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ON B-ALGEBRAS

J. Neggers and Hee Sik Kim

Abstract. In this paper we introduce and investigate a class of algebras which is related to
several classes of algebras of interest such as BCH/BCI/BCK-algebras and which seems to have
rather nice properties without being excessively complicated otherwise. Furthermore, a digraph
on algebras defined below demonstrates a rather interesting connection between B-algebras and
groups.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BC1I-algebras ([4, 5]). It is known that the class of BC K-algebras
is a proper subclass of the class of BCI-algebras. In [2, 3] Q. P. Hu and X. Li
introduced a wide class of abstract algebras: BC H-algebras. They have shown
that the class of BC'I-algebras is a proper subclass of the class of BC H-algebras.
The present authors ([8]) introduced the notion of d-algebras, i.e., (I) z x z = 0;
(V) 0%z =0; (VI) zxy = 0 and y*x = 0 imply = = y, which is another useful gen-
eralization of BC' K-algebras, and then they investigated several relations between
d-algebras and BCK-algebras as well as some other interesting relations between
d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim
([6]) introduced a new notion, called an BH-algebra, i.e., (I), (II) z * 0 = z and
(VI), which is a generalization of BCH/BCI/BCK-algebras. They also defined
the notions of ideals and boundedness in BH-algebras, and showed that there is a
maximal ideal in bounded B H-algebras. In this paper we introduce and investigate
a class of algebras which is related to several classes of algebras of interest such as
BCH/BCI/BCK-algebras and which seems to have rather nice properties without
being excessively complicated otherwise. Furthermore, a digraph on algebras de-
fined below demonstrates a rather interesting connection between B-algebras and
groups.
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2. B-algebras

A B-algebra is a non-empty set X with a constant 0 and a binary operation
“¥” satisfying the following axioms:

(I zxx =0,
(I1) z+0 ==,
(III) (x*xy)*xz=x* (2 (0%y))
for all z,y,z in X.
EXAMPLE 2.1. Let X := {0,1,2} be a set with the following table:

*

0
0
1
2

O (N |- N

1
0 2
1 0
2 1

Then (X : %,0) is a B-algebra.

EXAMPLE 2.2. Let X be the set of all real numbers except for a negative
integer —n. Define a binary operation * on X by

n(@—y)

T xqY 1=
4 n+y

Then (X;*,0) is a B-algebra.
EXAMPLE 2.3. Let X :={0,1,2,3,4,5} be a set with the following table:

*10 1 2 3 4 5
ojo 2 1 3 4 5
1 1 0 2 4 5 3
212 1 0 5 3 4
313 4 5 0 2 1
414 5 3 1 0 2
515 3 4 2 1 0

Then (X;*,0) is a B-algebra (see [10]).

EXAMPLE 2.4. Let F(x,y,z) be the free group on three elements. Define

uw*v :=vuv 2. Thus u*u = e and uxe = u. Also exu = u~!. Now, given

a,b,c € F(x,y,z), let
w(a,b,c) = ((a*b) xc)(ax (cx(exb)™?
= (cbab™2c?) (b~ cb®a "t cbeh?) !

=cbab 2¢ 2 2 o e tha T 02 D
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Let M (x) be the normal subgroup of F(x,v, z) generated by the elements w(a, b, c).
Let G = F(z,y,2)/N(x). On G define the operation “” as usual and define

(uN (%)) * (VN (x)) := (u * v)N(%).
It follows that (uN (*)) * (uN (%)) = eN(x), (uN(*)) * (eN(x)) = uN(x) and
w(aN (%), bN (x), N (x)) = w(a,b, )N (x) = eN (x).

Hence (G;*,eN(x)) is a B-algebra.
If we let y := x in (III), then we have

(zxx)*xz=x*(2x(0%xx)). (a)
If we let z := z in (a), then we obtain also
Oxxz=uxx*(z*(0xx)). (b)
Using (I) and (a), it follows that
0=z (0x(0=xx)). (c)

We observe that the three axioms (I), (IT) and (III) are independent. Let
X :={0,1,2} be a set with the following left table:

* 0| 1|2 * 1 011 2
0Oj0j]1]0 Ol 0|12
1 110]|1 1 1 1 1
21011170 202112

Then the axioms (I) and (III) hold, but not (II), since 20 =0 # 2.

