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research paper

ASCENT, DESCENT, QUASI-NILPOTENT PART AND
ANALYTIC CORE OF OPERATORS

Abstract. This paper concerns a localized version of the single valued extension property
of a bounded operator T' € L(X), where X is a Banach space, at a point Ag € C. We shall relate
this property to the ascent and the descent of A\gI — 7T, as well as to some spectral subspaces as
the quasi-nilpotent part and the analytic core of Aol — 7. We shall also describe all these notions
in the setting of an abstract shift condition, and in particular for weighted right shift operators
on ¢*(N), where 1 < p < oo .

1. The single-valued extension property

One of basic properties in local spectral theory is the so-called single valued
extension property for bounded operators on Banach spaces. This property is
enjoyed by several classes of operators as the decomposable operators, as well as
other classes of operators; we refer to the excellent monograph by Laursen and
Neumann [16] for a modern treatment of the theory of decomposable operators.

In this paper we shall consider the following local version of this property,
introduced by Finch [13] and studied later by several authors [18, 19, 26, 1, 2, 3,
5, 6].

DEFINITION 1.1. Let X be a complex Banach space and T' € L(X). The op-
erator 7' is said to have the single valued extension property at Ao € C (abbreviated
SVEP at Ag), if for every open disc Dy, centered at Ag, the only analytic function
f: Dy, = X which satisfies the equation

A =T)f(\) =0 (1)
is the function f =0.
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An operator T' € L(X) is said to have the SVEP if T has the SVEP at every
point A € C.

The SVEP of T' € L(X) may be also defined as follows: Let U be an open subset
of C and let H(U, X) denote the space of X-valued functions on U equipped with
the topology of uniform convergence on compact subsets of U. Then H(U, X) is a
Fréchet space and every T' € L(X) induces a continuous mapping Ty on H(U, X),
defined by

To(H)A) ;=AM =T)f(N\) for all f e H{U,X). (2)
The operator T' € L(X) has the SVEP precisely when Ty is injective.

The SVEP may be characterized by means of some typical tools originating
from the local spectral theory. Recall that, for a bounded operator T' € L(X),
the local resolvent set of T at the point & € X, is defined as the union of all open
subsets U of C such that there exists an analytic function f: U — X which satisfies

M-T)f(N)=zforall \eU . (3)

The local spectrum or(z) of T at z is the set defined by or(z) := C\ pr(z) and
obviously or(x) C o(T'), where o(T) denotes the spectrum of 7.

Clearly, any analytic function which verifies (3) on this union is a local exten-
sion of the analytic function R(\, T)x := (A — T) "'z defined on the resolvent set
p(T) of T. Generally, the analytic solutions of (3) are not uniquely determined. It
is clear from the definition that, if 7" has the SVEP at Ag, then the analytic solution
of (3) is uniquely determined in an open disc centered at A.

For every subset F of C, let us denote by X1 (F') the analytic spectral subspace
of T' associated with :

Xr(F)={z€eX:or(x) CF}.

For an arbitrary operator T' € L(X) and a closed subset F' of C, the glocal spectral
subspace X7 (F) is defined as the set of all z € X for which there exists an analytic
function f: C\F — X which satisfies the identity (A\[—T") f(A) = = for all A € C\ F.
Note that T has SVEP if and only if X7 (F) = Xp(F) for all closed sets F C C,
see Proposition 3.3.2 of [16].

The SVEP, as well as the SVEP at a point Ao € C, may be characterized in a
very simple way:

THEOREM 1.2. Let T € L(X), X a Banach space. Then

(i) T has the SVEP at Ao if and only if ker (Ao — T) N X1 (0) = {0} [1,
Theorem 1.9];

(ii) T has the SVEP if and only if X1(0) = {0}, and this is the case if and
only if X1 (0) is closed; see [16, Proposition 1.2.16].

