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A CLASS OF UNIVALENT FUNCTIONS DEFINED
BY USING HADAMARD PRODUCT

M. K. Aouf, H. M. Hossen and A. Y. Lashin

Abstract. In this paper we introduce the class L* (X, 3) of functions defined by f * S.(z)
z
of f(z) and S. = m
theorems and radii of close-to-convexity, starlikeness and convexity. Also we find integral operators
and some results for Hadamard products of functions in the class L7 (), 8). Finally, in terms of the
operators of fractional calculus, we derive several sharp results depicting the growth and distortion
properties of functions belonging to the class L% (X, 8).

We determine coefficient estimates, closure theorems, distortion

1. Introduction

Let A denote the class of functions of the form
fR)=z4+ > an2" (1.1)
n=2
which are analytic in the open unit disc U = {2 : |#2| < 1}. And let S denote the
subclass of A consisting of analytic and univalent functions f(z) in U.
A function f(z) from S is said to be starlike of order « if and only if

Re{i{ég)}>a (zeU)

for some a, 0 < a < 1. We denote the class of all starlike functions of order «
by S*(«). Further, a function f(z) from S is said to be convex of order « if and

only if

2f"(2)
2 }>a (z€U)
for some a, 0 < @ < 1. And we denote the class of all convex functions of order
a by K(a). We note that f(z) € K(«) if and only if zf'(z) € S*(a). The classes
S*(e) and K (a) were first introduced by Robertson [7], and later were studied by
Schild [9], MacGregor [2] and Pinchuk [6].
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Now, the function

Sa(z) = c

(1 — 2)2(-a)
is the well-known extremal function for the class S*(«). Setting

Cla,n) = ﬁ g(k “2) (n

0<ax<l)

WV

2),

Sa(2) can be written in the form S, (z) = 2+ > .-, C(a,n)z™. Then we can see
that C(a,n) is a decreasing function in « and satisfies

00, a<l1/2,
lim C(a,n)=<¢ 0, a>1/2,
1, a=1/2

Let f*g(z) denote the Hadamard product (convolution) of two functions f(z)
and g(z), that is, if f(2) is given by (1.1) and g(z) is given by g(2) = 2+ -, bnz™,
then

fxg(z)=z+ § anbnz™.

n=2

Let T denote the subclass of S consisting of functions of the form
fR)=2-3 a2"  (an 20). (1.2)
n=2

We say that a function f(z) defined by (1.1) belongs to the class L, (A, 3) if f(z)
satisfies the following condition
(f * Sa(2))
1.
Re{ e p ) 7P 43
for some o, 0 < a <1, A,0<A<1,3,0<B<landforall zeU.

Further we denote by L% (), 8) the class obtained by taking intersection of the
class Ly (A, 8) with T, that is LE(X, 3) = Lo(A, ) N T. We note that:

(i) Lj,5(0,8) =T**(B) (Sarangi and Uralegaddi [8] and Al-Amiri [1]);
(ii) L} /2()\, B) represents the class of functions f(z) € T satisfying the condition
f'(2)
Red /)
\sretra=m) >
where 0 < A<land 0K B <1;

(iii) L,(0,3) represents the class of functions f(z) € T satisfying the condition
Re{(f * Sa(2))'} > B.

2. Coefficient estimates

THEOREM 1.Let the function f(z) be defined by (1.2). Then f(z) is in the
class L (N, B) if and only if

o0

> n(l—=A3)C(a,n)a, <1-—7. (2.1)

n=2

The result is sharp.
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Proof. Assume that inequality (2.1) holds and let |z| < 1. Then we have
TEEAE) M L) » MO
Af * So(2)) + (1= X) 1=, nC(a,n)anz™!
(1 N2, nC(a,n)a,
1-2Y2 ,nC(a,n)an
(f * Sa(2))

(f*Sa(2)) + (1= A)
w = 1 whose radius is 1 — 5. Hence f(z) satisfies condition (1.3).

