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SOME REMARKS ON THE CATEGORY SET(L), Part II
Sergey A. Solovyov

Abstract. This paper considers some intrinsic properties of the category SET(L) of L-
subsets of sets with a fixed basis L and is a continuation of our previous work [4]. Here we study
properties of some abstract functors when applied to the category SET(L) as well as some special
objects related to them. In the last section we consider two standard constructions, namely,
inverse and direct systems in this category.

1. Introduction

The notion of a fuzzy set introduced in [5] induced many researchers to study
different mathematical structures involving fuzzy sets and their generalization L-
fuzzy sets [2] or just L-sets for short. In particular, some authors considered the
category SET(L) of all L-subsets of all sets with a fized lattice L. The purpose
of our work is to study systematically some intrinsic properties of this category.
The article is a continuation of our previous investigation of the category SET(L)
in [4]. In particular, in [4] we considered some special morphisms and objects (as,
e.g., section, retraction, isomorphism) as well as some standard constructions (as,
e.g., product and coproduct of objects and morphism, pullback and pushout) in
this category. The aim of this paper is to develop further the study of the category
SET(L).

The paper starts with an introductory section, i.e., Preliminaries, where we
recall the definition of the category SET(L) and discuss some results from [4]. The
next section is devoted to some applications of abstract functors to the category
SET(L). We consider, for example, the properties of the so-called set-valued hom-
functor and evaluation functor. Some properties of the former are also considered
in the next section devoted to some special objects in the category SET(L). Among
other problems, the section deals with the properties of subobjects and quotient
objects. Two last sections of the article are devoted to, accordingly, special mor-
phisms and standard constructions in the category SET(L), where we generalize
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66 S. A. Solovyov

some results of our previous work, i.e., the properties of equalizers and consider
some more concepts, i.e., inverse and direct systems.

We use standard terminology accepted in Category theory (see, e.g., [3]).

2. Preliminaries

In this section we will discuss some basic properties of the category SET(L).
Let us start by recalling its definition (see [2]).

Suppose L is a complete lattice (L, <), i.e., a partially ordered set such that
for every subset A C L the join \/ A and the meet A A are defined. In particular,
VL =:17 and AL =: 0;. We assume that 07 # 17, i.e.,, L has at least two
elements. Then the category SET(L) can be defined as follows.

The objects of SET(L) are all L-subsets of sets, i.e., mappings X: X 1L
where X is an arbitrary set (maybe empty). Henceforth the objects of SET(L) will
be denoted by X, Y or Z and arbitrary sets by X, ¥ or Z. By saying that an object
X € 0bj SET(L) is given we will always mean that X is a mapping X : X — L.

Given two objects X, Y € 0bjSET(L), the set of morphisms from X to YV
MorSET(L)()E', Y') consists of all mappings f: X — Y such that X(z) < Y o f(z)
for all x € X. Given an object X € 0bj SET(L), we denote its identity morphism
by ex.-

Now we will list some properties of the category SET(L) which we will need
throughout the article and whose proofs can be found in [4]. All of them are related

to special morphisms and objects in the category SET(L); also notice that we use
“iff” for “if and only if”.

A morphism f: X —-Y is

(1) a monomorphism iff f is injective;

(2) an epimorphism iff f is surjective;

(3) a bimorphism iff f is bijective;

(4) an isomorphism iff f is bijective and X(z) =Y o f(z) for all z € X;
(5) a constant morphism iff f(X) = {yo} C V;

(6) an equalizer iff f is injective and X (z) = Y o f(z) for all z € X.

An object X is an initial object iff X = @.

3. Special functors

In this section we will consider the properties of some abstract functors in case
of one distinct category, i.e., the category SET(L).
Suppose we have a bifunctor homgpr 7, SET(L)°? x SET(L) — SET (notice

that SET(L)°? denotes the dual category of the category SET(L), “X” denotes
the product of two categories and SET stands for the category of sets) where

homSET(L)(X, Y)= Morgpr (I, (X,Y) and homSET(L)(f7 g)(h)=gohof.
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homgp ) (X, Y) X h v
homgpr 1) (£, 9) Jﬂ g
homSET(L)(XIaY,) X' - gohof= __ LY

homgpr 1, (f, 9)(R)
The functor is called the set-valued hom-functor or morphism functor. For
shortness sake, later on, we will denote the category SET(L)°? x SET(L) by C.

THEOREM 3.1. The morphism functor homgpr (7, 1s dense, not full, not faithful
and not an embedding.

Proof. Let us prove that homgpr 7, is dense, that is, for each object Z €
0bj SET there exist such two objects X,Y € 0bj SET(L) that homgpr 1) (X,Y) is
isomorphic to Z. Let X = {zo}, X(29) =0y andY =Z,Y(y) =1 forally € Y.
Then obviously homgpr 7, (X,Y) = MorSET(L)(X, Y') is isomorphic to Z.

Now we will verify that homSET( L) is not full. For the proof of this pro-
perty it will be enough to find such two objects (X,Y), (X,Y) € 0bjC that
Morc((X,Y),(X ,Y)) = @ and Morc(homSET(L)(X,Y),homSET(L)(X Y ) # 2. It
is easy to see that such two objects can be each four mappings X'=Xx=Y= 0r,
and Y = 17 with arbitrary non-empty sets X, ¥, X', Y'. Indeed, there are no
morphisms from (X,Y) to (X',Y") in the category C, but there exists at least one
morphism from homgpr 1) (X,Y) to homgpr 1) (X ',Y ) in the category SET.

Now let us prove that homg . is not faithful. We have to find such two ob-
jects (X,Y), (X',Y") € 0bjC and such two morphisms (f,g), (f,¢): (X,Y) —
(X,Y") that (f,g) # (f.,g) but homgpr 1,(f59) = homSET(L)(flvg’)- Let
X =X=u and |Ylf| = [Y'| > 1, Y = 17, Then homgy 1, (X,Y) =
{zo}, homSET(L)(X ,Y') = {yo} and there exists a unique morphism fo €

Morsgr({Zo}, {y0o}). Obviously, one can find at least two distinct morphisms
(f,91),(f,92) € More((X,Y),(X,Y)) such that both homSET(L)(f,gl) and

homgp,p 1, (f; 92) are equal to fo.

