllfllwirs, (@)-®

2. Sufficient conditions of local minimum for Gateaux functional
of second order Dirichlet problem

Suppose that  is sufficiently smooth and bounded domain in R". Let F
be a subset of W!L%,(), M an N-function such that [t[F < M(t) for t > t,,
where p > n and top > 0. Let G be the functional defined on W§L3,(Q) by:
G(f) = [qv(z,u(z), f(x)) dz, where u(z) is the solution of problem (1.1), (1.2) in
Wy P () NW2P(Q) and the function v: 2 x R x R — R is measurable on @ x Rx R
and has second derivative with respect to (u, f) on R x R for almost all z € Q.
Let 737 be the topology generated by the Orlicz norm ||.||as. Henceforth in this
paragraph a = const.

THEOREM 2.1. Suppose that the following condition is added to the conditions

of paragraph (1) and (2): v, vfff), vffu) are continuous in @ x Rx R. Let us suppose

also that
(e, u, )l + [0 @, u, £)] + o (2,0, )
W& (w,u, )] + 20087 (2, £ + 108 (2,0, £)

< a(M(u) + M(f)) + bs(2),
< a(M(u) + M(f)) + ba(2),
where bs € L'(Q), b € L'(Q). Then, G is a (1, |-lwrLy,())-Taylor map-
ping of first and second order at each point f € F. Moreover, GA(f) €
B((Wg Ly () Il-llw .y, 0 R), G(f) € LW Ly, (), 1wy, 9), R)-

Proof. Let us prove first that the functional G is finite. We have

()] = \ [ vtevpyas

S/Q|v(x,u,f)|dx
5a(/QM(u(x))dx+/QM(f(x))daz> +/Qb5(x)dx<oo.

Indeed, we have f € F C W}L5,(2) — C(Q). Consequently, f € C(2). On
the other hand, u € W, ?(Q) — C(f). Therefore, [, M(u(z))dz < oo and
Jo M(f(z))dx < oo. Thus, the functional G is finite.



42 S. Lahrech, A. Addou

Let R: W§L,(Q) — WLL,(Q), h — (R(h))(z), where (R(h))(z) is the
solution of problem

Au = h,

u|39 =0.

~~
O
o~

=

Such a solution exists Vh € W} L%,(1).
Let G (f) be defined by:

GO (f)h = }11% AHG(f + Ah) — G(f))

A—0

= lim A~ / [o(z, u+ AR(R), f + Ak) = v(z,u, )] do
Q

= )l\irr%] At [v(x,u + AR(h), f + Ah)—
- Q
—v(z,u, f + Ah) +v(z,u, f + \h) — v(z,u, f)] dx

= lim [/1 oM (z,u + OAR(h), f + Ah)R(h) db
Q

A—0 0

1
+/ vgcl)(a:,u,f + pAh)h dp] dx
0

= lim [ / 1 [v) (2, u + OAR(R), f + Ah) — o (2, u, f)] R(R) d6
Q

A—0 0

1 1
+ / v (z, u, f)R(R) dO + / [0 (@, u, £+ pAh) — 0§ (2, u, )] hdp
0 0
1
+h/ vjcl)(ac,u,f)dp] dz
/v(l)(xuf dx+/hv (z,u, f)d
Q

Then
() = [ u NROds+ [ ooy b,
Let G (f) be defined by:
GO (f)(h1,ha) = Tim A~ [GD(f + o) = G ()] 1

= lim A7! / [vg”(x,u + AR(h2), f + Ahg) — oD (2, u, f)] R(hy) dz
L/ Q2

A—0

+ / [0 (2, u + AR(ha), f + Ahz) — v (@, u, )] I d:c]
Q

= Jim A7 / [o) (@, 1+ AR(ha), f + Aha) = oD (w,u, f + Mho)
- L/ Q

+ o0 (@, u, f + Aha) — v (@, u, f)] R(hy) da
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+ /Q [0 (2,5 + AR(ha), f + Ah2) = v (@, u, £ + Ahy)
+ vgcl)(x,u,f + Ah2) — vftl)(a:,u,f)] hidx
= lim A1 [/Q [/01 03 (z,u 4+ OAR(h2), f + Mh2)AR(hs) d6

) .
+/ o2 (@, u, f + pAh2) A2 dp| R(hy) da
0 i

1
+/Q[/O v®) (@, u+ OAR(ha), f + Ah2)AR(h2) d6

1 ]
+ / o2 (@, u, f + pAh2) Az dp| by da:]
0 J
=/vfu)(x,u,f)R(hl)R(hg)der/ v (@, u, f)R(h)hs do
Q Q
—|—/Qv§,22(x,u,f)h1R(h2)dx+/Qv;?(x,u,f)hlhg dz.