Conversely, assume the function f(z) defined by (1.2) is in the class L% (A, 3).

<

<1-8.

lie in the circle centered at

This shows that the values of 3

Then
(f * Sa(2)) . 1=, nC(a, n)an "L
Re { A fxSa(2)) +(1—=X) } =Re { 1— )\220:2 nC (o, n)anz"1 } >3 (22)
(f *Sa(2))

for z € U. Choose values of z on the real axis so that

A(f % Sa(2)) + (1= A)
is real. Upon clearing the denominator in (2.2) and letting z — 1~ through real
values, we obtain

1-— i nC(a,n)a, > ﬂ{l - i nC(a,n)an}

n=2 n=2
which gives (2.1). Finally, the result is sharp with the extremal function f(z) given
by
1- 5 n
flz)=2 z n>2). = (2.3)

" n(1=XB8)C(a,n)
COROLLARY 1. Let the function f(z) defined by (1.2) be in the class L% (), B).
Then we have 18

<
IS (T = AB)C(a, n)
The equality in (2.4) is attained for the function f(z) given by (2.3).

(n>2). (2.4)

3. Some properties of the class L% (A, 3)

THEOREM 2. Let 0 € a < 1,0 < M1 € <1land 0 < B < 1. Then
L:kx()‘la/g) C LZ()‘%ﬂ)
Proof. 1t follows from Theorem 1 that

E n(]- - )\Qﬂ)c(avn)an < Z n(]- - )\lﬂ)c(aan)an < 1- ﬂ
n=2 n=2
for f(z) € L% (A1, 8). Hence f(2) isin L% (A2,3). m
THEOREM 3. Let 0 < a1 a2 <1,0< A< 1 and0< B < 1. Then we have
L, (A B) C Ly, (A, B).

Proof. Since C(a,n) is a decreasing function in «, it follows from Theorem 1
that

io: n(l — AB)C(az,n)a, < f: n(l — AB)C(ay,n)a, <1-—73

n=2 n=2

for f(z) € L}, (X, B). Hence f(z)is in L}, (), 3). m
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4. Closure theorems

We shall prove the following results for the closure of functions in the class
Ly (X, B).

THEOREM 4. Let the functions f;(z), 1 =1,2,...,m, defined by

o0

fi(z) =2— 22 U, 2" (an,; 2 0) (4.1)
for z € U, be in the class L% (A, B). Then the function h(z) defined by
h(z)=2z— i bn2™
n=2

also belongs to the class L%(X, B), where b, = = >y Gnj
Proof. Since f;(z) € L(A, ), it follows from Theorem 1 that

i n(1—=A3)C(a,n)a,,; <1-0 (Gj=1,2,...,m).
n=2

Therefore
S n(1 = AB)C(aym)bn = 5° n(1 — Aﬁ)c*(a,n)(i 5 ans)
n=2 n=2 m 7j=1
1 m oo

- {3 n(1=28)C(a,nan; } <1- 5.

m j=1"‘n=2
Hence by Theorem 1, h(z) € L% (), 3). Thus we have the theorem. m
Employing the techniques used earlier by Silverman [11], and with the aid of
Theorem 1, we can prove the following

THEOREM 5. The class L% (X, 3) is closed under convex linear combinations.

As a consequence of Theorem 5, there exist extreme points of the class L% (), 5).

THEOREM 6. Let f1(2) = z and
1-7 n
(@) =2 = T 30 ¢
foro<a<1,0< A<l and0< B <1. Then f(z) is in the class L (X, B) if and

only if it can be expressed in the form f(z) = > | pnfn(z), where pn, >0 (n = 1)
and 307 pn = 1.

COROLLARY 2. The extreme points of the class L5(\,B) are the functions
fn(z) (n > 1) given by Theorem 6.

