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M-ESTIMATES OF SETAR MODEL PARAMETERS
Dragan Doric

Abstract. For a stationary ergodic self-exiting threshold autoregressive model with single
threshold parameter Chan (1993) obtained the consistency of the least-squares estimator and Qian
(1998) proved it for the maximum likelihood estimator. The aim of this paper is to derive the
similar results for the M-estimates of the same model under some regularity conditions.

1. Introduction

Nonlinear time series has drawn much attention in recent years and many
classes of models have been proposed. One of the most popular is a class of thresh-
old models characterized by piecewise linear processes separated according to the
magnitude of threshold variable. When each linear regime follows an autoregressive
process we have the well known threshold autoregressive (TAR) models. The major
features of this class of models include limit cycles, jump resonance and interesting
asymmetric features observed in economic and financial time series. Tong (1990)
provides an excellent review of properties of that models. One of the TAR models
is self-exciting threshold autoregressive (SETAR) model where threshold variable is
one of the past observations. SETAR model can also exhibit nonlinear phenomena
and Petruccelli (1992) shown that processes generated by this model may be viewed
as an approximation to a more general class of nonlinear processes.

There are mainly two methods of parameter estimation which have been used
in the literature of nonlinear time series analysis. The general theory of least squares
estimates and maximum-likelihood estimators of nonlinear smooth autoregressive
models is due to Klimko and Nelson (1978). Tjostheim (1986) extended these results
to a general class of estimators. As in the threshold models the autoregression
function is not differentiable at some points, these results are not applicable.

There are also results for estimators of nonlinear models with non-smooth,
but Lipschitz continuous, autoregression function. Liebscher (2000) considered the
model

Xt+1=g(Xt,...,Xt_p+1;00)+€t+17 t=p,p+1,...
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where {e;} is a sequence of i.i.d. random variables, 6y € © C RP is the vector of the
true parameters and g : RP x ©® — R is a continuous function. He utilized a varia-
tional principle from stochastic optimization theory and proved strong convergence
for some classes of robust estimators. Suppose that

n—1
Qn(8) = Y p(Xes1 — 9(Xs56)),

where X; = (X¢, X4—1,... ,X¢s—pt+1)T. Then M-estimator is determined by the
function p: R — R. Liebscher (2000) assumed that p satisfies a nonuniform Lip-
schitz condition

lo(z) — p(Y)| < Lp(j2]* + |y|* + D]z -y
for @ > 0. It is possible to apply his result to continuous SETAR, but not for a
general SETAR models.

Chan (1993) developed the strong consistency and limiting distribution of the
conditional least-squares estimators in a SETAR(2;p,p) model. Qian (1998) ob-
tained it for the maximum-likelihood estimates. In this paper we derive the similar
results for the M-estimates. Section 2 presents the model and parameter estimates,
while Section 3 describes assumptions and obtains the strong consistency of the
M-estimates of the true parameters.

2. Model and parameter estimates

The process {X;} is said to be a self-exciting threshold autoregressive process
with threshold variable X; 4 if it is generated by SETAR(k;p1,. .. ,pr) model
defined by

Xi=ai0+a; 1 Xe1+ -+ aip, Xo—p, + 64
forr, 1 <Xy ¢g<r;, ©=12,...,k, where real numbers r; satisfy

— X0 =rg<rn < - <r =4+

and form a partition of the space of X; 4. The innovation {e;} is an i.i.d. sequence
of random variables independent of the past X;_1,X;_2,.... The parameters r;
and the positive integer d are called the thresholds and the delay, respectively. The
coefficients a; ; and b; ; are some real constants. Here, we only consider the case
k=2and p1 =p2=p,

