A GENERALIZATION OF DARBOUX THEOREM

Dorde Dugošija

Abstract. We show a generalization of the fundamental Darboux theorem that states intermediate property for the derivative function of a real differentiable function. We extend this result for pairs of differentiable functions, i.e., for flat differentiable arcs.

1. Introduction

The well-known theorem of Darboux asserts that the set of values of the first derivative of a real differentiable function x(t), $t \in [a, b]$ is an interval (connected set on the real line). For a pair (x(t), y(t)) of differentiable functions on an interval [a, b], the set $\{(x'(t), y'(t)) \mid t \in [a, b]\}$ need not be connected as the following counterexample shows (see [1]).

EXAMPLE. Let $(x(t), y(t)) = (t^2 \cos \frac{1}{t}, t^2 \sin \frac{1}{t})$ for $t \in (0, 1]$ and (x(0), y(0)) = (0, 0). Then the set $\{(x'(t), y'(t)) \mid t \in [0, 1]\}$ is disconnected.

In spite of this, there is still an extension of the Darboux theorem for pairs of differentiable functions. The aim of the paper is to show such a generalization.

2. Result

Theorem. Let (x(t),y(t)), $t \in [a,b]$ be a differentiable arc, such that the tangent vectors $(x'_+(a),y'_+(a))$ and $(x'_-(b),y'_-(b))$ are not collinear. Then, for every direction d in the interior of the angle between these vectors, there exists a point $c \in (a,b)$ such that the tangent vector (x'(c),y'(c)) is collinear with d.

Proof. Denote $T = \{(u,v) \mid a \leqslant u < v \leqslant b\}$. Let $F: T \to \mathbf{R}^2$ be a function defined by

$$F(u,v) = \left(\frac{x(v) - x(u)}{v - u}, \frac{y(v) - y(u)}{v - u}\right).$$

Function F is obviously continuous and maps the connected triangle T onto a connected set F(T). Since $F(a,v) \to (x'_+(a),y'_+(a))$, when $v \to a+0$ and $F(u,b) \to a+1$

AMS Subject Classification: 26 A 24

Keywords and phrases: Mean value theorems, analysis.

78 D. Dugošija

 $(x'_-(b),y'_-(b))$, when $u\to b-0$, the points $(x'_+(a),y'_+(a))$ and $(x'_-(b),y'_-(b))$ are accumulation points of F(T). Since d lies in the interior of the angle between the radius vectors of these points, the line $p=\{td\mid t\in \mathbf{R}\}$ strongly separates these points, so that the former point belongs to the open half-plane H(a) and the latter one to the open half-plane H(b), both having line p as its border. The intersection $F(T)\cap p$ is not empty. Otherwise, F(T), being the union of non-empty sets $F(T)\cap H(a)$ and $F(T)\cap H(b)$, would not be connected. Let $(\alpha,\beta)\in F(T)\cap p$. Then

$$(x(\beta) - x(\alpha), y(\beta) - y(\alpha)) = t_0(\beta - \alpha)d \tag{1}$$

for some $t_0 \in \mathbf{R}$. Since $\alpha < \beta$, it follows from (1) that the points (x(a), y(a)) and (x(b), y(b)) are distinct. Using Cauchy's mean value theorem for functions x(t) and y(t) on the interval $[\alpha, \beta]$, we conclude that there exists a $c \in (\alpha, \beta)$ such that

$$(x'(c), y'(c)) = s(x(\beta) - x(\alpha), y(\beta) - y(\alpha))$$
(2)

for some $s \in \mathbf{R}$. From (1) and (2) it follows that the vectors (x'(c), y'(c)) and d are collinear.

The Theorem we have just proved extends the Theorem of Darboux. In order to prove that, consider the differentiable arc $(x(t),t),\ t\in[a,b]$. Notice that if $x'_+(a)\neq x'_-(b)$, then the tangent vectors $(x'_+(a),1)$ and $(x'_-(b),1)$ span a nonzero angle and the direction (d,1) lies in its interior (it is a convex combination of these vectors). Applying our Theorem, we can find a $c\in(a,b)$ such that (x'(c),1) is collinear with (d,1). Hence, x'(c)=d is a convex combination of $x'_+(a)$ and $x'_-(b)$.

REFERENCES

 Dieudonne, J., Foundations of Modern Analysis, Vol. 8, Academic Press, New York-London, 1969.

(received 12.01.2000, in revised form 15.05.2002)

Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia E-mail: dugosija@matf.bg.ac.yu