(n>2) (4.2)

5. Distortion theorems

With the aid of Theorem 1, we may now find bounds of the modulus of f(z)
and f'(z) for f(z) € LE(A, B).
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THEOREM 7. If the function f(z) defined by (1.2) is in the class L% (X, 3),
0<A<1,0<8<1, and either 0 < a £ 5/6 or |z| < 3/4, then

o R
11z maxfo, 2] - 1P
1-5

2
. T .
-1 —a) |2 he bounds are sharp

Proof. By virtue of Theorem 1, we note that

and | ()] < |2l + 5

1-p n
11 > max {0, = max — Pl
£ < el + e "

neN\(1} n(1 — AB)C(a, n)
for z € U. Hence it suffices to deduce that

1-5
G(a, A = "
(a7 7ﬂ7|z|7n) n(]._Aﬂ)C(a,n) |Z|
1-2
is a decreasing function of n (n > 2). Since C(a,n +1) = u(}(a,n), we

can see that, for |z| #0, G(a, A\, B, |2|,n) = G(a, A, B, |2],n + 1) if and only if
H(a,|zl,n) = (n+1)(n+1—2a) —n?|z| > 0.

It is easy to see that H(a,|z|,n) is a decreasing function of a for fixed |z|. Conse-
quently it follows that

H(a,|z|,n) = H(5/6,|2|,n) = n*(1 — |2]) + 1(n -2)20

3
for0<a<5/6,z€U and n > 2.

Further, since H(a, |z|,n) is decreasing in |z| and increasing in n, we obtain
that H(a, |2|,n) > H(1,|z|,n) > H(1,3/4,2) =0for 0 € a £ 1, |2| < 3/4 and
n 2> 2. Thus max,en 13 G(a, A, B, |2|,n) is attained at n = 2.

Finally, since the functions f,(z) (n > 2) defined in Theorem 6 are extreme
points of the class L% (), 8), we can see that the bounds of Theorem 7 are attained
by the function f2(z), that is

1-7 2
1= AA)(1—a)

COROLLARY 3. Let the function f(z) defined by (1.2) be in the class L% (X, B),
0<a<5/6,0< A<l and0< B < 1. Then f(z) is included in the disc with the

(1=A8)(1-a)
THEOREM 8. If the function f(z) defined by (1.2) is in the class L% (A, [3),
0<A<1,0<08<1, and either 0 < a < 1/2 or |z| <1/2, then

]-_ﬂ ! l_ﬂ
Ao A SVEISIY sa s aT

The bounds are sharp.

center at the origin and radius r given by r =1+ 1

1

|2l.

Proof. It is similar to the proof of Theorem 7. m
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6. Radii of close-to-convexity, starlikeness and convexity

THEOREM 9. L% (A, ) is a subclass of S if and only if 0 < a < 1/2.

Proof. Naote that the function f(z) defined by (1.2) is in the class S if
Yoo snlan] <1 (cf. [11]). Hence it suffices to prove that (1 — A\3)C(a,n) 21—
for0 < a<1/2,0<2<1,0< 8 <1andn > 2 by means of Theorem 1.
Since C(a,n) > C(1/2,n) =1 for 0 < a € 1/2, we can see that, for 0 < a < 1/2,
0<A<land 0K B<1,

(1=AB)C(a,n) = (1=p) 2 (1= AB) = (1=p) 2 0.

Conversely, if we assume o > 1/2, then lim,,_,., C(a,n) = 0. Taking the
function f,(z) given by (4.2), we have

1_5 n—1

A=23)Clan) ° =0

faz)=1-

1-26)C
for zn71 = % which is less than one for n sufficiently large. Thus

fn(2) is not univalent for @ > 1/2 and n = n(«a) sufficiently large. m
By using Theorem 1, we can prove the following
THEOREM 10. Let the function f(z) defined by (1.2) be in the class L% (N, ),

0<a<1/2,0< A< 1and0< B <1. Then f(z) is close-to-convezx of order p
(0< p<1) in|z| < Ry, where

_ _ 1/(n—1)
By g (U= M) ) 02,

The result is sharp, with extremal function f(z) given by (2.3).