Similarly, the set X :={0,1, 2} with the above right table satisfies the axioms
(II), (III), but not (I), since 1x1 =17 0. Let X := {0,1,2,3} be a set with the
following table:

* 0| 1] 2|3
0Ojojo0o|07]0
1 1701 07]0
2120101
3131010710

Then (X; *,0) satisfies the axioms (I), (II), but not (III), since (2x3)x0=1#2=
2% (0% (0x%3)).
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LEMMA 2.5. If (X;%,0) is a B-algebra, then y =z =y * (0% (0 % 2)) for any
y,2 € X.

Proof. This follows from the axioms (IT) and (III), i.e.,

yxz=(yxz)*0 [by (II)]
=yx(0x(0%z)). m [by (III)]

LEMMA 2.6. If (X, *,0) is a B-algebra then (zxy)*(0xy) = x for any z,y € X.
Proof. From axiom (IIT) with z =0 x y we find that

(@ *y)* (0xy) =z % ((0xy) * (0xy)).
Hence axiom (I) yields
(x*y)*x(0xy) =z %0,

so that from axiom (II) it follows that (z *xy) * (0 *y) = x as claimed. m

LEMMA 2.7. If (X, *,0) is a B-algebra then x  z = y* z implies x = y for any
z,y,2 € X.

Proof. f xxz = yxz, then (x+2)*(0%2) = (y*2)*(0*2z) and thus by Lemma
2.6 it follows that xt = y. m

PROPOSITION 2.8. If (X;*,0) is a B-algebra, then

xx(y*xz)=(x*x(0%2))*y (IV)

for any x,y,z € X.

Proof. Using Lemma 2.5 and (II) we obtain:

(zx(0*2))xy=x=(y=(0x*(0x2))) [by (II)]
=zx(yxz)). = [by Lemma 2.5]

LEMMA 2.9 Let (X;%,0) be a B-algebra. Then for any x,y € X,

(i) zxy =0 implies x = y,

(ii) 0xx =0x*y implies x =y,

(iii) 0% (0x ) = =.

Proof. (i) Since z * y = 0 implies  xy = y * y, by Lemma 2.7, it follows that
x=y.

(ii) fO0x2z = 0%y, then 0 = x 2z = (x*2)*x0 = 2x(0x (0x2x)) =
xx (0% (0%y)) = (z*xy)*0=xx*y, and thus by (i), z = y.

(iii) For any z € X, we obtain 0xx = (0 z) *0 = 0% (0 * (0 x z)) by axioms
(IT) and (III). By (ii) it follows that x = 0% (0 % z) as claimed. m

Note that Lemma 2.9 is proven in [1] based on Lemmas 2.5, 2.6, 2.7 and
Proposition 2.8 above.
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Let (X;*,0) be a B-algebra and let g € X. Define g" := g" 1% (0xg) (n > 1)
and ¢g° := 0. Note that g* = ¢g° * (0% g) = 0% (0 x g) = g by Lemma 2.9.

LEMMA 2.10. Let (X;%,0) be a B-algebra and let g € X. Then g"xg™ = g™~ ™
where n > m.

Proof. If X is a B-algebra then note that by Lemma 2.9 it follows that g2*g =

(g"*(0xg))xg=(g*(0xg))xg=gx(g*x(0x(0xg)) =gx(gxg) =g*x0=g.
Assume that g"t! g = g™ (n > 1). Then

g g =(g"" % (0xg))*g
=g" " x (g% (0% (0% 9g))) [by (IIT)]
= g™t %0. [by (c)]
=g . [by (ID)]

Assume g™ % g" = g"~™ where n — m > 1. Then

g g™t = (g" % (g™ x (0 g))

=(g"*g)xg™ [by (III)]
— gn—l *gm
= gn(m+1), [since n —m — 1 > 0]

proving the lemma. m

LEMMA 2.11. Let (X;*,0) be a B-algebra and let ¢ € X. Then g™ * g™ =

0% g™~ ™ where n > m.