The linearity and bilinearity of G (f) and G®)(f) are obvious.

Let us prove now that they are bounded.
GO (f)h| < /Q [0 (@, u, | R(R)] o + /Q [f @, w, f)|R] da
< [ Talarw) + 21(5) + Ibs@) | [RG)| + )] do

< [ [o(01(w) + (7)) + bs(o)]) g (RO o) + max Gz da

= /Q[“(M(U) +M(f)) +1bs(@) ] [IRM) oy + 1Pl o] de
< ellhllwizy,(9),

where ¢; > 0. For the last inequality, see Lemma 1.3. Consequently, G(V(f) €
L(Wo Ly (), I-llwiry, 9), R)-
Let us prove now that G()(f) is also bounded. We have

G- ha) < [ [a(M(w) + (1) + (@)
X [|R(h1)||R(h2)| + |R(h1)||h2| + |h1]|R(h2)| + |ha||h2]] da

< [a(M(u) + M(f)) + lIbs ()], ()] X
x [max|[R(hy)](x)| max |[R(h2))(@)| + max |[R(h1)) (@) | max ()

+max |ha (2)| max |[R(ho)}(2)] + max b (z)| max by ()]
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< es[IIR(h)ll eyl R(h2)lloay + IR(P) o @y llP2ll ogay
+ Ille@) IRl oy + hille@)llhallo@)]
< callhallwrs, @) llh2llwirs, (@)-

For the last inequality see Lemma 1.3. Thus,
GP(f) € B(Wg Ly (), l-lwr s, (0)), R)-

Let us prove now that G'is a (7w, |||lw1Ls, (0))-mapping. Let f € F. We show
that the mapping

r(h) = G(f +h) = G(f) = GV (f)h — 27 G (f)(h, h)
is (a1, [|-lw L2, ())-of second order at zero.

Assume that this is not so. Then there exist a sequence h,, € F and a number
¢ > 0 such that h,, — 0 in L%,(Q), but

|7"(il )| 2 5||h “WlL* ()
On the other hand, using the fact that W,? Q) — C(Q) and the regularity of
solution of the problem (1.1), (1.2), we obtain R(h.,) — 0in (L%,(2), ||.]|ar)- Using
Lemma (1.2), we deduce that 32 € L},(Q2) Vm |(R(hm))(z)|] < Z(x), where 2% €
Ly ().
Analogously, for h,, € WEL%,(Q), we obtain |k, (z)| < £ (z), where 27 €
Ly (Q). We have
) = [ [oGouct RO, S +1) = o, ) = oD (o, NRW) = o0, P
Q
— 27 [0l (z,u, f)R*(h) + 2v(2)(x,u,f)R(h)h+v§c2f (z,u, f)R?]] dz
-/ / (2, 5+ OR(h), f + h)R(k) — v (z, u, f)R(R)
1
— 273 (2,4, f)R?(h)] db dx +/ / [v(l)(x,u,f + Ah)h — v}l)(x,u, fh
— 273 (z,u, f)h?] d\dz — // (z,u, f)R(h)hd\ dz
+ / / / v®) (@, u +8R(h), f + AR)RR(h) dA dbda
- / (v, u+0R(R), f) — v (@,u, f) — 002 (2, u, fYR(W)] R(h) dbd

+// [0 (@, u, f + AR) = o (@, u, £) = M) (2, u, f)h] hd do

// xuf R(h)hd)dx
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// / @) (@,u +OR(h), f + A\b)hR(h) dA df da.

Let A,,, B,, be two functions defined by:

oW (@,ut O R(hm ), )=o) (2,0,0) _ g (2)
(z,0) = { R(fom) v (z,u, f), if R(hm) # 0,
0, if R(fim) = 0,
(1) 7 (1)
vy (@A) vy (zu,f) o2 £ 7 0
B (.’II,)\): han /Uff(w’u’f)’ 1 ~m7é )
0, if o =

Let Fyy, be defined by: Fpn (2,0, X) = 07 (2, u(2)+0R(hm ), f+-Nam)—0' (2, u(@), £).
Then

1
m)| = m(z, 0)R%(h )d9da:+// B, (2, \A2, d\ dx
QJo

+// / Fr (2,0, \)R(hom Yoy, dX d6 dz|.
QJo 0
Thus

Ir(hn)] < / /Q A (2, 0)] do d8 max [R(F))(0)

1
+/ /|Bm(a:7)\)|da:d)\mag<|ﬁm|2
0 Q €
1 1 N N
[ ] Fn,6,3) o dd8 max (R 0)] max
0 0 Q € €S

1 1
< s [/ /|Am(x,9)|dxd0+/ /|Bm(x,>\)|dxd)\
0 Q 0 Q
1 1 N
+/0 /0 /Q|Fm(m,6,)\)|dmd)\d0] 1)z (o) (2.3)

On the other hand, 3k,,(z) such that 0 < k,,,(z) <1 and
|4 (@,0)] < 03 (@, u(@) + kn (2)0[R(hm)] (@), f)] + [0 (2, u(@), £)].