THEOREM 11. Let the function f(z) defined by (1.2) be in the class L% (X, 3),
0<a<1/2,0< A< 1and0< B < 1. Then f(z) is starlike of order p (0 < p < 1)
in |z| < Ra, where

(= p)A = 2AB)C(a,m) VY
m =gt SRS (=2

The result is sharp, with extremal function f(z) given by (2.3).

COROLLARY 4. Let the function f(z) defined by (1.2) be in the class L% (X, 3),
0<a<g1/2,0< A< 1and0< B <1. Then f(z) is convez of order p (0K p < 1)
in |z| < Rs, where

(1= p)(A = AB)C(aym) | /"7
(n— )1 P) } (n

The result is sharp, with extremal function f(z) given by (2.3).

R3 = ll’lf{

n

> 2).
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7. Integral operators

THEOREM 12. Let the function f(z) defined by (1.2) be in the class L%(X, 3),
and let d be a real number such that d > —1. Then the function F(z) defined by

d+1 (% 44
o [ et (7.1)

F(z) =

also belongs to the class L%/(A, B).
Proof. From the representation of F(z), it follows that F(z) = z—> 2, b,2™,
where b,, = (4tL)a,,. Therefore

d+n
5 n(1 = A8)C(a,n)bn = 5 a1 = A9)Clasn) (ff%;) an

< X n(l = AB)C(aym)an < 1=,
n=2
since f(z) € L% (A, 8). Hence by Theorem 1, F(z) € L%(A,3). m

THEOREM 13. Let the function F(z) = z—=3 o~ 5 an2™ (an > 0) be in the class
L (N B), and let d be a real number such that d > —1. Then the function f(z)
defined by (7.1) is univalent in |z| < R*, where

. (1= M3)C(a,n)(d + 1) 1/(n—1)
R —12f{ =B } (n>2)

The result is sharp.
Proof. From (7.1) we have

_ ZTUEE(R) d+n n
1(z) = d+1 _E<d+1> e

In order to obtain the required result it suffices to show that |f'(2) — 1] < 1in
|2| < R*. Now

@ =1=]= S (T anet| < S (55T ) anle

Thus |f'(2) — 1] < 1if
i <d+n) an|z|"7 1 < 1. (7.2)

(1-XA3)C(a,n)

But Theorem 1 confirms that Z n an, < 1. Hence (7.2) will be

satisfied if o 1 1\ — g
%'zlnil < i —lé)ﬁ(a,n) (n>2)
or if
(1= 2A9)C(ayn)(d+ 1)/
o< { (1-=p)(d+n) } (n > 2). (7.3)

The required result follows now from (7.3). The result is sharp for the function
1-758)(d
() —se AP+

n(l = AB)C(a,n)(d+1) (n>2). =
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8. Modified Hadamard products

Let the functions f;(2) (j = 1, 2) be defined by (4.1). The modified Hadamard
product of fi(z) and f2(z) is defined by

oo
fl * f2(z) =z—= Z an,lan,2zn-

n=2

THEOREM 14. Let the functions f;j(z) (j = 1,2) defined by (4.1) be in the
class LE(N, B) with0 < a £1/2,0< A< 1and 0 < B < 1. Then fi * fa(2) €
L* (M (e, A, B)) where

1-M)a-p)?
1=A82(1-a) = A(1-B)*

'7(0‘7)‘75) =1- 4

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [10], we
need to find the largest v(a, A, 3) such that
> n(l - My)C(a,n)
> T
n=2 Y
Since 3 n( /\B)C(Oz,n)an,1 <1land 3 n(1 —A8)C(a,n)
n=2 1-— /6 n=2 1- /6
Cauchy- Schwarz inequality we have
& n(l=AB)C(a,n)
n=2
Thus it is sufficient to show that

1_)\ C , 1—)\ C N
n( ].’1)’}’(a n) an,lan,Z < n( l/f),g(a n) m (n > 2)’

Gn,10n,2 < 1.

an2 < 1, by the

\V/ An,10n,2 < 1.