The last property follows immediately from the fact that homgpr 1) is not
faithful. m

Now let us try to make an L-set of homSET(L)(X, Y) and thus to get a bifunctor
Homgpp 1,: C — SET(L).

The first way is to assume that Homg 1) (X,Y) = X* where X* is a mapping
from Morgpr(Ly(x,v) tO L defined in the following way:

{ VY (¥),
07,

F* o

X*(h) = &

Y
Y
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Suppose we have an object ,(X’,,Y’) € 0bjC and a morphism (f,g): (X,Y) —
(X',Y). Then HomSET(L)(X , Y )=Y*and HomSET(L)(f,g)(h) =gohof =h. We
need to prove that HomSET(L)(f,g) € MoTgpm [(x=,y+)> that is, Y*(h) = X*(h).
Indeed, from the existence of the morphism g € Morgpr L)(Y7 Y') we have that
VY'(Y') > Y og(yo) > Y(yo) for all yo € ¥. Then VY'(Y') > VY(Y) and
therefore Y*(h) > X*(h).

The second way assumes that the lattice L is endowed with an operation ¢: L —
L (called involution) with the following properties:
(1) for all a,b € Lif a < b then b° < af;
(2) (a®)* =aforall a € L.

From these properties it can easily be derived that (17)° = 07, and (07)¢ =
17. Then HomSET(L)(X,Y) can be defined as X*: Morgpy 1, (X,Y) — L where
X*(h) = (VX(X)) v (VY(Y)) with 07 for \/@. Suppose again we have
an object (X',Y') € 0bjC and a morphism (f,g): (X,Y) — (X',Y'). Then
Homgpr 1,(X,Y') = Y, V*(h) = (VX'(X')° v (VY' (")) and then
HomSET(L)(f,g)(h) = gohof = h. We have to prove that HomSET(L)(f, g) €
that is, Y*(h) > X*(h).
> X

MOTspr(Ly(x+,v+)

(2) It X' # & then X # @ and from the existence of the morphism f: X — X

we get that \/ X (X) >\ X' (X') and therefore (\ X' (X'))* > (V X (X))

(a) fY' = @ then Y = @ and then Y*(h) = (V X (X'))* > (V X (X)
X*(h).

(b) If Y’ # @ then from the existence of the morphism g: ¥ — Y we get
that \/ Y (Y') 2 VY (Y) and therefore Y*(h) > X*(h).

It is easy to see that for both ways of defining the functor Homgpp ) the follow-
ing proposition holds. (Notice that for a given object X € 0bj SET(L) there exists
the functor HomSET(L) (_,X): SET(L)°? — SET(L) defined by HomSET(L) (L, X)) (V)=
Homgpp 1,,(Y, X), Homgpp 7, (L, X)(f) = Homgr 1, (f, €x). By analogy one can de-
fine the functor homgp 7, (L, X))

c

)=

PROPOSITION 3.1. For each X € 0bj SET(L) the triangle
HomSET(L) (X

SET(L)° SET(L)
U
homgpr ) (,X) ‘
SET

where U is a forgetful functor commutes.

We will consider some more properties of the functor homg in the next
section.
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Now we will consider two more special functor types in the category SET(L).
Let us begin with definitions (see [1]). Suppose we have a category C' and two func-
tors Fy, Fy: C' — C'. Then F; is said to be a subfunctor of Fy provided that there
exists a natural transformation n: F; — Fy whose elements na: Fi(A) — F5(A)
are monomorphisms for all A € 0bj c. Dually, F; is said to be a superfunctor of
F, provided that there exists a natural transformation n: F; — F5 whose elements
are epimorphisms. By F.: C' — C we will denote a functor which is a subfunctor
of each functor F: C' — C and by F*: C' — C' such a functor that each functor
F:C'->Cisa superfunctor of F*.

THEOREM 3.2. The category SET(L) has a unique functor Fi and has no
functor F*.

Proof. Suppose X € 0bj SET(L) is an initial object in the category SET(L).
Then the set X is empty. Let F': SET(L) — SET(L) be such that F(Y) = X
for all Y € 0bjSET(L) and F(f) = ex for all f € MorSET(L). Obviously, F
is a functor. Suppose another functor G: SET(L) — SET(L) is given. Then for
every two objects Y, Z € 0bj SET(L) and each morphism f:Y — Z the following
diagram

FY)— - G(Y)
F(f )‘ ‘G(f )

where 7y and 7z are the unique morphisms from X to, accordingly, G(Y) and
G(Z) commutes. Thus, n = {”Y}YeObj seT(L) 18 @ natural transformation from F

to G. Since X = @, all 5y are monomorphisms. Therefore, F' is a subfunctor of G
and F = F,.

Suppose there exists another functor F,; From the fact that F,L is a subfunctor
of F, we derive that there exists a natural transformation n: F, — F, and then

F/(Y)= o for all Y € 0bj SET(L). Thus, F, = F,.
Suppose there exists a functor F*. Then F, is a superfunctor of F* and
there exists a natural transformation 7: F, — F* whose elements are epimor-

phisms, therefore, F*(Y) = @ for all Y € 0bjSET(L). Suppose F(Y) =
Zy € 0bjSET(L), Zo # @ for all Y € 0bjSET(L) and F(f) = ey, for all
f € MorSET(L). Then F is a superfunctor of F* and there exists a natural
transformation n: F' — F*. Choose any two objects Y7, Y2 € 0bjSET(L) and
a morphism f:Y¥; — Y5. Then there exist such two morphisms ny,, 7y, that the
following diagram

F(Vi) — s F*(7h)
F(f)‘ ‘F*(f)

F(Ys) n—},Q>F*(Y2)
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commutes. Since the sets MorSET(L)(F(Yl), F*(Y1)), MOrSET(L)(F(Y2)v F*(Y3)) are
empty, we immediately get a contradiction. m

The last functor we will consider here is a bifunctor E: SET(L)SET(L) x
SET(L) — SET(L) (notice that SET(L)SET() denotes the (quasi)category of all
functors F': SET(L) — SET(L)) defined in the following way: E(F, X) = F(X) for
all F € 0bj SET(L)SET(D) | X € 0bj SET(L) and E(n, f) = G(f) o nx = ny o F(f)
for all (n,f): (F,X) — (G,Y). The functor is called the evaluation functor
for SET(L)SPT(L).  For shortness sake, later on, we will denote the category
SET(L)S*T(L) x SET(L) by C.