Proof. If X is a B-algebra then, by applying (III), (I) and Lemma 2.9, we have
g*xg>=gx*(g* *(0%g)) = (g*g)* g' =0%*g. Assume that g * g" = g"~! where
(n >1). Then

grg"tt =gx(g"x(0%g))
=(gxg)xg" [by (II)]
=0%g" [by (D)]

Assume that ¢™ % g™ = ¢~ ™ where n — m > 1. Then

g kg™ = (g™ % (0% g)) x g"
=g"*(g" xg) [by (IV)]
— gm *gn—l

n—m-—1

=0xg ;
proving the lemma. m

We summarize the above Lemmas:

THEOREM 2.12. Let (X;*,0) be a B-algebra and let g € X. Then

g if m>n,

moyg" =
g9 { 0xg™ ™ otherwise.
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PROPOSITION 2.13. If (X;*,0) is a B-algebra, then (a*b) b= a*b® for any
a,be X.

Proof. Tt follows from (III) that (a*b)xb=ax (bx(0xb)) =axb>. m

PROPOSITION 2.14. If (X;*,0) is a B-algebra, then (0%b)* (axb) =0x%a for
any a,be X.

Proof. 1t follows from (IV) and (I) that (0xb)*(axb) = ((0%b)*(0xb))*xa = Oxa.m

3. Commutativity

A B-algebra (X;*,0) is said to be commutative if a = (0 xb) = b+ (0% a) for
any a,b € X. The B-algebra in Example 2.1 is commutative, while the B-algebra
in Example 2.3 is not commutative, since 3% (0%4) =2 # 1 =4x% (0% 3).

PROPOSITION 3.1. If (X; %,0) is a commutative B-algebra, then (0xz)*(0xy) =
y*x for any x,y € X.

Proof. Since X is commutative, by applying Lemma 2.5 we obtain:
(0*xz)*(0xy)=y*(0*(0xx))
=Y *xx. |

THEOREM 3.2. If (X;*,0) is a commutative B-algebra, then a* (axb)=b for
any a,b e X.

Proof. If X is commutative, then by (IV) we obtain a* (a*b) = (a*(0%b)) *a
=((b*x(0xa))*xa=bx(axa)=">b.m

COROLLARY 3.3. If (X;*,0) is a commutative B-algebra, then the left cancel-
lation law holds, i.e., axb=axb' implies b=1".

Proof. It follows from Theorem 3.2 that b=a* (a*b) =ax(axb)="0".m

PROPOSITION 3.4. If (X;*,0) is a commutative B-algebra, then (0xa)*(axb) =
bxa? for any a,b e X.

Proof. If X is a commutative B-algebra, then

(Oxa)x(axb)=((0%a)*(0xd))*xa [by (IV)]
=(bxa)*a [by Proposition 3.1]
=bxa’ = [by Proposition 2.13]

4. Derived algebras and B-algebras

Given algebras (i.e., groupoids, binary systems) (X;*) and (X;0), it is often
argued that they are “essentially equivalent” when they are not, and even if it
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is perfectly clear how we may proceed from one to the other and back again, it is
also not clear that knowledge of one “implies” knowledge of the other in a complete
enough sense as to have the statement that they are “essentially equivalent” survive
closer inspection.

We proceed with an example. Usually, given the integers Z, we consider the
system (Z;+,0) as an abelian group with identity 0. If we consider the system
(Z;—,0), then we can reproduce (Z;+,0) by “defining” x +y := 2z — (0 — y), and
observing that in the first case “0 is the unique element such that z — 0 = x for all
z, while in the second case “0 is the unique element such that z + 0 = x for all z”.

However, that is by no means all we might have said to identify O nor is it
necessary what we need to say to identify O in this setting.

Let (X;*,0) and (X;0,0) be algebras. We denote (X;*,0) — (X;0,0) if
xoy=2x*(0xy), for all z,y € X. The algebra (X;o0,0) is said to be derived from
the algebra (X;*,0). Let V be the set of all algebras defined on X and let I'4(V)
be the digraph whose vertices are V' and whose arrows are those described above.

A d-algebra (X;*,0) is called a d — BH-algebra ([9]) if it satisfies (II).

