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SUFFICIENT CONDITIONS FOR ELLIPTIC PROBLEM
OF OPTIMAL CONTROL IN R*, WHERE n > 2

S. Lahrech and A. Addou

Abstract. This paper is concerned with the local minimization problem for a variety of non
Frechet-differentiable Gateaux functional J(f) = fQ v(z,u, f)dz in the Sobolev space (W, *(Q),

|l ||»), where u is the solution of the Dirichlet problem for a linear uniformly elliptic operator with
nonhomogenous term f and || - ||, is the norm generated by the metric space L?(Q), (p > 1). We
use a recent extension of Frechet-differentiability (approach of Taylor mappings, see [5]), and we
give various assumptions on v to guarantee a critical point to be a strict local minimum. Finally,
we give an example of a control problem where classical Frechet differentiability cannot be used
and their approach of Taylor mappings works.

1. Preliminaries

1.1. Description of the optimization problem
Let A be an elliptic operator of second order
Au= Y (=1)!'DYas(z)Du),
[1<1,]s/<1

where a;s(x) € D(Q). Suppose that @ is a sufficiently smooth and bounded domain
inR"™. Let us consider the problem

Au = f,
u/aQZO. (1.2)

—~~
—
—

~—

For this problem, let us state Agmon’s-Douglis-Niremberg’s theorem.

THEOREM 1.1. If1 < q < oo, then we have that Vf € Li(Q), there exists a
unique solution u € W29(Q)NWy%(Q) of problem (1.1), (1.2). Moreover, ¥m >0
if f e Wm™YQ), then u € Wm+2’q(Q) and ”U”Wm+2,q(Q) < C”f”wm.q(Q).

Let f € F C Wy(Q) be a control and let u be the solution of problem
(1.1), (1.2) in Wy (Q) N W22(Q) associated to f. Let us consider Jy(f) =
fQ vk(x,u, f) d.’L’ + Ck”f”%/vlﬂ(Q)v (k = 07 1727 .- '731) a‘nd Jk(f) = fQ ’Uk(ﬂ),u, f) d.’L’,
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(k=s1+1,81+2,...,81 +52), where the sequence of functions v: QX RxR — R
is measurable on @ x R x R and has second derivative with respect to (u, f) on
R x R for almost all x € Q.

We consider three problems of minimizing the functional Jo(f):

1) Jo(f) — min, (1.3)
i) Jo(f) — min, J(f) =0, where J = (Jo 41,5 o1 455 )5 .
191) Jo(f) — min, J(f) =0, Je(f) <0, (k=1,2,...,51). (1.5)

We must choose a control f° in order that the solution u° of the problem (1.1),
(1.2) with f = fO© satisfies the inequality type Ji(f) < 0, (1 < k < s1) and the
equality type Ji(f) =0, (s1 + 1 < k < 81 + s2) and the functional Jy(f) takes the
minimum value. This control f° will be called optimal.

1.2. Taylor mappings and lower semi-Taylor mappings
Let || - [lw12(g) be the usual norm in W,2(Q), F a subset of Wy (Q), 7

a topology in F, Y a normed space, and || - ||y the norm in Y. According to
[5], a mapping r: F — Y (respectively, r: F' — R) is said to be infinitesimally
(1,1l - llw1.2(@) )-small (respectively, infinitesimally lower (7, | - ||w1.2(0))-semismall)

of order p; at f € F if: Ve >0, 3 05 € 7, Yh € W,"*(Q) we have
f+heOp = |Ir(f +h)lly <ellhllfs(q)

(respectively Ve > 0, 30; € 7, Yh € Wy*(Q) we have
f+heOr = r(f+h)2—cllhllq));

here and below, Oy is a neighborhood of f in (F, 7).

A mapping J: F' — Y (respectively, J: F' — R) is called a (7, || - [lw1.2(q))-
Taylor (respectively, lower (7, || - [|w1.2(q))-semi-Taylor) mapping of order p; at
f € F if there exist k linear symmetric (not necessarily continuous) mappings
T®(f): (W (@Q))F = Y (respectively, O (f): (W2 (Q)F = R), k=1,...,pi,
such that

J(f+h) = J(f) =
= JONh+ 27 IO () (b h) + -+ () TP () (B, k) +0(F + B,
where r: F' — Y (respectively, r: F' — R) is an infinitesimally (7, ||-[|w1.2(g))-small

(respectively, infinitesimally lower (7, ]| - ||w1.2())-semismall) mapping of order p;
at f € F.