THEOREM 3.3. The evaluation functor E is dense, not full, not faithful and
not an embedding.

Proof. For each object X € 0bjSET(L) E(eSET(L),X) = eSET(L)(X) =X
where egpy 1) is the identity functor on SET(L). Thus, E is dense.

Now let us prove that E is not full. Let F(Y) = X € 0bj SET(L), G(Y) =
Z € 0bjSET(L) for all Y € 0bjSET(L) and F(f) = ex, G(f) = ez for all
f € MorSET(L) where X = {zo}, X(z) = 07 and Z = {=}, Z(z) = 1r.
Suppose X; = {z1}, Xi(21) = 1p, and X, = {z2}, Xa(z2) = 07. Then
E(F,X;) = X, E(G,X2) = Z and the set MorSET(L)(X, Z) is not empty. The
fact that Morc((r, x,),(a,x,)) = @ implies that E is not full.

Now we will verify that E is not faithful. Let X € 0bj SET(L) be such that
X =@. Then let F(Y)=G(Y) = X for all Y € 0bjSET(L) and F(f) = G(f) =
ex forall f € Mor SET(L). Suppose X, Xo € 0bj SET(L) are such two objects that
|X1| = |X2| > 1and Xs(2) = 1, forall 2 € X5. Then Morgpy 1, (F(X1), G(X2)) =
{f} and there exist at least two distinct morphisms g;,g2: X1 — X3 such that
E(n,g1) = E(n,g2) = f where n: F — G is the identity natural transformation.

The last property follows immediately from the fact that E is not faithful. m

4. Special objects

This section is devoted to some special objects in the category SET(L). To
begin with, we will consider some objects related to the functor homgpr 7, discussed
in the previous section. In fact, all these objects can be defined through this functor,
but here we will use another “internal” characterizations of them. Let us begin by
considering separator and coseparator in the category SET(L).

THEOREM 4.1. An object X € 0bjSET(L) is a separator iff X # @ and
X(x) =0y, for allz € X.

Proof. Let us prove the necessity first and therefore assume that X is a se-
parator. Then for every two objects Y, Z € 0bj SET(L), whenever f,g: Y — Z are
two distinct morphisms, there exists such a morphism h: X — Y that foh # goh.

Obviously, X # @. Suppose there exists a point 2o € X such that X (z¢) # 07,
Then let ¥V = {y1}, Y(y1) = 0, and 7 = {21,22}, 21 # 22, Z(21) = Z(22) = 1.
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In this case every two mappings f,g: ¥ — Z will be morphisms and thus, we can
take f(y1) = 21, g(y1) = 2z2. Obviously, f # g. Since MorSET(L)(X, Y) =2, we
conclude that X is not a separator that contradicts our former assumption.

The sufficiency is obvious. m

Given a separator X € 0bj SET(L), we can get a faithful functor from SET(L)
to SET, i.e., homgp 1 1) (X,.).

THEOREM 4.2. An object X € 0bj SET(L) is a coseparator iff there exist such
two points x1, x2 € X, x1 # 2 that X(21) = X(x2) =17,

Proof. Let us prove the necessity first and therefore assume that X is a cose-
parator. Then for every two objects Y, Z € 0bj SET(L), whenever f,g: Y — Z are
two distinct morphisms, there exists such a morphism h: Z — X that ho f # hog.

Suppose ¥ = {m}, Y(y1) =1 and VA = {zl,f‘z}, 21 # 22, Z(21) = Z(22) =
17. In this case every two mappings f, g: Y — Z will be morphisms and thus
we can take f(y1) = z1, g(y1) = z2. Obviously, f # g. Then there exists such a
morphism h: Z — X that ho f # ho g, therefore, ho f(y1) = 21 # 22 = h o g(y1)
and X(z1) = X(22) =17,

The sufficiency is obvious. m

Now we will consider projective and injective objects in the category SET(L).

THEOREM 4.3. An object X € 0bj SET(L) is a projective object iff X (x) = 0f,
forallz € X.
Proof. Let us prove the necessity first and therefore assume that X is a pro-

jective object. Then for every two objects Y, Z € 0bj SET(L), each epimorphism
f:Y — Z and each morphism ¢g: X — Z there exists a morphism h: X — Y such

that the triangle
>

Y——7

f

Suppose there exists such a point zo € X that X(z) # 07- Then let
Z=X,g=exandY = X,Y(2) = 0y for all z € X, f = idg. Obviously,
fe MorSET(L)(Y, Z) and is surjective, therefore, f is an epimorphism in SET(L).

X
\g
commutes.

Since MorSET(L)(X, Y) = &, we conclude that X is not a projective object that
contradicts our former assumption.

Now let us prove the sufficiency. Since f is an epimorphism, f is surjective and
then we can define h as follows: h(z) =y € f~' o g(x) for all z € X. Obviously,
h € MorSET(L)(X, Y)andg=foh.m

The theorem implies the following result.

THEOREM 4.4. If X € 0bj SET(L) is a separator then X is a projective object.
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Given a separator X € 0bj SET(L), we can get a functor from SET(L) to SET
which is faithful and preserves epimorphisms, i.e., homg L)(X ,_)-

THEOREM 4.5. An object X € 0bj SET(L) is an injective object if X + o
and X(z) =17, for all x € X.