The basic role of SVEP arises in local spectral theory, since every decompos-
able operator enjoys this property. Recall that a bounded operator T' € L(X) is
said to have the Bishop’s property (8) if for every open set U the operator Ty
defined in (2) is injective and has closed range, while T' € L(X) is said to have the
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decomposition property (6) if X = Xp(U) + X7 (V) for every open cover {U,V} of
C. The decomposability of T' € L(X) may be defined in several ways, for instance
as the union of the property (8) and the property (), see [16, Theorem 2.5.19].
Note that the property (3) implies that T has SVEP, while the property () implies
SVEP for T*, see [16, Theorem 2.5.19]. The class of decomposable operators con-
tains, for instance, all normal operators on Hilbert spaces, all spectral operators,
all operators with a non-analytic functional calculus and any operator with a to-
tally disconnected spectrum, [16]. Examples of non-decomposable operators which
have the SVEP may be found among the class of all multipliers of a commutative
semi-prime Banach algebra, [16, Proposition 4.2.1]

We shall now introduce two important subspaces in local spectral theory and
in Fredholm theory:

DEFINITION 1.3. Let X be a Banach space and T € L(X). The analytic core
of T is the set K(T') of all z € X such that there exists a sequence (u,) C X and
é > 0 for which:

(a) £ = ug, and Tu,y1 = u, for every n € N.

(b) ||un|| < 6™||z|| for every n € N.

It easily follows, from the definition, that K (7T') is a linear subspace of X and
that T(K(T)) = K(T). In general, K(T') is not closed and K(T') C T*°(X), where
T*°(X) :=,2, T"™(X) is the hyperrange of T'. Furthermore, if T' is quasi-nilpotent
then K (T) = {0}, see [18].

DEFINITION 1.4. Let T € L(X), X a Banach space. The quasi-nilpotent part

of T is the set
Ho(T) :={z € X : lim |T"z||*/" =0}.
n—oo
Also Hy(T) is a linear subspace of X, generally not closed. Furthermore,
N(T) C Ho(T), where N>°(T) :=(,__, ker T™ is the hyperkernel of T', and T is
quasi-nilpotent if and only if Ho(T) = X, [27, Theorem 1.5].

The systematic investigation of the spaces K(T') and Ho(T) was initiated by
Mbekhta [18], after an earlier work of Vrbova [27]. In particular, these authors
established the following local spectral characterizations of K (T") and Hy(T).

THEOREM 1.5. For a bounded operator T € L(X), X a Banach space we have
(i) KXol = T) = X7 (C\ {Ao}).
(i) Ho(MoI —T) = Xr({Ao}), so, if T has SVEP, Ho(AI —T) = X1 ({Ao}).
Note that, for every A9 € C, the following inclusions hold:
Xr(9) € Xr(C\ {Ao}) = Kol = T) € (Ao = T)™(X) (4)
and
ker (AoI —T) CN>*(XoI —T) C Ho(XoI —T) C Xr({o}) (5)

Two important notions in Fredholm theory are those of the ascent and the
descent of an operator. The ascent of an operator T is the smallest non-negative
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integer p := p(T) such that ker TP = ker TP+, If such integer does not exist
we put p(T) := oo. The descent of an operator T' is the smallest non-negative
integer ¢ := ¢(T) such that T9(X) = T9!, and if such integer does not exist
we put g(T) := oo. It is well-known that, if p(T") and ¢(T) are both finite, then
p(T) = ¢(T), [14, Proposition 38.3]. Furthermore, if A\g belongs to the spectrum
a(T), then 0 < p(AoI —T) = qg(Mol — T) < oo if and only if Ag is a pole of the
resolvent R(\,T) := (A —T)~!, [14, Proposition 50.23]. Obviously, in this case Ao
is an isolated point of o(T).

Recall that T € L(X), X is said to be semi-Fredholm if T'(X) is closed and at
least one of the two defects a(T") := dim ker T or S(T') := codim T'(X) is finite.

DEFINITION 1.6. An operator T' € L(X), X a Banach space, is said to be
semi-regular if T'(X) is closed and ker T' C T°(X).

An operator T' € L(X) is said to admit a generalized Kato decomposition,
abbreviated GKD, if there exists a pair of T-invariant closed subspaces (M, N)
such that X = M @ N, the restriction T' |M is semi-regular and T |N is quasi-
nilpotent.

An important case is obtained if we assume in the definition above that T' | N is
nilpotent. In this case T is said to be of Kato type, [17]. If N is finite-dimensional
then T is said to be essentially semi-regular, see Rakocevié¢ [24] or Miiller [22].
Obviously, any semi-regular operator is of Kato type. Note that if 7" is of Kato
type then T°(X) = K(T) and K (T) is closed, see [2, Theorem 2.3 and Theorem
2.4]. An important class of operators of Kato type is given by the class of all semi-
Fredholm operators, see West [29]. Furthermore, taking M = {0} and N = X, we
see that every quasi-nilpotent operator is of Kato type.