X, = { arp+ai i Xe 1+ +a1p Xepte, Xeg<7r (2.1)
a0+ a1 Xe 1+ -+ asp, Xo—p+er, Xi—g>T.
Given the data Xy, X1,...,X, generated from (2.1), the true parameter 6y,
fo = (A}, A3, d)" (2.2)
where
A = (i, ity--- yaip) i=1,2 (2.3)

should be estimated. We assume that 6 is an interior point of the parameter space
R?P*2 x Rx {1,2,...,p} where R = RU{—00,00}. There exists a compact subset
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K of R?"*2 guch that 6, is an interior point of © = K x R x {1,2,...,p}. We
define the estimator 6, as a global minimizer of a criterion Q,(6) on a compact
subset ©

~

6., € argmin Q,(0), (2.4)
€O

where Q,.(0) = 37 pr(ex(9),0) and ex(0) = Xy — Eg (X | Fr—1). Least-squares

estimators represent a special case of 8, for py(z) = p(z) = #%. The minimization
can be done in two steps. Assume that § = (Bf, BT, s,¢)7 is a general parameter
in © and let A = (AT, AT)T and B = (BT, BI)T.

1. For fixed s € R and ¢ € {1,2,...,p} let B,(s,c) be defined by

Bn(S, C) € argmin Qnsc(B)v
BeK

where Qnsc(B) = Qn(B, s,¢) = Qu(6).
2. Let 7, i c?n be the values of s and ¢ for which

Qn(Bn(?n,Jn)fnjn): _ min Qn(Bn(s,c),s,c)
SER,C€{1727~~~ ,P}

and let A,, = B, (T, dn).
For any 6 € O, by definition of B,, 7, and Efm we have

Qn(0) = Qn(B,s,¢) > Qn(Bn(s,c¢),s,c)
> Qn(Bn(?mEn)v?nv(’i\n) = Qn(Ana?mgn) = Qn(an)

~ - AT
and, hence, 6,, = (AZ:,?n,dn> .
3. Assumptions and strong consistency

Assume that pr = p(er). The model (2.1) can be represented as
Xt:h(Xt,00)+st, t>1

where, for x = (z1,...,2,) € RP, 0 € O,

p P
h(x,&) = <a1,0 + Za17i$i>1($d < 7“) + <0/2,0 + Zag,ixi>1(xd > 7“).
1=1 1=1

Let h(x,0) = hse(x, B) = h(z, B, s, ¢),

se(z) = %hsc(x,B) (3.1)
z=(1,27)T. (3.2)

Then,
hee(z, B) = (7 I(2. < 5), 2T I(ze > )" (3.3)
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and )
h(z,0) = BT h,.(z) (3.4)
for s € R, v € RP and c € {1,...,p}. Equations (3.1), (3.2) and (3.3) imply that
|se(@)] < V1 + [l (3.5)
From the last inequality and (3.4) we have
|h(z,0)| < IBllv1 + [|=]|>. (3.6)
Furthermore, for any s; € R, s € Rice {1,2,...,p}
|sye(2) = hye(@)] < V2(1+ [l2]|?) - I(min{s1, 52} < ze < max{s1,s})
2014 [|#]|?) - I(Jze — 82| < [s1—s2) (3.7)

To derive the consistency of the estimates we shall need the following assumptions
on the class of function p.

CONDITION 1. Forx € R,y € R and some a > 0, 8 > 1, v > 0 function p
satisfies
lo(2) = p(y)] < a (|z)” +[yl° +1) - |z —y|.

CONDITION 2. §Ep(e1 + a) > Ep(e1) for a # 0.
Moreover, suppose the existence of some moments of the process {X;}.

CONDITION 3. E |X;|?? < 00 and E | X;|*" < o0.
First, we need to prove the following statement.

LEMMA 1. Suppose that {X;} in model (2.1) is stationary and ergodic and the
Conditions 1 and 3 hold. Then, for any 6 € ©

E sup |p(er(67)) —pler(0))] — 0 (v —0),
9*€Us(v)

where Up(v) is a v neighborhood for 6 given by
Ug(v) = {0* €0 : 6" = (B*T,s*,c)T, |B* —B|<v, |s*—s|<v, v> 0}‘