Proof. Let us prove the necessity first and therefore assume that X is an injec-
tive object. Then for every two objects Y, Z € 0bj SET(L), each monomorphism
f:Y — Z and each morphism ¢g: Y — X there exists a morphism h: Z — X such
that the triangle

Y#Z
g /
X

commutes.

Suppose X = @. Then let Y = @ and Z # @. Obviously, there ex-
ists a monomorphism f:Y — Z and a morphism g: Y — X. Since the set
Morgpr L)(Z, X) is empty, we conclude that X is not an injective object that
contradicts our former assumption.

Now suppose there exists such a point zo € X that X(zg) # 17. Then let
Y = {yo}, Y(y0) = 07, and g(y0) = z¢. Obviously, g € MOISET(L)(Y’ X). Let
Z ={=}, Z(20) = 17 and f(yo) = 20. Obviously, f € MorSET(L)(Y7 Z). Since f
is injective, f is a monomorphism in the category SET(L). If there exists such a
morphism h: Z — X that ho f = g then 2y = g(yo) = ho f(yo) = h(z0), therefore,
X o h(z0) # Z(20) and h is not a morphism. Thus, X is not an injective object.

Now let us prove the sufficiency. Since f is a monomorphism, f is injective
and then we can define h as follows:

[ gofTHz), zef(Y)
h(z) = ~ ~
z € X, z & f(Y).
Obviously, h € MorSET(L)(Z, X)andg=hof. m
Lastly, we will consider some properties of subobjects and quotient objects in
the category SET(L). Let us start with the former.

Suppose we have an object Y € 0bj SET(L) and two arbitrary subobjects of
Y (X,f),(Z,9) where f: X - Y and g: Z — Y are some monomorphisms. Then
(X, f) is said to be smaller than (Z,g) — denoted by (X, f) < (Z,g) — iff there
exists some morphism h: X — Z such that the triangle

f

X —Y
h‘/
7z

commutes.
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If (X,f) <(Z,9) and (Z,g9) < (X, f) then (X, f) and (Z, g) are said to be
isomorphic subobjects of Y; denoted by (X, f) = (Z, 9).

THEOREM 4.6. (X, f) < (Z,g) iff the following conditions are fulfilled:

(1) f(X) Cc9(2);
(2) X(x)< Z(2) forze X, z€ Z, f(z) = g(2).

Proof. Let us prove the necessity first and therefore assume that (X, f) <
(Z,9)-

Suppose there exists such yo € f(X) that yo & g~(Z) ‘Then there exists some
xo € X such that f(zo) = yo and for all mappings h: X — Z goh(zg) # yo = f(z0)-
Thus, (X, f) £ (Z,9).

Suppose there exist such zo € X and zy € Z that f(zo) = g(20) but X (o) £
Z(z0). Since (X, f) < (Z,9), there exists some morphism h: X — Z such that
goh = f. Thus, g(20) = f(xo) = g o h(xo) and then 2y = h(xg), since g is
a monomorphism and therefore injective. Since h is a morphism, Z o h(xzq) =
Z(z0) = X (xo) that contradicts our former assumption.

Now let us prove the sufficiency and therefore assume that all conditions of
the theorem are fulfilled. Let h(z) = g~' o f(x) for all z € X. Then go h(z) =
gog o f(x) = f(x), since g is injective. Further, the second condition of the
theorem implies that Z o h(z) > X(z), since g o h(x) = f(x). Therefore, h €
MorSET(L)(X, Z).m

The theorem implies the following result.

THEOREM 4.7. (X, f) = (Z, g) iff the following conditions are fulfilled:
(1) f(X)=9(2);
(2) X(z)=Z(2) forz € X, z € Z, f(x) = g(2).

Since = is an equivalence relation on the class of all subobjects of Y, the
class can be partitioned into equivalence classes of isomorphic subobjects. By
choosing one representative from each class we get a system of representatives
called a representative class of subobjects of Y. It can be easily seen that the pairs
(X,h) where X C Y, X(2) < Y(z) for all z € X and h is the inclusion map form a
representative class of subobjects of Y, since (X1, h1) ~ (X2, hs) iff X; = X5 and
for each subobject (Z,g) of Y there exists a pair (X,h) ~ (Z,g) where X = g(2)
and X (z) = Z(g '(z)) for all z € X. Since the class of all pairs (X, ) is a set, the
following theorem holds.

THEOREM 4.8. The category SET(L) is well-powered, i.e., each object Y €
0bj SET(L) has a representative class of subobjects that is a set.

Now suppose we have an object Y € 0bj SET(L) and two arbitrary quotient
objectsof Y (f, X),(g,Z) where f: Y — X and g: Y — Z are some epimorphisms.
Then (f, X) is said to be larger than (g, Z) — denoted by (f, X) > (g, Z) — iff there
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exists some morphism h: X — Z such that the triangle

f

Yy —— X

XA ‘ i
Z
commutes.

If (f/,X) > (9,2) and (g9,2) > (f,X) then (f,X) and (g, Z) are said to be
isomorphic quotient objects of ¥; denoted by (f, X) = (g, Z).

THEOREM 4.9. (f,X) > (g, Z) iff the following conditions are fulfilled:

(1) for allyy,y2 €Y f(y1) = f(y2) implies g(y1) = g(y2);
(2) X(f(y)) < Z(g(y)) for ally €Y.

Proof. Let us prove the necessity first and therefore assume that (f, X) >
(9, 2).

Suppose there exist such y1,y2 € Y that f(y1) = f(y2) and g(y1) # 9(y2).
Since (f, X) > (g, Z), there exists some morphism h: X — Z such that ho f = g.
Thus, g(y1) = ho f(y1) = ho f(y2) = g(y=2) that contradicts our former assumption.

Suppose there exists such yo € Y that X (f(y0)) £ Z(g(yo)). Since (f, X) >

(g, Z), there exists some morphism h: X — Z such that hof = g. Thus, Z(g(yo))
Z(ho f(y0)) = X(f(yo)) that contradicts out former assumption.