. (1-28)1-7) 1-53
L 7—F n n S
that is that \/an,1an,2 < =) (1=B) Note that y/an, 10n,2 n( = \B)C(an)
(n > 2). Consequently, we need only to prove that
-8 _(1-A)1-7)
n(1=AB)C(a,n) = (1=M)(1-p)

(n 2 2)7

, 1-2)(1-p)2 _
or, equivalently, that v <1 — n(i= )\é)2C(c)u(, ) —ﬂ))\(l — 5 (n > 2). Since
(1-N1-p)?

An)=1-

n(1 — AB)2C(a,n) — A1 — B)2 (8.1)

is an increasing function of n (n > 2), for 0 < o <1/2,0< A <land 0 < < 1,
letting n = 2 in (8.1), we obtain

(1-Na-5)?
(1=A3)2C(a,n) = M1 - B)?”

which completes the proof of Theorem 14.

< =1-
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Finally, by taking the functions f;(z) given by

1-p .
fj(z) =Zz- 4(1 — )\ﬂ)(l — a) 7 (.] = 172)7 (82)

we can see that the result is sharp. m

THEOREM 15. Let the function fi(z) defined by (4.1) be in the class L (), )
with0 L a<1/2,0< A< 1and0< B <1, and the function fo(z) defined by
(4.1) be in the class L* (A7) with0 < a <1/2,0< A< 1and0< 7 < 1. Then
fl * fQ(Z) € LZ()HC(O")‘?ﬁ?T)): where

(1= A)(
(L= AB) (L — A

A —7)
a) = M1-B)(1-1)

1—
C(Oé,)\,ﬁ,T)—]-—él 1_
The result is sharp.

Proof. Proceeding as in the proof of Theorem 14, we get
(1-N1-8)1-1)
n(l —AB)(1 — Ar)C(a,n) — X1 —8)(1 —7)
Since the function B(n) is an increasing function of n (n > 2), for 0 < a < 1/2,
0<A<land 0< 7 <1, letting n =2 in (8.3), we obtain
(1-NA-8)1-1)
(1=A)(1 =M1 -a)=A1-3)1~-1)

which evidently proves Theorem 15.

(<B(n)=1- (n>2). (83)

(<B@)=1-7

Finally, the result is best possible for the functions

= 1-5 2 . 1—71 9
e v T R S e v ey
COROLLARY 4. Let the functions f;j(z) (j = 1,2,3) defined by (4.1) be in the
class Li(X,B8) with 0 < @ <1/2,0< A <1 and 0 B < 1. Then fi * fo* fa(2) €
Li (M n(a, A, B)), where

_ 1-N1-p)°
A B =1 S R8P - af — A= B
The result is best possible for the functions f;(z) =2 1-5 22

(j=1,2,3). IECEPY)ICIY
Proof. From Theorem 14, we have f1 x fa(2) € LE(\, (e, A, 3)). We use now

Theorem 15, and we get f1 * fo * f3(2) € L* (A, n(a, A, 8,7)), where

1-NA-801-7)

41-A3) 1 - )1 —a) = A1 = B)(1 —7)

o (1= X)(1 - p)°

ST 16(1 =B8R (1—a)? = A(1 - )3

This completes the proof of Corollary 4. m

77(04,/\7577) =1-
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THEOREM 16. Let the functions f;j(z) (j = 1,2) defined by (4.1) be in the
class LY (AN, B) with0 < a < 1/2,0< A< 1 and 0 < B < 1. Then the function

h(z)=2— 3 (agm + afw)z”
n=2
belongs to the class L% (X, é(a, X\, B)), where
1-N1-p)?
21 =AB2(1—a) = A1 -8)*
The result is sharp for the functions f;(2) (j = 1,2) defined by (8.2).
Proof. By virtue of Theorem 1, we obtain

i [n(l - )\ﬂ)C(a,n)r a2, < [i n(1—AB)C(a,n) an’lr <1 (8.4)