In the sequel by M+ we shall denote the annihilator of the subset M C X;
and by * N the pre-annihilator of the subset N C X*.

THEOREM 1.7. For a bounded operator T € L(X), where X is a Banach space,
the following implications hold:

(i) Ho(MI —T) closed = Ho(Aol —T)N KNI —T) closed = Hy(MI —
T)NK(MI—T)={0} = T has SVEP at \.

(1)) X =HMI—-T)+ K(MI—-T) = T* has SVEP at Xo.

Moreover, if AgI — T is of Kato type, then all these implications are equiva-
lences.

Proof. Without loss of generality, we may consider Ay = 0.

(i) Assume that Ho(T) is closed and let 7" denote the restriction of 7' to the
Banach space Ho(T). Obviously, Ho(T) = Ho(T), so that T is quasi-nilpotent and
hence K(T) = {0}. It is easy to see that Ho(T) N K(T) = K(T). This shows
the first implication. The second implication of (i) is an immediate consequence of

Theorem 1.5. Indeed, we have
ker (/\()I — T) n XT(@) - H()()\()I — T) n K()\()I - T),
so, if the last intersection is {0}, then T has the SVEP at g, by Theorem 1.2.
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(ii) From [17, Proposition 1.8] we know that Ho(7T) C+ K(T*) and hence
K(T*) C Ho(T)*. We also have Ho(T*) C K(T)*. Indeed, let ¢ € Ho(T*) and
consider an arbitrary element ¢ € K(T'). According to the definition of K(T'),
there is a sequence (u,) C X, and a § > 0, such that uo = =, Tuny1 = u, and
[|un|| < 6™||z|| for every n € N. Clearly, T"u,, = = for every n € N. Consequently,

lp(@)] = [p(T"un)| = [(T™¢) (un)| < |lun[[| T ¢l < 6" T*"¢l],

and hence |p(z)|= < 8][T*"p||» for every n € N. The last term converges to 0 as
n — oo, since ¢ € Ho(T*), and from this it follows that p(z) = 0, i.e. p € K(T)*.
Finally, if X = Ho(T) + K(T) then {0} = Ho(T)* N K(T)* D Ho(T*) N K(T*),
thus, by part (i), 7* has the SVEP at 0.

For the last assertion see Theorem 2.6 of [3]. m

An example, given in [5], of a bilateral right shift 7" defined in the Hilbert space
L?(w), where w := (wn)nez is a suitable weight sequence, shows that the SVEP at
a point A¢ does not, in general, implies that Ho(AI —T) N K (Aol —T) = {0}.

Also the finiteness of the ascent and the descent has important consequences
on the SVEP. In fact we have the following implications.

THEOREM 1.8. For a bounded operator T on a Banach space X the following
implications hold:

(i) pAI=T) < 00 = NN JI-T)N(AI—T)>®(X) = {0} = T has SVEP at \,,.
(i) g I-T) <00 = X = NOAI-T)+ X I—-T)®°(X) = T* has SVEP at X,.
Moreover, if \oI — T is of Kato type, then all these implications are equiva-
lences.
Proof. (i) There is no loss of generality in assuming A, = 0.

Let p := p(T) < oo. Then N°°(T) = ker T? and hence, by [14, Proposition
38.1], N (T)NT?(X) = {0}. From T(X) C T?(X) we obtain that N°°(T) N
T>°(X) = {0}. The second implication is a consequence of Theorem 1.2, since,
from the inclusions (4), we obtain that

ker TN X7 (0) CN®(T)NT>(X) = {0}.

(ii) Also here we may assume that A, = 0. Let ¢ := q(T) < oo. Then
T*(X) =T9X) and X = T"(X) + ker T'? for every n € N, by [14, Proposition
38.2]. From this it easily follows that X = N°°(T)+T°°(X), so the first implication
of (ii) is proved.