Now let us prove the sufficiency and therefore assume that all conditions of the
theorem are fulfilled. Let h(z) = g(y), v € f~(z). If 1, z2 € X and 71 = x5 then
h(z1) = g(y1), f(y1) = =1 and h(z2) = g(y2), f(y2) = @2. Since f(y1) =21 =22 =
f(y2) implies g(y1) = g(y2) then h(x1) = h(x2) and the definition of h is correct.
For each y € Y it follows that ho f(y) = g(yo), yo € f~" o f(y). Since f(yo) = f(y)
implies g(yo) = g(y) then ho f(y) = g(y). Further, for an arbitrary point zy € X
Zoh(zg) = Zog(yo), yo € f~"(x0) and Z(g(yo)) = X (f(y0)) = X (x0). Therefore,
h e MorSET(L)(X’ Z).m

The theorem implies the following result.

THEOREM 4.10. (f, X) =~ (g, Z) iff the following conditions are fulfilled:
(1) for allyr,y> €Y f(y1) = f(y2) iff 9(v1) = 9(y2);

(2) X(f(y)) = Z(g(y)) for ally € Y.

Since = is an equivalence relation on the class of all quotient objects of Y, the
class can be partitioned into equivalence classes of isomorphic quotient objects. By
choosing one representative from each class we get a system of representatives called
a representative class of quotient objects of Y. It can be easily seen that the pairs
(h,X) where X = Y /Q for some equivalence relation Q on Y, X([y]) > VY ([y])
where [y] denotes the equivalence class generated by y and h is the induced quotient
map form a representative class of quotient objects of Y, since (hy, X1) & (ha, X3)
iff X; = X, and for each quotient object (g, Z) of Y there exists a pair (h, X) ~
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(9, Z) where X = f’/Q with (y1,2) € Q iff g(y1) = g(y2) for all y1,ys € Y and
X([y]) = Z(g(y)) for all y € Y. Since the class of all pairs (h,X) is a set, the
following theorem holds.

THEOREM 4.11. The category SET(L) is co-(well-powered), i.e., each object
Y € 0bj SET(L) has a representative class of quotient objects that is a set.

5. Special morphisms

In this section we will consider the properties of some special morphisms in
the category SET(L). To begin with, we will note that the category SET(L)
is not balanced, that is, there exists a bimorphism f € Mor SET(L) which is
not an isomorphism. Consider, for example, a morphism f: X — Y where
X = {20}, X(zo) = 0, ¥ = {0}, Y(yo) = 1, and f(x0) = yo. Since f is
bijective, f is a bimorphism but Y o f(x¢) # X (x¢), therefore, f is not an isomor-
phism.

We will continue by considering a coconstant morphism in the category
SET(L).

THEOREM 5.1. A morphism f: X — Y is a coconstant morphism iff X = &.

Proof. Let us prove the necessity first and therefore assume that f is a cocon-
stant morphism. Then for each object Z € 0bj SET(L) and every two morphisms
g,h: Y — Z it follows that go f = ho f.

x—1 .y

h
XY‘ /
L
Suppose there exists a point 2 € X. Then f(zo) =y € Y. Let Z ={z1, 22}, 21 #
72 and Z(21) = Z(#2) = 1. In this case every mappings g,h: Y — Z will be
morphisms and thus we can take g(yo) = 21 and h(yo) = 22. It is easy to see that
gof#hof.

The sufficiency is obvious. m

Z

I

From this theorem, the theorem about constant morphism in the category
SET(L) and the definition of zero morphism (notice that a morphism is said to be
a zero morphism provided that it is both constant and coconstant) the following
theorem can be derived.

THEOREM 5.2. A morphism f: X — Y is a zero morphism iff X = @.

Obviously, there exist such two objects X,Y € 0bjSET(L) that the set
Mor g L)(X , Y) contains no zero morphism, therefore, the category SET(L) is
not pointed.

Now we will consider a coequalizer in the category SET(L). Suppose we have
two morphisms f,g: X — Y. We will find a coequalizer of f and g. Following the
definition we need such a pair (h, Z) where h € MorSET(L)(Y, Z) that
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(1) hof=hog;
(2) for each object W € 0bj SET(L) and each morphism & : ¥ — W such that
h of = h og there exists a unique morphism m: Z — W such that the triangle

y —h

I -m

commutes.

(Notice that the definition of coequalizer implies that (h, Z) is a quotient object
ofY.)

Let Q be the smallest equivalence relation on Y that contains all pairs
(f(x),g(x)) for z € X. Then let Z = Y/Q = {[y]|ly € Y} where [y] denotes the
equivalence class generated by y and Z([yo]) = V{Y (¥)|y € [yo]} for all [yo] € Z.
The mapping h: ¥ — Z will be the induced quotient map, therefore, h(y) = [y] for
all y € Y. Obviously, h € MorSET(L)(Y, Z).

PROPOSITION 5.1. (h, Z) is a coequalizer of f and g.

Proof. Obviously, ho f = hog. Suppose there exists another morphism
R':Y — W such that A o f = h' o g. From the definition of Q we derive that
K (ly) c {w,} € W,w, € W for all y € Y, therefore, there exists a unique
mapping m: Z — W such that moh = k', i.e., m([y]) = ' (y) for all [y] € Z. Let

us prove that m € MorSET(L)(Z7 W), that is, W o m([y]) > Z([y]) for all [y] € Z.

Fix an arbitrary point [yo] € Z. Since h € Morgpm L)(Y, W), it follows that

Woh'(yo) = Woh'(y) > Y(y) for all y € [yo] and then W om([yo]) = W o k' (yo) >
V{Y (¥)|y € [vo]} = Z([yo])- Thus, m is indeed a morphism. m

Since f and g were two arbitrary morphisms, the following result holds.