So, we obtain
| Am(2,0)] < a[M(u(@) + ki (2)0[R(0n)) () + M ()] + [ba(2)]
+a[M(u) + M(f)] + |be(z)]
<a %M(%(azm +2M(f) + M(u(x)) + %M(Zu(x)))
+ 2|bg(x)| € L' ().
Analogously, 35, (x) such that 0 < S,,(z) <1 and
|Bon (2, V)| < 057 (@, 0(2), ASm (@) hm (2) + £)] + [0 (2, u(@), £)]-
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So, we obtain

|Bum (2, A)| < a[M(u (w>>+M(AS (@) A (z) + >]+|be( )
a[Mua: (33)]+|b6

< a[2M() + 5 M(25(@) + FM @) + M) + 2a(a)| € @)

MI'—‘

Analogously for F,,, we obtain

| (2,60, 0)] < [0 (@, u(@), )] + [0 (@, u(@) + OR(hm), f + Nbm)|
<a BM(%(@")) + %M(2§1(m))%M(2u) + %M(2 f)] + 2bo ()|
+a[M(u)+ M(f)] €LY Q).
Let us remark that A,,(z,0) — 0, Bp(z,A) — 0, Fp(z,6,A) — 0 almost every-
where. Thus

1
//|Am(x,9)|dxd0—>0 as m — 400,
0o Jo
1
//|Bm(x,)\)|dxd)\—>0 as m — 400,
0o Ja

1,1
///|Fm(x,0,)\)|dxd)\d0—>0 as m — 400;
o Jo Ja

but this contradicts (2.3).

Now let us prove that the functional G is a (7ar, ||[lw1 2z, (2))-Taylor mapping
of first order at each point f € F. We must estimate

r(h) = G(f + h) — G(f) = GV (f)h.

Assume that h,, — 0 in L%,(Q), and [r(hm,)| > a||hm||W1L* (@)- Thus R(hpm) — 0

n (L3, (D), ||Illar) as m — +o00. Using Lemma (1.2), we deduce that there exists

% € L%,(Q) and there exists z; € L%, () such that Ym € N |[R(h.,)](z)| < Z(x) and

|hm(2)| < Z1(z) almost everywhere in Q. Moreover, 23 € Ly;(Q) and 221 € L ().
On the other hand, we have

lr(hm)| = /Q[v(w’u(w)+[R(7lm)](w),f(w)+hm(w))—v(w,U(w),f(w))

— v (@, u(x), (2))R(hm) — 0} (@, u(2), f(@))hm] do

/Q [0(2,u(z) + R(m), £(@) + ) — 0(z, u(z), £(z) + )

— o (z,u(2), f(2))R(hm) + v(z, u(2), () + hm)

IN
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— (@, u(z), f(2)) = v} (@, u(2), £(2)) ] da

m) dz| + 2)hmdz|,
where
v(@ut R(hm )y f+hm)—v(2,u, fthm) (1 ) -
Am(z) = { R(im) (z,u, f), if R(hp) # 0
0, if R(h) =
v(eufthm)—v(zuf) (1) s
e :{ o vy @), i hn 0
0, if B =
Consequently,

|</ [An(@)] d s [R(E, x)|+/ |Bon(2)|dir max | (z)|
Q €N

< e [ [ an@as+ [ |Bm<x>|dx] Vol s - (2.4)

Let us remark that A,,(z) — 0, Bn(z) — 0 almost everywhere in Q.
Using the mean value theorem, we obtain

A @) < a[M(u+ () + M(F@) + Fon(a))] + [ba(a)]
+a[M(u(z)) + M(F@)] + o)
< a[5MC2@) + FMCLW)| + 2]

+a| MCu) + 5MESE)] +alM () + M @)] € 1),

Using the same reasons, we obtain

| B ()] < a[M(u( )+M(f() + hm ())]+|33( )
+a[M(u(z)) + )]+|bs

< a[2M(u(e) + GMEA) + §MES)
+aM(f(z)) + 2|b3(a:)| e LY(Q).
By the Lebesgue dominated convergence theorem, we conclude that

/|Am(x)|d:c—>0 as m — 400
Q

and
/|Bm(x)|da7—>0 as m — +oo;
Q

but this contradicts (2.4). m
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Now let us give the sufficient conditions of optimality for the problem (1.3),
(1.4) and (1.5).