¢(O[7)\,ﬁ) =1-

n=2 l_ﬂ n=2 1_/3
and
oo 2
Z[ I—Aﬁﬂ(an] nZ\[an—)\ﬁ )ang] <l (8.5)
= n=2

It follows from (8.4) and (8.5) that

I 2
3 % [N(l —I\ﬁ_)g(o"”)] 71 +a7s] <1
n=2

Therefore, we need to find the largest ¢ = ¢(a, A\, §) such that
(1 =29)C(ayn) _ 1 [n(l = AB)C(a,n) 2
1-¢ 2 [ 1-5 ]
2(1-101-8)*
n(1l = AB)2C(a,n) — 2X(1 — )2
2(1 - N1 - p)?
n(1 = AB)2C(a,n) — 2X(1 — )2

is an increasing function of n (n > 2),for 0 < < 1/2,0< A< land 0 < f < 1,
we readily have

(n>2),

that is g <1 — (n > 2). Since

D(n)=1-

1-3a-87
2(1 =282 (1 — o) = A(1 = B)*

and Theorem 15 follows at once. m

6< D) =1-

9. Fractional calculus operators

The object of this section is to obtain several growth and distortion proper-
ties of functions in the class L% (A, 3) involving a family of operators of fractional
calculus (that is, fractional integral and fractional derivative).
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First of all, in terms of Gauss hypergeometric function

i 2 (Bl £
2F1(5,T7%2’)—k§OWH

T'(m+ k)
I(m)

of fractional integral operator I”"" and the fractional derivative operator J§" "
as follows (cf., e.g., [4] and [14], see also [13]).

(z€eU; 6,1,ye€C;v#0,-1,-2,...),

where (m), = denotes the Pochhammer symbol, we recall the definitions

DEFINITION 1. The fractional integral of order p is defined, for a function
f(z), by
z kY

12756 = o [ =0 (et mmms = £) £©de > o)

where f(z) is an analytic function in a simply-connected region of the z-plane
containing the origin, and the multiplicity of (2 — ¢)*~! is removed by requiring
log(z — ¢) to be real when z — ¢ > 0, provided further that

f(z)=0(z]%) (z — 0; ¢ > max{0,v —n} — 1). (9.1)

DEFINITION 2. The fractional derivative of order p is defined, for a function

f(z), by

Tl f(z) =
L i (2= QR v — L= — 1= (¢/2)) () dC)
(1 —p)dz 0 ’ ’ ’

= (O<p<l)
ddnJoZ””’"f( ) (n<p<n+1;n€eN),

where f(z) is constrained, and the multiplicity of (z — {)™#* is removed, as in
Defintion 1, and ¢ is given by the order estimate (9.1).

It follows from Definitions 1 and 2 that

I " f(2) =D f(z) (1> 0) (9.2)

and
Jo2"f(z) =D f(z)  (0<p<1), (9:3)
where D¥f(z) (1 € R) is the fractional calculus operator considered by Owa [3]
and subsequently by Owa and Srivastava [5] and in many other works (cf., e.g., [12]

and [13]). Furthermore, in terms of Gamma functions Definitions 1 and 2 readily
yield

LEMMA 1. (cf. Srivastava et al. [14]) The (generalized) fractional integral and
the (generalized) fractional derivative of a power function are given by
T(p+1)T(p—v+n+1)
T(p—v+(p+p+n+1)

e = 2277 (u>0; p>max{0,v —n} — 1)

(9.4)
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and

T — Clp+Dl(p—v+n+1)

2’7V (0 u<1; p>max{0,v—n}—1).
0,z Tp— v+ —ptnt D) O<p p { nt—1)

(9.5)

THEOREM 17. Let the function f(z) defined by (1.2) be in the class L% (X, B),
with0 < a<1/2,0<A<1and0< B <1. Then