THEOREM 5.3. The category SET(L) has coequalizers, i.e., every two mor-
phisms f,g: X — Y have a coequalizer.

The notion of coequalizer gives rise to defining a special kind of epimorphisms
called regular epimorphisms. Given an arbitrary morphism h: Y — Z, the pair
(h, Z) is called a regular quotient object of Y and h is called a regular epimorphism
iff there exist such two morphisms f,g: X — Y that (h,Z) is a coequalizer of f
and g. The following theorem shows the necessary and sufficient conditions for a
morphism to be a regular epimorphism.

THEOREM 5.4. A morphism h:Y — Z is a regular epimorphism iff the follo-
wing conditions are fulfilled:

(1) h is surjective;
(2) Z(z) = V{Y (y)|h(y) = 2} for all z € Z.

Proof. Let us prove the necessity first and therefore assume that h is a regular
epimorphism. Then (h,Z) is a coequalizer of some morphisms f,g: X — Y and
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thus, a quotient object of Y. Therefore h is an epimorphism that implies that A is
surjective.

Now let us prove that Z(2) = V{Y (y)|h(y) = 2} for all z € Z. Let Q be such
an equivalence relation on Y that for every two points yi,y2 € ¥ (y1,92) € Q iff

h(y1) = h(y2). Let W = Y/Q = {[ylly € Y} and W([yo]) = V{¥Y(9)ly € [yo]}
for all [yo] € W. The mapping n w111 be the induced quotient map, therefore

h'(y) = [y] for all y € Y. Obviously, h' € MOISET(L)(Y W)and h' o f =h og.
Then there exists such a morphism m: Z — W that h' = moh. Now suppose
we have an arbitray point zg € Z. Since h € Morgpr( L)(Y, Z), it follows that
Z(z0) =2 V{Y(y)|h(y) = z0}. The fact that m € MorSET(L)(Z7 W) implies that
W om(z9) > Z(20). The mapping h is surjective, therefore, there exists such a

point yo € ¥ that h(yo) = 20. Then W om(zo) = W om o h(yo) = W o k' (yo) =

W (lyo]) = V{Y (9)ly € [yo]} = V{Y (9)|(y) = h(yo) = 20} > Z(20). Thus, Z(z0) =

V{Y (y)[h(y) = 20}

Now let us prove the sufficiency and therefore assume that all the conditions of
the theorem are fulfilled. Obviously, one can find a set X and such two mappings
f,9: X — Y that Q defined in the first part of the theorem is the smallest equiva-
lence relation that contains all pairs (f(z), g(z)) for # € X (for every y1, 2 € Y such
that h(y1) = h(y2) take a point z,,,, and define f(zy,4,) = ¥1 and g(xy,y,) = y2)-
Then let X (z) = 07, for all z € X. Thus, f,g € MorSET(L)(X, Y). The proof that
(h, Z) is a coequalizer of f and g is the same as in the proposition 5.1. m

The theorem implies that there are epimorphisms in the category SET(L) that
are not regular epimorphisms.

Now let us consider a generalization of coequalizer, i.e., multiple coequalizer in
the category SET(L). Suppose we have two objects X,Y € 0bj SET(L) and a non-
empty indexed family of morphisms (f;)i;csr contained in the set Morgpr( [, (X,Y).
A pair (h,Z) where h € MorSET(L)(Y, 7Z) called a multiple coequalizer of (f;)icr
provided that
(1) hofi=ho f;foralli,j €I,

(2) for each object W € 0bj SET(L) and each morphism & : ¥ — W such that
Rofi=h o f; for all 4, j € I there exists a unique morphism m: Z — W such
that moh =h'.

Let Q be the smallest equivalence relation on Y that contains all pairs
(fi(x), f;(x)) for i,5 € T and x € X. Then let Z = Y/Q = {lvlly € Y} and
Z([yo)) = V{Y )|y € [wo]} for all [yo] € Z. The mapping h: Y — Z will be the
induced quotient map. One can easily prove that (h, Z) is a multiple coequalizer
of (f:)icr. Thus, the following theorem holds.

THEOREM 5.5. The category SET(L) has multiple coequalizers, i.e., each non-
empty indexed family of morphisms (fi)icr contained in MorSET(L)(X, Y) has a
multiple coequalizer.

Lastly, we will consider one special case of coequalizers, i.e., cokernels in the
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category SET(L). Suppose we have a morphism f: X — V. If go: X — Y is
the unique zero morphism from X to Y then (if it exists) a coequalizer of f and
go is called the cokernel of f. From our previous investigations it follows that if
go is a zero morphism then X = @ and then f = go. Thus, the cokernel of f is
a pair (h,Z) where h is bijective and Z o h(y) = Y (y) for all y € Y. Therefore,
h is an isomorphism. Since the category SET(L) is not pointed, there exist such
morphisms in this category which have no cokernel. Further, suppose we have a
morphism h: Y — Z. Then (h, Z) is called a normal quotient object of Y and h is
called a normal epimorphism provided that there exists such a morphism f: X — Y
that (h, Z) is the cokernel of f. The following theorem shows that in the category
SET(L) normal epimorphisms and isomorphisms are equivalent.

THEOREM 5.6. A morphism h: Y — Z is a normal epimorphism iff h is an
isomorphism.

Proof. Let us prove the necessity first and therefore assume that h is a nor-
mal epimorpsim. Then it follows that (h,Z) is a coequalizer of some f,go €
MorSET(L)(X, Y) where X = @. Since ey o f = ey o g, there exists such a
morphism m: Z — Y that moh = e,. Hence, h is a section. The fact that (h, Z) is
a subobject of Y implies that h is an epimorphism and then A is an isomorphism.