In order to show the second implication of (ii), we first note that, if X =
N®(T) + T®(X), then N°(T)+ N T*(X)L = {0}. Now, let us consider an
element z* € ker T* N X7+ (0). Clearly,

#* € ker T* C ker (T*)" = ker (T™)* = Tn(X) C T™(X)*,
for every n € N and therefore z* € T°°(X ). On the other hand, from o7+ (z*) = )
we obtain, by Theorem 1.5, that

o+ € K(T%) C (T*)"(X*) = (T™)*(X*) C (ker T™)*
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for every n € N. From this it follows that 2* € N°°(T)* and therefore z* €
N®(T)+ NT>=(X)*, which implies that * = 0. Again, from Theorem 1.2 we
conclude that T* has the SVEP at 0.

For a proof of the last assertion see Corollary 2.7 of [2]. m

Hence each one of the two conditions p(Agl —T') < oo or Ho(AgI — T') closed
implies the SVEP at A\y. The next two examples show that in general these two
conditions are independent.

EXAMPLE 1.9. Let T : £2(N) — ¢*(N) be defined by

x x
T = (72, 77"7...)7 where = (z1,- -+, Tn, - ).

It is easily seen that ||T*|| = m, from which it follows that T is quasi-nilpotent

and therefore Ho(T') = ¢*(N). Obviously, p(T) = oco.

ExAMPLEL.10. In [3] it has been given an example of a direct sum of unilateral
weighted shifts for which p(T) = 0 and Hy(T') is not closed. The following simpler
example is taken from [10]. Let 1 < p < oo be given and denote by w = (wp)nen
a bounded sequence of positive real numbers. Let us consider the corresponding
weighted unilateral right shift T on ¢7(N), defined by

Tz := ) wpZpent1 for all z = (z,)nen € P(N),
n=1
where (e,,) stands for the canonical basis of ¢7(N). This operator has SVEP, since
T has no eigenvalues and hence p(AI —T) =0 for all A € C.

A routine calculation shows that the norm of 7™ is given by

|7"|] = sup(wg - - - Wgyn_1) foralln € N.
keN
Suppose now that (wp)nen is defined by

0 if n is a square of an integer
Wnp = .
1  otherwise

It is easily seen that ||7"]| = 1 for all n € N, so that T is not quasi-nilpotent.
This excludes that Ho(T') is closed, see next Theorem 2.7. It is easy to see that
K (T) = {0}. Therefore, this example shows that the implication Ho(T') closed =
K(T)N Ho(T) = {0}, noted in Theorem 1.7, cannot in general be reversed.

From Theorem 1.8 it follows that the finite ascent property for an operator
T € L(X) defined as:

p(AI —=T) < oo for every A€ C

implies that 7" has SVEP. There are many examples of operators for which the
condition p(AI — T') < oo holds for every A € C. For instance, every multiplier of a
semi-prime Banach algebra verifies this property, see [16, p. 406], and in particular
every convolution operator on a group algebra L!(G), where G is a locally compact
Abelian group. Other examples of operators of this type are the generalized scalar
operators, see [28], as well as several other classes of operators studied in [15]. As
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noted by Barnes [10], a class of operators which have this ascent property is given
by the class P(X) of all bounded operators on a Banach space X which satisfy
a polynomial growth condition, where T € L(X) is said to satisfy a polynomial
growth condition, if there exists a K > 0, a § > 0 for which

lexp(GiAT)|| < K(1+ |A]°) for all A € R.
The finite descent property for an operator T' € L(X) is defined as:
gAMI —T) < oo forevery A € C.

This property is obviously satisfied by every operator for which every spectral point
is a pole of the resolvent.

THEOREM 1.11. Let T € L(X), where X is a Banach space. Then T has
the finite descent property precisely when o(T) is finite set of poles of the resolvent
R(\,T).

Proof. Clearly, if o(T) is finite set of poles of R(A,T) then ¢(AI —T) < oo
for every A € C. Conversely, suppose that ¢(AI — T) < oo for all A € C. Then
g(A\I —T) < oo for all A € a(T), do(T) the boundary of o(T'). Since T ha SVEP
at every A € 9o (T) then the condition ¢(AI —T') < oo entails that every A € 9o (T)
is a pole of R(A,T), see Corollary 1 of [25]. Clearly, this implies that o(T") = do(T),
so that the spectrum o(T') is a finite set of poles of R(A,T). m

Therefore, the finite descent property implies that both 7" and T* have SVEP
(actually we have more, T' is decomposable since it has finite spectrum). It should
be noted that the proof of Theorem 1.11 shows that the finite descent property is
equivalent to the apparently weaker condition ¢(AI — T') < oo for all A € 9o (T).