We note that J(f),..., J®)(f) are not in general single-valued. The set of
tuples (JM(f),..., J®I(f)) is denoted by S, (J, f).

Let us solve the problems (1.3), (1.4) and (1.5).
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For the problem (1.5) let us introduce the Lagrange functions:

LU AN0) = 35 M) + 7 T(F)), (16)
£AFy AN = S ATD )+ IO, (1.7)
Lor(h" A 00) = 3 TP+, T, (1.8)

where \g € R, y* € (R*)", A € (R™)".

Similarly, for the problem (1.4), let us introduce the Lagrange functions:

LU 5% h0) = Moo (f) + (w7, T(£)), (1.9)
Li(f,9%,2) = XISV () + (*, TV () (1.10)
Lsr (0% 20) = M) + (%, T (F)), (1.11)

where \g € R, y* € (R*?)".

Let us give the following lemma where the proof can be traced back to [5].

LEMMA 1.1. Let (Q,X, 1) be a measure space with o-finite measure, and let X
be a complete linear metric space continuously imbedded in the metric space M(Q)
of equivalence classes of measurable almost everywhere finite functions x: Q@ — R,
with the metrizable topology T(meas) of convergence in measure on each set of
o-finite measure.

Suppose that X contains with each element x(s) the function |x(s)|, the metric
in X is translation-invariant, and p(z,0) = p(|z|,0) for each x € X. Then for each
sequence x, — 0 in X there exist a subsequence x,, and an element z € X such
that: |zn, (s)| < 2(s), k = 1,2,... in the sense of the natural order on classes of
functions.

2. Sufficient conditions of local minimum for Gateaux functional
of second order Dirichlet problem

Suppose that @ is a sufficiently smooth and bounded domain in R"™, where
n > 2. Let F be a subset of W,"*(Q). Let G be the functional defined on F by
G(f)= fQ v(z,u(z), f(x)) dx, where u(x) is the solution of problem (1.1), (1.2) in
W3 2(Q)NW22(Q) and the function v: @ x Rx R — R is measurable on Q x Rx R
and has second derivative with respect to (u, f) on R x R for almost all z € Q.

Suppose also that v, vff), vﬁ) are continuous in Q X R x R.

Let 7, be the topology generated by the metric space L?(Q), where p > 1. In
the rest of this section a = const.
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THEOREM 2.1. Suppose that the following conditions are added to the condi-
tions of paragraph (1) and (2):
oz, u, /)l <aju]” +1f]") + bo(2),
o0 (@, u, )l + [0 (2,0, A < alul = + [£17) + by (),
o (. )|+ 21007 (@ u, )]+ o (@, £ < alful ™+ 1) + baa),

where v = 225, by(z) € LY(Q), bi(z) € L¥2(Q), ba(2) € LE(Q), and 1 <

p < % Then G is a (7p, ||-llw1.2(q))-Taylor mapping of second order at each

point f € F. Moreover,1 G (f) € B(Wy2(Q), ] - lwi2(q)), R) and GY(f) €

LW (@)1 llwr2(@)) R)-
Proof. Let us prove first that the functional G is finite. We have

Gf>|=\/Qv<x,u,f>dx s/Qw(x,u,fndx

a(/ lu(z)|” dx+/Q|f(a:)|” da:) +/Qb0(a:)da:

< a([lu(@)|70 ) + 1f (@) 20 (@) + Ibo()]l 21 (@)
< a1 ([lu@) ey + 1 F @) iracgy) + 1bo(2)ll (@) < oo
Thus the functional G is finite.
Let R: Wol‘Q(Q) — W(}‘Q(Q), where (R(h))(x) is a solution of the problem

Au = h, (2.1)
u/aq = 0. (2.2)
Such a solution exists Yh € W,*(Q).
Let G (f) and G (f) be defined by:

GO (f)h = }I\EI}J ATHG(f + Ah) = G(f))