Now let us prove the sufficiency and therefore assume that & is an isomorphism.
Then h is bijective and Z o h(y) = Y(y) for all y € Y. Obviously, h o f=hogo
where f,go € Morgprr) (X,Y), X = @. For each morphism h : Y — W such that

h of = h 0 go there exists a unique mapping m: Z — W such that moh = k', i.e.,
m(z) =h oh™1(z) forall 2 € Z. Then Wom(z) =Woh oh™1(2) > Yoh™l(z) =
Zohoh™1(2) = Z(z) and therefore m € MorSET(L)(Z, W) . m
Now let us consider the dual of coequalizer, i.e., equalizer in the catego-
ry SET(L). Suppose we have two morphisms f,g: X — Y. We will find an
equalizer of f and g. Following the definition, we need such a pair (Z, h) where
h e MorSET(L)(Z, X) that
(1) foh=goh;
(2) for each object W € 0bj SET(L) and each morphism h': W — X such that
foh = goh there exists a unique morphism m: W — Z such that the triangle

h

7 ——X
M~ [h’

w
commutes.
(Notice that the definition of equalizer implies that (Z, h) is a subobject of X.)
Let Z = {z|z € X, f(z) = g(z)} and Z(z) = X (z) for all z € Z. The mapping
h: Z — X will be the inclusion map. Obviously, h € MorSET(L)(Z7 X).

PROPOSITION 5.2. (Z,h) is an equalizer of f and g.
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Proof. Obviously, f o h = g o h. Suppose there exists another morphism
R': W — X such that fo o= go h'. Then there exists a unique mapping
m: W — Z such that hom = h', i.e., m(w) = h=' o b’ (w) for all w € W. Fix an
arbitrary point wo € W. Then Z om(wg) = X o hom(wy) = X oh' (wo) > W (wy).
Thus, m is indeed a morphism. m

Since f and g were two arbitrary morphisms, the following result holds.

THEOREM 5.7. The category SET(L) has equalizers, i.e., every two morphisms
f,9: X =Y have an equalizer.

By analogy with coequalizers a special kind of monomorphisms, i.e., regular
monomorphisms can be defined. From the theorem about the properties of equal-
izers in the category SET(L) we can derive the necessary and sufficient conditions
for an arbitrary morphism h: Z — X to be a regular monomorphism.

THEOREM 5.8. A morphism h: Z — X is a regular monomorphism iff the
following conditions are fulfilled:

(1) h is injective;
(2) Xoh(z)=Z(x) forallz € X.

The theorem implies that there are monomorphisms in the category SET(L)
that are not regular monomorphisms.

Now let us consider a generalization of equalizer, i.e., multiple equalizer in
the category SET(L) whose definition can be obtained by dualizing the notion of
multiple coequalizer.

Suppose we have two objects X,Y € 0bj SET(L) and a non-empty indexed
family of morphisms (f;)ies contained in the set Morggy 1, (X, Y). Let Z = {zfz €
X, fi(x) = fi(z) for all 4,5 € I} and Z(x) = X(x) for all + € Z. The mapping
h: Z — X will be the inclusion map. Obviously, h € MorSET(L)(Z, X). One

can easily prove that (Z,h) is a multiple equalizer of (f;);cr. Thus, the following
theorem holds.

THEOREM 5.9. The category SET(L) has multiple equalizers, i.e., each non-
empty indezed family of morphisms (fi)icr contained in MorSET(L)(X, Y) has a
multiple equalizer.

Lastly, let us consider one special case of equalizers, i.e., kernels in the category
SET(L). Suppose we have a morphism f: X — Y. If go: X — Y is the unique
zero morphism from X to Y then (if it exists) an equalizer of f and gq is called

the kernel of f. If go is a zero morphism then X = & and then the kernel of f is a
pair (Z,h) where Z = @ and h: Z — X is the empty mapping. Obviously, there
exist such morphisms in the category SET(L) which have no kernel. By analogy
with normal epimorphisms we can obtain normal monomorphisms. It is easy to
see that the only normal monomorphism in the category SET(L) is the morphism

h: X =Y where X =V = &.
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6. Standard constructions

In this section we will consider two standard constructions in the category
SET(L), i.e., inverse and direct systems. We will start with the former (see [1]).

Suppose C is a category and (2 is a partially-ordered and directed set. For

each w € Q choose an object X, € 0bj ¢’ such that X, # Xuw, for w1 # w2 and

for every wy,wz € Q such that w; < wz choose a morphism f22: X, — X, . If the
triple S = {X,,, f&2,Q} is a subcategory of C' then S is called an inverse system.

(Notice that from the properties of S it follows that for every wy,ws,ws € 2 such
that w1 < wp < w3 &2 0 f&2 = f&8 and for each w € Q fY = ex,.) A pair

woa
{X, (hw)wea} where X € 0bjC’ and h,, € Mor,(X,X,) for all w € Q is called a
limit of S iff the following conditions are fulfilled:

(1) f&2 0 hy, = hy, for all wi,ws € Qw1 < wo;

(2) for each pair {V, (g, )weq} where Y € 0bjC’, g, € Morp(Y,X,,) for all w € 0
and f;"f 0Quwy = Gu, for all wi,ws € Q,w1 < w2 where exists a unique morphism
f:Y — X such that h, o f = g, for all w € Q.

THEOREM 6.1. In the category SET(L) each inverse system has a limit.

Proof. Suppose we have an inverse system S = {X,, f&2,Q}. We have to
find a limit of S, i.e., a pair {X, (hw)wea}. We will proceed as in [FF]. Let

X = {{z} = (@w)wea € I 5(:,|f;"12(xw2) = z,, for all wi,ws € Qw1 < wa}
weN

and X({z}) = A Xu.(z.). For each w € Q let h, be the restriction to X of

zue{z}
the projective mapping p,: [[ Xo — Xo: {2} — z,. Since X, o h,({z}) =
we
Xo(zw) 2 AN Xu(zw) = X({z}), the mapping h, is a morphism. For every
zue{z}

w1, w2 € Qawl < we fwwlz o hwz({w}) = :;?(xwz) =Twy = hwl({x})
Suppose we have another pair {Y, (9. )wea} and f&20g,, = gu, for all w,ws €
Q,w; < wse. Let f be the diagonal mapping wég Juw: YV — 11 Xo: 9y (90(¥))wea-
weN