Theorem 1.7 suggests in a very natural way the following concept, introduced
in [3]:

DEFINITION 1.12. A bounded operator T € L(X), X a Banach space, is said
to have property (Q) if Ho(A — T) is closed for every A € C.

Clearly, every quasi-nilpotent operator has property (Q), since Ho(Al —T) =

{0} for all A # 0 and Ho(T) = X. More generally,
o(T) finite = T has property (Q). (6)
Indeed, if A € o(T) is isolated then Ho(AI — T) coincides with the range of the

spectral projection associated with the singleton set {A}, see [14, Proposition 49.1].
In particular, the implication

T has finite descent property = T has property (Q). (7
holds. Since every multiplier of a semi-simple Banach algebra has property (Q), see
Theorem 1.8 of [3], we see that any multiplier with a non-finite spectrum provides
an example of operator which has property (@), but not satisfies the finite descent
property.

Recall that a bounded operator T' € L(X), X a Banach space, is said to have
Dunford’s property (C), shortly property (C), if the analytic subspace X (1) is
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closed for every closed subset Q2 C C. It should be noted that property (3) implies
property (C), see [16, Proposition 1.2.19] and it turns out, by part (ii) of Theorem
1.2, that property (C) implies that T" has SVEP.

An obvious consequence of part (i) of Theorem 1.5 is that if T' has property
(C) then Ho(M — T) = Xr({A}) is closed for every A € C, so that the following
implications hold:

T has property (C) = T has property (Q) = T has SVEP. (8)

Note that neither of the implications (8) may be reversed in general. A first
counter-example, of an operator which has SVEP but not property (@) is given by
the operator T' defined in Example 1.10, see also next Theorem 2.7. An example
of an operator which shows that the first implication is not reversed in general,
may be found among the convolution operators T}, of group algebras L'(G), since
these operators have property (@), see [3], while may have not property (C), see
Theorem 4.11.8 and Theorem 4.1.12 of [16].

2. An abstract shift condition

In this section we shall consider operators T € L(X) on a Banach space X
for which T7°°(X) = {0}. This condition may be viewed, in a certain sense, as
an abstract shift condition, since it is satisfied by every weighted right shift 7' on
¢P(N). Clearly, the condition T*°(X) = {0} entails that T is non-surjective and
hence 0 € o(T"). Moreover, this condition also implies that K (T') = {0}, since K (T)
is a subset of T°°(X), but the quasi-nilpotent Volterra operator V' on the Banach
space X := C]0, 1], defined by

t
V() = / F(s)ds for all £ € C[0,1] and ¢ € [0,1],
0
shows that, in general, the converse is not true. Indeed, V is quasi-nilpotent and
hence K (V) = {0}, while
Veo(X) = {f € C<[0,1]: f)(0) =0 n € Zy},
thus V°°(X) is not closed and, consequently, strictly larger than K (V) = {0}.
It is easily seen that the condition 7°°(X) = {0} has some other important
consequences, for instance:
T(X) = {0} = p(AI —T) =0 for all A # 0.
and
g(M —T) = oo for all A € o(T) \ {0}. 9)
Indeed, ker (AI —T') = {0} for all 0 # X € C, since ker (\] —T') C T*°(X) for all
A # 0. This implies that g(AI — T) = oo for all A € o(T) \ {0} otherwise, if were
g(AM —T) < o0, then g(AI — T) = p(AI —T) = 0 and hence A ¢ o(T), which is
impossible.
For an operator T' € L(X), let

E(T) :=inf{||Tz| : z € X and ||z|| =1}
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be the lower bound of T and define
i(T) = lim k(T™)"/™ = sup k(T™)'/™.
neN

Clearly, if #(T) is the spectral radius of T' € L(X) then i(T) < r(T). In the sequel
by D(0,4(T")) we shall denote the closed disc centered at 0 and radius (7).

THEOREM 2.1. If T°(X) = {0} then T has SVEP. Moreover, the following
statements hold:

(i) or(x) is connected and
D(0,i(T)) Cor(z) forall0#zx € X. (10)
(ii) Ho(M —T) = {0} for all X # {0}. Consequently, T has property (Q) if
and only if Ho(T) is closed.
(iii) Ifi(T) > 0, then T has property (Q).
(iv) If i(T) = r(T), then T has property (C).