THEOREM 2.2 Suppose that, in problem (1.4), vy satisfies the conditions of
Theorem 2.1, then the functionals

Mf)z/ka(x,u,f)dw, (k=814 1,0, +59)

are (Tm, ||-lwirs, (@))-Taylor mappings of first and second order at each point
f € F and Ju(f) = [qur(z,u, f)de + ck||f||%,vl,2(9), (k =0,...,81) are lower
(7m, l-lwrzs, (2 )-semi-Taylor mappings of first and second order at each point

f € F. Consequently, EIJ,gl)(f) and EIJ,£2)(f), (k=0,...,81 + 82).
Let us suppose also that, J(f) =0, J(l)(f) s an open mapping of

(Wo L (), [l lwrzs, )

onto R*2, 3 §* € (R**)*, 3a > 0: L;(f,7*,1) = 0, and Yh € kerJV(f)
Lff(fv?v ]-)(hv h) > za”h”%/VlLL(Q)) where ‘cf(fv :’7*7 1) and Eff(fa@\kv 1) are given
by formulas (1.10), (1.11). Then f is a strict Ty -local minimum point.

Proof. All conditions of Theorem 1.5 in [2] are satisfied. Thus f is a strict
Tp-minimum point. m

THEOREM 2.3. Suppose that, in problem (1.5), vy satisfies the conditions of
Theorem 2.1, then the functionals

Jk(f)E/ka(m,u,f)dx, (k=s14+1,...,81 + s2)

are (Tar, ||-[lwLs, (@))-Taylor mappings of first and second order at each point
f e F and Ju(f) = Joue(z,u, f)dz + il fllfrzqy, (B = 0,...,51) are lower
(a0, |- [lwr L1, (2))-semi-Taylor mappings of first and second order at each point
f € F. Consequently, EIJ,EI)(f) and EIJ,?)(f), (k=0,...,81 + 82).

Let us suppose also that, f e F, J(f) =0, Jk(f) =0,(k=0,...,81). Let
us put L = {h € W(}L’R,I(Q)/J,gl)(f)h =0,k=1,...,s1, JU(f)h = 0}. Suppose
that JO(f) is an open map from (WEL%, (), I-lwizs, (@) onto R*, X e (RY)*,
e (R2)*, 3y >0,3N >0, (k=1,...,8): Lp(f,7",\1) =0 and Vh € L
Lis(F7 A DB R) > 290kl e oy, where Li(F.7%2,1) and Ly;(F,7%,A,1)
are defined by formulas (1.7) and (1.8). Then f is a strict Tar-local minimum
point.

Proof. All conditions of Theorem 1.6 in [2] are satisfied. Thus f is a strict
Tp-local minimum point. m
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THEOREM 2.4. Suppose that, in problem (1.3), vi satisfies the conditions of
Theorem 2.1, then the functionals

h(f)z/gvk(x,u,f)dw, (k= s14 1.5 +82)

are (Tar, ||-[lwiLs, (@))-Taylor mappings of first and second order at each point
f € F and Ji(f) = Joue(z,u, f)dz + il fllfrzqy, (B = 0,...,51) are lower
(a0, |- [lwr L1, (2))-semi-Taylor mappings of first and second order at each point

f € F. Consequently, EIJ,EI)(f) and EIJ,?)(f), (k=0,...,8 + 82).

Let us suppose also that, Jél)(f) = 0 and Ja > 0 Vh € W§L}y,(Q):
JéQ)(f)(h, h) > 2“”””%{/%;,[(9)' Then [ is a strict T -local minimum point.

Proof. All conditions of Theorem 1.4 in [2] are satisfied. Thus f is a strict
Tu-local minimum point. m

REMARK. Let us remark that, in Theorem 2.1, the increasing conditions sat-
isfied by v are not sufficient to certify the Frechet-differentiability of functional
G (W Ly (), |l lxe) — R

Indeed, let us define v: @ x R x R — R by: v(z,u, f) = [ch|u| — [u| — 1] +
[ch|f| — |f| — 1], and put bo(z) = 0. Let us suppose that @ = 1. Let us put
M(t) = el — |t| = 1, and let d,,, — +00. Let f € WIL%,(Q). By the countable
additivity of Lebesgue measure,

Je> 030 CQ, u() >0, p(,00) >0,
and Yz € Q' |f(z)| < c. Let Q,, C O such that u(Q,) = (e —d,, —1)7'. Put
D = max{|v(z,u, f)|: |[u] <¢, |fl|<e, z€Q}<o0.

Let h,, be defined by:

0, if x € Q\ Q.

Then [|hm(a)ll(v) — 0, but |G(f(@) + hum(2)) — G(f(2))] = [chldm| — |dm| —

1]#(Qm)—Du(Qm) — 1. Thus G is not Frechet-differentiable in (W} L3, (), ||| a)-
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