Obviously, p, o f = g, for all w € Q. Fix an arbitrary point yg € Y. Then
Sp 0Py 0 f(yo) = f5F 0 9ea(90) = 9un(90) = Puy © f(y0). Thus, f(yo) € X
and f: Y — X. It is easy to see that h, o f = g, for all w € Q. Let us prove
that f € MorSET(L)(Y7 X), that is, X o f(y) > Y(y) for all y € Y. Suppose
yo €Y. Then X, 0 g, (y) > Y(y) and then A X, 0 gu(v0) > Y (y0). Therefore,
wEN
Xof(yo)= A Xuoguwo) > Y(yo). For each morphism f : Y — X such that
weN

hoof = g, for all w € Q it follows that f = f, since g, = hy o f =pyof . Thus,
f is the only morphism with the required property. m

Now let us consider the dual of inverse system, i.e., direct system in the cate-
gory SET(L).
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Suppose C is a category and 2 is a partially-ordered and directed set. For
each w € 2 choose an object X,, € 0bjC such that X, # Xw2 for w; # wo and
for every wi,ws € Q such that w; < wy choose a morphism ok Xoy — Xo,- If

the triple S = {X,,, f&1,0Q} is a subcategory of C' then S is called a direct system.
(Notice that from the properties of S it follows that for every wy,ws,ws € Q such
that w1 < we < w3 f&2 0 f21 = f21 and for each w € Q f2 = ex,.) A pair
{(he)wea, X} where X € 0bj ¢ and he € Morp(X,,X) for all w € Q2 is called a
limit of S iff the following conditions are fulfilled:

(1) huy o fE1 = hy, for all wy,ws € Q, w1 < wo;

(2) for each pair {(g.)weq, Y} where Y € 0bjC’, g, € Mory(X,,,Y) for all w €
and g, ot = Gun for all wy,ws € Q,w; < ws where exists a unique morphism
f: X — Y such that foh, =g, for all w € Q.

THEOREM 6.2. In the category SET(L) each direct system has a limit.

Proof. Suppose we have an inverse system S = {X.,, f©1,Q}. We have to find

a limit of S, i.e., a pair {(hw)wea, X }. Let @ be such a relation on j(\; that for
we

every two points Z,,, Y., € D X, (Tw,,Yw,) € Q iff there exists such w € Q that
wEN
w1 € w,ws < w and f(2w,) = [¥2(Ys,)- Let us verify that @ is an equivalence

relation on P X, .
wEN

(1) (y,z,) €Qforall z, € P 5(\:,, since f¥(z,) = Ty -
weN

(2) Obviously, (Zu,,Yw,) € Q implies (Yu,, ZTw,) € Q for all z,,, Y., € P X..
weN

(3) Suppose (Tuw;,Yuwy) € Q AN (Yuy, 2uy) € Q fOr SOME T, Yurgs 2s € D X
wEN

Then there exist such two points wg, w € € that wy < wg, w2 < wg, f4 1 (T0,) =
f“’z(yuz) and wy < wd,w3 < w%,f”’z(ywz) = f“’;(zws) Since the set Q is
dlrected there ex1sts1 such a point wj € Q that w < wi and w2 < wi. Then
o 1) = 25 0 S50 and £ o 5 0) = £2] 0 £236u). From
the properties of S it follows hat f 0 f““ (@) = [ (30, fjél) 0 £ (yon) =

0

fwg (wa)afwg Ofgg(ywz) = f:(??(yw2) and fwg 0 f:)g(zws) = f:;gs(zws)‘ Thusa
fwé(xwl) = fw??(ywz) = fug(zws) and (wwnzws) € Q.

Let X = EB Xo/Q = {lzu)lz. € @ X.} and X ([z.]) = VX, (v )y, €

[z,]}. For each w € € the mapping h w111 be the induced quotient map, i.e.,
ho(z,) = [x,] for all z,, € Xw. Since X o hy,(z,) = X([z,]) = X, (z.) then h, €
MOISET(L)(va X). Suppose we have wy,ws € Q,w; < wy. Then for each z,, €

X, it follows that (Twy, f1(1y,,)) € Q, since wy < w2,wz < w2 and f&1(x,,) =
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f82 0 f&1 (s, ). Therefore, hy, 0 f&1 (2w,) = [f&1 (Tw,)] = [%w1] = hw, (Tw,) and the
required property is fulfilled.

Suppose we have another pair {(g.)wen,Y } and g, 0 f&! = g.,, for all wy,wy €
Q,w; < wo. Let f: X — Y be such that f([zw]) = gu(zy) for all [x,,] € X. We
have to verify that the definition of f is correct. Suppose [2,,] = [y.,] for some
Ty s Yuwy € X. Since (2w, ,Yw,) € @, there exists such w € Q that vy € w,ws < w
and fﬁl(%l) = f:jz(yu&)' Then g, o f:jz(ywz) = gu&(yuu) and g, o fs)l(xw1) =
Juw, (xwl)' Since g, o f2? (ywz) = g, o f* (xwl) then ng(ywz) = Gu, (xw1)' Thus,
f([zan]) = f([yn))-

Obviously, f o h,, = g, for all w € Q. Let us prove that f € Morgpr 1) (X,Y),
that is, Y o f([z.]) > X([z.]) for all [z,] € X. Suppose we have [z,,] € X.

Then for all y, € [Tw] gu(Vw) = f 0 hw(¥u) = f([Yo]) = f([Tw]) = gu(Twy)-
Thus, Y o f([2w]) =Y 0 gu(Zwy) =Y 0 gu () 2 Xu(yw) for all y, € [z,,], since

9o € Morgpr ) (X, ¥). Then Y o f([ou)) > VAXe (0l € 2]} = X ([20]).
Thus, f is indeed a morphism. For each morphism f : X — Y such that f oh, = g,
for all w € Q it follows that f o h,(z,) = f ([zu]) = gu(2,) and then f = f. =
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