Proof. The SVEP may be proved in several ways, for instance from Theorem
1.2, since ker (A\I —T) N K(AI —T) = {0} for every A € C. Moreover, the local
spectrum or(z) is connected, by Theorem 1 of [26]. The proof of the inclusion (10)
is proved in [16, Theorem 1.6.3]. To show the statement (ii) observe first that the
SVEP for T implies, by part (ii) of Theorem 1.5, that

H(M-T)={ze X :or(z) C{\}} forallxeC

Now, let A # 0 and suppose that there is 0 # x € Hy(AI — T'). Since T has SVEP,
by part (ii) of Theorem 1.2, we obtain that o7 (z) # 0, so that or(z) = {\}, which
is impossible since 0 € or(z), by part (i). Therefore Ho(A — T) = {0} for all
A#0.
To prove (iii) it suffices to prove, by part (ii), that Ho(T) = {0}. Since,
Hy(T) ={z € X : or(z) C {0}},

from the inclusion (10) we infer that the condition (T") > 0 entails that each = # 0
cannot belong to Ho(T'). Therefore, Ho(T') = {0}.

The assertion (iv) has been proved in Proposition 1.6.5 of [16]. We give the

simple proof for sake of completeness. Suppose now that i(T) = r(T). Then
D(0,r(T)) is contained in or(z) for all non-zero z € X, and hence

or(z) = D(0,7(T)) =o(T) for all non-zero z € X.
This implies that X7(Q) = X for every closed set Q which contains D(0,r(T")),
while X7(Q2) = {0} otherwise. m

Let 04, (T) denote the Weyl spectrum, i.e. the complement of the set of all A € C
for which \I — T is a Fredholm operator with index ind T := o(T) — 3(T) = 0.
The Browder spectrum o,(T) is defined as the complement of all A € C for which
M —T € ®(X) and p(M — T) = q(A\ — T) < oo. Note that o, (T) C 05(T) and
this inclusion is in general proper.
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THEOREM 2.2. Let T € L(X), X an infinite-dimensional Banach space, and
suppose that T*(X) = {0}. Then o(T') is connected and

o(T) = 0w (T) = 0v(T)- (11)

Proof. By Proposition 1.3.2 of [16] we have, since T has SVEP,
o(T) = 05u(T) = | J or(@),
zeX

where 05, (T') denotes the surjectivity spectrum of T'. Since the local spectra or(z)
are connected then o(T') is connected. The equality (11) has been established in
[26]. We give here a simpler proof.

By Corollary 2.8 of [7], we have 0,,(T) = o4(T), since T has SVEP. We show
that op(T) = o(T). The inclusion o3(T") C o(T) holds for all T € L(X), so it
remains to establish that o(T") C 0(T"). Observe that, if the spectral point A € C
is not isolated in o(T'), then A € oy (T).

Suppose first that T is quasi-nilpotent. Then o4(T") = o(T') = {0}, since o3 (T")
is non-empty whenever X is infinite-dimensional. Suppose that T is not quasi-
nilpotent and let 0 # A € o(T'). Since o(T') is connected and 0 € o(T), then
neither 0 or \ are isolated points in ¢(T"). Hence o(T) C 03(T). m

Let pr:(T) denote the Kato type resolvent of T, defined as
pit(T) :=={A € C: AI — T is of Kato type}.

The set pg¢(T') is an open subset of C, see [4], so it may be decomposed in maximal
connected open components.

The following two results generalize Theorem 2 of Schmoeger [26].