IA

A—0

— im A ! / [v(x,u + AR(R), f + Ah) — v(z,u, f)] de
Q

= lim A~ / 0@, u + AR(R), f + Ah) — o(z, u, f + AR)

A—0
+v(z,u, f + Ah) —v(z,u, f)] dx

— lim / [ / (@, u+ OAR(R), | + Ah)R(h) df

A—0
+/ v; (z,u, f + pAh)hdp| dx
0

= lim [/l[vg)(x, u+ OAR(h), f + Ah) — oV (z,u, f)]R(h) do
0

A—0 Q
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1 1
+ [ o0 RO+ [0 @ f o+ pMh) =0l @, )y
0
+h/ (z,u, f) dp] dx

:/Qv(l(xuf dx+/hv (,u, f)d

and
GO (f)(h1, ho) = Jim ATHGD(S + Mho) = GO ()]
= lim A\ ! [/ [0 (2, u + AR(hs), f + Ah2) — v{P (z,u, f)] R(h1) do
Q

A—0

+ / [0 (2, u + AR(ha), f + Ah2) — v (@, 4, £)] by da
Q

A—0

= lim A™! [/Q [0) (2, u + AR(hs), f + Mha) — v (2,4, f + Aho)
+ o (@, u, f + Aho) — o) (2, u, £)|R(h1) do
+ /Q [0 (@, u+ AR(ha), f + Ah2) — 0{ (2,4, f + Ahy)
+ v&l)(x,u, f+ Ah2) — v&l)(x,u, ]k dz
= lim A1 [/Q [/01 v (@, u + OAR(h2), f + Mh2)AR(hs) d6
+/0 o2 (2,u, f + pAha)Aha dp] R(hy) do
+ /Q [/0 o) (@, u+ OAR(hs), f + \ha)AR(h) d
+/0 o2 (@, u, f + pAR2) A dp] hldx]
- /Qvgz(x,u,f)zz( DR(hy) d + /Qv(f)(x u, )R (k1 ha da
+ /Qvﬁ)(a:,u,f)hl (ha) dz +/va (z,u, f)h1hs dz.
Therefore GV (f) = fQ v (z,u, fYR(h) dz + fQ vgcl)(x,u,f)h dx and

GO (f)(hy, ha) = /Q 0@ (@ u, f)R(h1)R(ho) di + /Q o@ (@, 4, f)R(ha)hs da

—|—/ vgcu)(ac,u,f)th(hg)dx—l-/ v;?(x,u,f)hthdx.
Q Q
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The linearity and bilinearity of G (f) and G*)(f) are obvious. Let us prove now
that they are bounded.

We have
GO (f)h| S/ Ivil)(m,u,f)R(h)ldH/ Ivle)(w,u,f)mdx
Q Q

< [ |elu@r " 4151 + @)l (R + 0] o
Q

n+2 n+2

< [o[ [t dx] "l / (|f<x>|“)f$'2dx]

n—2

e o] [ o ] = [ a]

- [a(num)nZT?fQ) @) + i) 2—7»2(@)] x

X IR 2z ) + I 2,

"3 (Q) 2 (Q)]

< o |lu@) 1 i) + 1 @I Frngy + I @I 2, (Q)] x

< IR ooy + ||h||Ww<Q>]-
Thus 3 ¢y > 0 such that

GV (N < 2 (IR lwr2(@) + IBllwrzq))-

On the other hand, R(h) depends continually on h, thus |G (£)h| < cs||h|lw2(q),
where ¢ > 0. Consequently, GV (f) € L(W,*(Q), lI-llw12(q)) R).

Let us prove now that G(*)(f) is also bounded. We have

G (f) (I, )] < / 2o IRORO) d + [ [0 (@0, )R] do
Q
+ [ p? hiR(ho)|dz + [ [v%2 (2, u, f)hiha|d
/Q|vfu<xuf>1 (he)| do /|v (2,4, f)hihs| da
< [ 1o f)R ()Rl
Q
/Q 2005 (@, 1w, £ [[R(A)||ha| + [R(ha)|[ha [] do + / 07 (@, u, f)haha| da

< [ 1@ u Pl + 208w £ + o (@0, D]
Q
x [|R(h1)R(h2)| + |R(h1)he| + [ R(h)| + |hihol] do