I'2-—v+n) 12! u{l_ 1-B)2-v+n) |z|}
T2—-v)[(2+p+mn) 22-v)2+p+n)1 =201 - a)
<" f(2)] <

r2-v+n) Ml”{1+ 1-BR2-v+mn) M}
F2-v)I'(2+p+n) 22-v)2+p+n)(1-A3)(1—-a) 9.6)
(z € Up; p >0, max{v,v —n,—p—n} < 2; v(u+n) < 3u), and

I'2-v+n) 1-v 1-B)2-v+n)

e e [ LR e i

< e f(2)]

I'2-v+n) |z|1—u{1+ (1-B)2-v+n) |Z|}
F2-v)I'(2-p+n) 22-v)2—p+n)(1-238)(1—-a) 9.7)

(2 € Up;0 < p < Lmax{v,v —n,p —n} < Zv(p—mn) > 3u), where

N

N

Uy = { % (<), Each of these results is sharp for the function f(z)
Tl >0 Y
given by 1_p
f(z)=2- 00 —a) 22, (9.8)

Proof. First of all, since the function f(z) defined by (1.2) is in the class
LE(MB),0<a<1/2,0< A< 1and 0 < B < 1, we can apply Theorem 1 to
deduce that

1-p

an < . 9.9
5 S -0 (%)
Next, making use of the assertion 9.4 of Lemma 1, we find from (1.2) that
T2-v)I2+p+n) S
= PIT() = 2= Y B(n)anz", 1
F() == i) f)=2= X dma,n, (010)
where, for convenience,
1)n(2 — n—
S(n)= — D@ vEDn-r Ny, (9.11)

(2= V)n—1(2+ B+ N)n-1
The function ®(n) defined by (9.11) can easily be seen to be nonincreasing under
the parametric constraints stated already after (9.6), and thus we have
202—v+n)
n € N\ {1}). 9.12
oG mENA(). (012)
Now the assertion (9.6) of the theorem follows readily from (9.9), (9.10) and (9.12).

0< ®(n) < B(2) =
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The assertion (9.7) of the theorem can be proven similarly by noting from (9.5)
that
F2 -2 = p+n)

G(2) = r2-v+n)

z"Jéf’;’"f(@ =z — n§2 \I!(n)anzn,
where
_ . (Wa=vtn)a __2@-vtn)
R % Y ¢ ST Wl S s

(n € N\ {1}) under the parametric constraints stated already after (9.7).

Finally, by observing that the equalities in each of the assertions (9.6) and
(9.7) are attained by the function f(z) given by (9.8), we complete the proof of the
theorem. m

In view of the relationships (9.2) and (9.3), by setting v = —p and v = p in
our assertions (9.6) and (9.7), respectively, we obtain

COROLLARY 5. Let the function f(z) defined by (1.2) be in the class L% (X, 3),
0<a<1/2,0<A<1land0<< B<1. Then

|| tHH {1_ 1-4

re+m ' " 20+ w9 -
o+ 18

<r<2+u>{1 2@+ (I \P

o} <171l <

10— o) |z|} (z€eU; p>0) (9.13)

and
I P 1-5 )
o '~ T e ) <12 <
2]+ 1-8 '
<t (A= M} CeUio<u<h. o1

Each of these results is sharp for the function f(z) given by (9.8).

The assertions (9.13) and (9.14) of Corollary 5 can indeed be applied further in
order to deduce the following interesting results for functions in the class L (A, 3).

COROLLARY 6. Under the hypotheses of Corollary 5, D7#f(z) (u > 0) is
included in the disc with its center at the origin and radius 1 given by

1 1-8
@+ ) {” 52+ WA= M) —a>}'

T =

COROLLARY 7. Under the hypotheses of Corollary 5, D¥f(z) (0 < p < 1) is
included in the disc with its center at the origin and radius T2 given by

1 1-8
@ p) {” 22— WA —a>}'

To =
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