THEOREM 2.3. Suppose that T € L(X), where X is a Banach space, is of

Kato type. Let Q0 denote the connected component of pri(T) which contains 0.
Then T*°(X) = {0} if and only if p:=p(T) < o and

Q Cor(z) forall z ¢ ker TP. (12)
Furthermore, if T (X) = {0}, then T has property (Q).
Proof. Suppose that T*°(X) = {0}. Since T has SVEP then p(T) < oo, by

Theorem 1.8, and Hy(T') = ker T?, by Corollary 2.7 of [3]. The SVEP of T also
ensures, by Theorem 1.7, that Ho(A —T) is closed for all A € Q. Since the mapping

A€Q e HoM —T)+ K\ —T) = Hy(\[ = T) + K(A\I - T)
is constant on €2, see [20] or [8], we then have
ker TP = Ho(T) + K (T) = Hy(M — T) + K(\I - T)

for all A € Q. Now, by part (iii) of Theorem 2.1, Ho(A\I — T) = {0} for all A # 0
and hence
ker TP = KM -T)={z € X : A\ ¢ or(x)},
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for all A € 2\ {0}. Thus, for z ¢ ker T? we obtain Q \ {0} C or(z) and, by part
(ii) of Theorem 2.1, 0 € or(x) for all x # 0. This implies that Q C or(z) for all
x ¢ ker T?.

Conversely, assume that p = p(T') < oo and Q C or(z) for all z ¢ ker TP.
The condition p := p(T) < oo entails that T has SVEP at 0 and, by Theorem
1.8, No(T)NT>(X) = {0}. Assume that there exists 0 # x € T*°(X). Then
z ¢ N°(T) = ker T?, thus 0 € or(z). On the other hand, since T*°(X) = K(T),
see Theorem 2.4 of [2], then z € K(T), so that 0 ¢ or(z), by Theorem 1.5; a
contradiction. Therefore, T>(X) = {0}.

To show the last assertion, observe that Ho(AM —T') = {0} for all A # 0, while
the SVEP, by Theorem 1.7, implies that also Ho(T') is closed. m

It should be noted that the previous result extends, in a sense, Theorem 2.1.
In fact, if 04,(T") denotes the approzimate point spectrum of T', then

0ap(T) C{A e C:(T) <A <r(T)},
see Proposition 1.6.2 of [16]. Therefore the condition i(7") > 0 entails that T is
bounded below and hence is of Kato type.

THEOREM 2.4. Suppose that T € L(X) is of Kato type and T*°(X) = {0}.
If T is not quasi-nilpotent then T* does not have the SVEP. Moreover, T is not
decomposable.

Proof. We know that q(Agl —T) = oo for all 0 # X € o(T). Indeed, if for
some X € o(T) \ {0} we have ¢(Aol — T) < oco. Let 2 be the component of
okt (T) containing 0. Since o(7T') is connected and T is not quasi-nilpotent, then
QN (o(T)\{0}) # 0. Let p € QN (o(T) \ {0}). Since uI — T is of Kato type,
the condition ¢(ul — T') = oo entails that T does not have the SVEP at p, see
Theorem 2.9 of [3].

The last assertion is clear, since the decomposability of T implies that T™* is
decomposable and hence has SVEP, by Theorem 2.5.19 of [16]. m

The previous results apply to isometries, since i(T) = r(T) = 1 for every
isometry T € L(X). Note that for every isometry o,,(T) is contained in the unit
circle, so that A\I — T is bounded below and hence upper semi-Fredholm for every
|[A] < 1, see Proposition 1.6.2 of [16]. Hence every isometry T has property (C),
by Theorem 2.1 (actually we have much more, T has property (8), by Proposition
1.6.7 of [16]). In the case that an isometry 7' is non-invertible, for instance in the
case that T°°(X) = {0}, the spectrum is the entire closed unit disc, while o,y (T")
is the unit circle. Furthermore, by Corollary 2.9 of [7], we have 04, (T) = ok (T).

Anisometry T' € L(X) for which the condition T°°(X) = {0} is satisfied is said
to be a semi-shift. Proposition 1.6.8 of [16] shows that T is a semi-shift if and only if
T has fat local spectra, i.e. the equality or(x) = o(T') holds for every = # 0, see also
[23]. Examples of semi-shifts are the unilateral right shift operators of arbitrary
multiplicity on #2(N), as well as every right translation operator on L?([0, 00)), see
Section 1.6 of [16]. From Theorem 2.4 it follows that every semi-shift operator is
not decomposable.
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The following result has been established in [21]. We give an alternative proof.

THEOREM 2.5. If K(T) = {0}, the following assertions are equivalent:
(i) T is decomposable; (ii) T has property (9);
(iii) T is quasi-nilpotent; (iv) 0 is an isolated point of o(T);
(v) gOA\I = T) < o0 for all X # 0.