Proof. Let £1(0) = X1 — h(Xop,0) and é(=, 9*) = h(z,0) — h(z,0*). Then,
6(2,0%) = hs,e(x, B) = hs,o(x, B").
From (3.4) and (3.5) we conclude
|hse(, B) = hee(w, B*)| < [|B = B*|/1 + ]|
By (3.3) and (3.7) we have
|hsc(@, B*) = horo(@, BY)| < |B*[|V2(1 + [l«][?)I(min{s, s} < sc < max{s,s*})
< IB* V2 + [lzlIP)I(Jze — s| < |s* —s[). (3.8)



M-estimates of SETAR model parameters 35

Thus for 6* € Up(v) and s € R, x € RP
6(2,0%)| < |hse(@, B) = hore(w, B)| + |hsrc(@, B) = hore(z, BY)|

< (V2IBII(|2e = s| < |s* = s) + | B = B*||) /1 + [l2]P
< (VaIBII (. — 5| < ) +v) VT [l (3.9)

It follows from Conditions 1. and inequality
(a+b)P <2°71d? +1P), a>0,b>0, 8>1
that fora>0,8>1iv>0
Ap(6,67) = |p(er(6%)) — plex(6))]
= [p(X1 = h(Xo,0%)) — p(X1 — h(Xo, )|
< a(|X1 — h(Xo,0%)|° + X1 — h(Xo,0)|? + 1) |h(Xo,0) — h(Xo, 0|
= a (|e1 + 6(Xo,800,60%)|° + |e1 + 6(Xo,00,0)|° + 1) |6(Xo,8,0%)|"
< a(2P|e1|P + 2°716(Xo, 00,60%)|P + 2°716(X0, 00, 0)|° +1)16(Xo,6,6%)|
<a(2al’ +2°7HA - BY|)P
(U 1Ko 2)P72 4+ 257214 = BIP(1+ Xol|)7/ + 1)
- 16(Xo,8,6%)7
= (2ﬁ|€1|’8 + 1) |6(Xo,0,0")|"+
+a2°7 " (A= B*||° + || A - B|I”) (1 +Xo[*)?/?[6(X,,6,6%)|"
It §(z,v) = (V2|IB|I(|zc — s| < v) +v) \/T+[l[]%, then by (3.9)
Ap(6,67) < K1|6(Xo,v)|" + Kale1|?[8(Xo, v)[7 + Ks(1 + [|Xo[*)?/?(8(Xo, )|

By the inequalities
— 1/2 . 1/2
E a5 < (E gfﬁ) 2 (E 627) /
2\8/2 |5 o\ B\ /2 —2y\1/2
E (1+1%ol?) 7 31" < (B (1+1%0)2)7) - (E5™)

and the fact that EEZY(X(),I/) — 0, (v — 0) we conclude the statement for
s€R.

In the case s = oo, for x € RP,

16(2,6,6")] < (V2IBII(z. > s*) +v) V1 +][a]?
< (V2IBII(d(ze,00) < v) +v) T+ [2ll = Boo (2, v)

and again, £6- (Xo,v) — 0, (v — 0).
The proof is similar in the case s = —oo. Thus, the lemma is proved. m
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Now, we are ready to state the main result.

THEOREM 1. Under the assumptions of Lemma 1 and Condition 2

o~ a.s.
0, — 60y, n— .

Proof. Let the function f: © — R be defined by f(6) = E p(e1(d)). Condition
2. implies

f(0) = o E(e1 + h(y,00) — h(y,0)) dFx,(y) > E p(e1) = f(fo),  (3.10)

where Fx, is distribution function for X.

Define, then, the sequence of functions f,: ® — R by

1

fa(8) = n_p+1

> o(Xigr — h(Xo, ).
k=p

Liebscher (2000) proved that, under the stationarity and ergodicity of the process

{Xt}v
sup|fa () — f(8)] == 0, n — oo
0cO

As, by definition of the functions f, and the estimates 8, 6, € argmingcg fr(6)
and, by (3.10), 6y = argming.g f(#), then the result of Lemma 1 gives sufficient
conditions for the convergence of 6,, to 0, as shown by Vogel (1994). This completes
the proof. m
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