ExXAMPLE 4.1. ([9]) If we define z * y := max{0, I(EIT_;/)} on X, then (X;x,0)
is a d — BH-algebra.

PROPOSITION 4.2. The derived algebra (X;*,0) from a d — BH-algebra
(X;%,0) is a left zero semigroup.

Proof. Let (X;*,0) be a d — BH-algebra and let (X;*,0) — (X;0,0). Then
zoy =xx(0xy), for any z,y € X. Since (X;*,0) is a d — BH-algebra, zx(0xy) =
x*0=uzx,ie., oy =z, proving that (X;o0,0) is a left zero semigroup. m

Notice that such an arrow in Tg(V) can always be constructed, but it is not
true that a backward arrow always ezists. For example, since every BC K-algebra
(X;%,0) is a d — BH-algebra, we have (X;*,0) — (X;0,0) where (X;0,0) is a
left zero semigroup by Proposition 4.2. Assume that (X;0,0) — (X;*,0), where
(X;%,0) is a non-trivial BC K-algebra. Then z xy = z o (00 y), for any z,y €
X. Since (X;o0) is a left zero semigroup, we have z xy = z for any z,y € X,
contradicting that (X;x*,0) is a BCK-algebra.

The most interesting result in this context may be:
THEOREM 4.3. Let (X;%,0) be a B-algebra. If (X;%,0) — (X;0,0), ie., if
xoy==xx*(0xy), then (X;0,0) is a group.

Proof. If (X;%,0) — (X;0,0), then zoy =z x (0 *xy), for any z,y € X. By
Lemma 2.9 0% (0*z) =z for any z € X, i.e., x =00z. Since 00 =2 % (0%0) =
%0 = z, 0 acts like an identity element of X. Routine calculations show that
(X;0,0) is a group. m

PROPOSITION 4.4. The derived algebra from a group is that group itself.
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Proof. Let (X;*,0) be a group with identity 0. If (X;*,0) — (X;0,0), then
xoy=2x+*(0*xy) =z *y, since 0 is the identity, for any z,y € X. This proves the
proposition. m

Thus, we can use the — mechanism to proceed from the B-algebras to the
groups, but since groups happen to be sinks in this graph, we cannot use the —
mechanism to return from groups to B-algebras. This does not mean that there
are no other ways to do so, but it does argue for the observation that B-algebras
are not only “different”, but in a deep sense “non-equivalent’, and from the point
of view of the digraph T'z(V') the B-algebra is seen to be a predecessor of the group.

Given a group (X;-,e), if we define z xy := 2 -y~ 1, then (X;*,0 = e) is seen
to be a B-algebra, and furthermore, it also follows that (X;*,0 =€) — (X;-,e),
sincex*(exy)=x-(e-y V) t=z-(y ) t=x-y

The problem here is that there is not a formula involving only (X;-,e) which
produces z * ¥y, i.e., we have to introduce (X; -,__l,e) as the type to describe a
group to permit us to perform this task. In fact, we may use this observation as
another piece of evidence that B-algebras (X;*,0) are not “equivalent” to groups
(X;*,0). If we introduce the mapping z — 0 z as the ‘inverse’. i.e., if we write
21 = 0xx, then (X;*,_~',0) becomes a species like (X;-, "', €), but in the case of
the B-algebra the mapping x — 0xx is not a new item which needs to be introduced,
while in the case of groups it is.

The difficulty we are observing in the situation above is also visible in the case
of “the subgroup test”. If (X;-,e) is an infinite group, and if § # S C X, then if S
is closed under multiplication it is not the case that S need a subgroup. Indeed,
the rule is that if #,y € S, then also z-y~! € S. From what we have already seen,
x -y~ 1 is precisely the element z * y if (X;*,e) — (X;-,e) in ['4y(V). Thus we have
the the following “subgroup test” for B-algebras: § # S C X is a subalgebra of the
B-algebra (X;*,0), precisely when z,y € S implies x xy € S.

Also, suppose (X;*,0) — (X;-,e =0) in T'4(V) where it is given that (X;-, e)
is a group. Then it is not immediately clear that (X;*,0) must be a uniquely
defined B-algebra, even if we know that there is at least one B-algebra with this
property.
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