Proof. Clearly (i) = (ii). To establish the implication (ii) = (iii), we show
first that the surjectivity spectrum o4, (T") is {0}. Suppose that A # 0 and choose
€ > 0 such the closed disc D(A,e) does not contains 0. Let U := I)0,&/2) and
V := C\ D(0,¢), where I(0,e/2) is the open disc centered at 0 and radius /2 .
Clearly, {U, V} is an open cover of C, so, taking into account that 7' has SVEP, the
property () implies that X = X7(D(0,¢)) + X7(C\ D(0,¢)). From the inclusion
C\ D(0,¢)) C C\ {0} we infer

Xr(C\D(0,¢)) € Xr(C\ {0}) = K(T) = {0},

so that X = Xp(D(0,£)). On the other hand, by Proposition 1.2.16 of [16], we
know that

(uI = T)(X7(D(0,¢)) = X1 (D(0,¢)) for all |u| > e,

thus A ¢ 04, (T). Hence, 05,(T) = {0}. On the other hand the point spectrum
op(T) is contained in {0}, so that o(T) = 0,(T) U 04, (T) = {0}.

Clearly, (iii) = (i), so the statements (i), (ii) and (iii) are equivalent. Obvi-
ously, (iii) = (iv). We prove that (iv) = (iii). Suppose 0 isolated in ¢(T"). Then
K(T) = ker P and Hy(T) = P(X), where P is the spectral projection associated
with the spectral set {0}. From K(T) = {0} we deduce that Ho(T) = X, so T is
quasi-nilpotent. It is evident that (iii) = (v). To show the opposite implication,
assume that T is not quasi-nilpotent. Then g(AI —T) = oo for all 0 # X € o(T),
by (9), so the proof is complete. m

It is easy to see that, if T°(X) = {0}, then
T has the finite descent condition < T is nilpotent.

In fact, if ¢ := ¢(T) < oo, then T®(X) = T?(X) = {0}, while the converse is
obvious.

EXAMPLE 2.6. In [16, p.89] an example is given of a right shift 7" on ¢?(N)
such that T has property (C), but not property (3). Therefore, T also provides an
example of a shift which has property (@), but not quasi-nilpotent.

However, the following result, established in [10], shows that the property (Q)
for a right shift 7" is equivalent to be T' quasi-nilpotent in some special case.

THEOREM 2.7. Suppose that infinitely many weights w, are zero. Then for
the corresponding right shift T on (P(N), 1 < p < oo, the following statements are
equivalent:

(i) T is quasi-nilpotent; (il) T is decomposable;
(iii) T has property (6); (iv) T has property (8);
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(v) T has property (C); (vi) T has property (Q);
(vii) Ho(T) is closed.

Proof. The equivalences (i) < (ii) < (iii) have been proved in Theorem
2.5. The implications (ii) = (iv) = (v) = (vi) are satisfied by every bounded
operator.

(vi) = (i) Suppose that Ho(T') is closed. Since Te,, = wpenyq for all n € N,
if w, =0 then e, € ker T C Hy(T). Suppose that w, 7 0 and let k be the smallest
integer such that w,4r = 0. It is easy to check that

k+2 — —
T + €n = WnWni1 " Wnik Entk+1l = 0;

S0 e, € ker T*+2 C Hy(T). This shows that Hy(T) = £°(N) and hence T is quasi-
nilpotent. Therefore (vi) < (i). Since the equivalence (vi) < (vii) has been
proved in part (ii) of Theorem 2.1, the proof is complete. m

We conclude this paper by mentioning a characterization of property (@),
established by Bourhim [10, Proposition 4.5], in the case that the weighted right
shift T is injective. It is easily seen that, if (wy)ren is the weight sequence, then T
is injective if and only if none of the weights w,, is zero; so that Theorem 2.7 does
not apply to this case.

THEOREM 2.8. Suppose that the right shift operator T on (P(N), for some
1 < p < o0, is injective. Then the following statements are equivalent:

(i) T has property (Q);
(ii) Either T is quasi-nilpotent or d(T) := limy,_, e sup(wy - - -wy)/™ > 0. m

Observe that the quantity 4(T") for a right shift operator T' with weight (wp,)nen
may be computed as

NN TN 1/n
(T) = i Inf @ @kin)

and (T) < d(T), so, to prove the preceding theorem, we cannot apply the result
from Theorem 2.1.
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