< [ fa(w® +100%) + @]
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x [|[R(h1)R(h2)| + |R(h1)ho| + |hiR(h2)| + |hihel|] dz

< [a[/Q(m(x)ﬂ’)?dxr+a[/Q(|f(x>|i”)’5dxr+ [/Q\m(a:)l%dw]i]

X H/QGR(}LI)”R(MNWM] * [/Q (|R(h1)||h2|)"+2dx];

n—2

o | [ (i as] 7]

+ [/ (|h1||R<h2>|)"-2dw]
RGN 2o+ IRGD] 2n, o]

R(h
[” (ha)ll 7225 g L777(Q) L727(Q)

¥ ||h1||m(Q)||R(h2>uLn si@) Wil gl " o)

x [alllu(@) | 5y + 1F @) frigy) + 12l 2 g

< [”R(hl)”Wm(Q)”R(h2)”W1‘2(Q) + IR(h) w2 lh2llwr2(@)

n

L7 "7(Q)

+ [hallwrz @) IR (h2) lwr2 () + ”hl”Wl’z(Q)||h2||W1-2(Q)]
< asllhallwrz (@) llh2llwrz(q)-

Thus G(f) € B(W*(Q), | - lwr2(@)), R).

Let us prove now that G is a (7p, ||.||w1.2())-Taylor mapping, where 7, is the
topology generated by LP(Q).

Let f € F and let us prove that r(h) = G(f + h) — G(f) — GO (f)h —
271GA)(f)(h, h) is infinitesimally (7, ||.||w.2(g))-small of second order at zero.
Assume the contrary. Then 3(hm)men € F and € > 0 such that A, — 0 in LP(Q)
and r(h.,) > gllhmH%/VL?(Q)'

Using the Agmon’s-Douglis-Niremberg’s theorem, we obtain R(h,) — 0
in L?(Q) and using Lemma 1.1, we deduce that 3Z(z) € LP(Q) such that
|(R(hm))(2)| < Z().

Let Zo(x) = Z(2) + |u(x)], then |u(x)| + |(R(hn))(@)| < Zo(x), where Zy(z) €

L?(Q). Analogously for f € W2(Q), we obtain |f(x)| + |hm| < Z1, where Z; €
LP(Q). We have

) = [ [otz,ut RO, £+ 1) = o(ou. 1) = oo u AR = o} (o, b
Q
= 27 [o@ (x, u, )RX(h) + 201 (@, u, fYR(R)h + o) (@, u, )] da.
Indeed,

v(z,u + R(h), f+ h) —v(z,u, f)
=v(z,u+ R(h), f +h) —v(z,u, f + h) +v(z,u, f+h) —v(z,u, f)
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=/lvf})(x,u+0R(h),f+h)R(h)d9+/ oM (@, u, f + Ah)hdA
0 0
= /1 R(h)[v{ (z,u + OR(R), f + h) — v (2, u + OR(R), f)
0
+ ol (z,u + OR(h), f)] d0 + / o (@, u, £+ Mh)hdA
0
:/IR(h)ng(x,u+9R(h),f)d9+/ oM (@, u, £+ Ah)hdA
° 1 1 (2) °
OR(h AR)RR(R) d) d.
+/ /0 o@ (&, u + OR(R), f + NO)AR(h)
So,
h) = / / 1 [0 (2, u+ 6R(h), f + R)R(R) — v (, u, fR(R)
L) (z,u, f)R?(R)| db dz:

+ / / [0 (@, u, £+ AR)h — o1 (@, u, )b — 27208 (2, u, £)B?] dA dx
// v (@, u, f)R(h)hd dz
+/Q/O / v (@, u + OR(h), f + Ab)hR(h) dX df dx
- /Q /0 o0y OR(M), ) — o0 (@, £) — 271 (02 (@, 0, )R] B(h) db do
+/ /1[ W@, u, £+ ) =0 (@,u, £) — 2700 (2,4, £)R]hdX da
// o) (@, u, f)R(h)hd dz
+/Q/O /0 v (@,u+ OR(h), f + Ah)hR(h) dA df da.

Let A,,, B, be two functions defined by:

u

( )
A (06) — (z,u+OR(h m~) )) — v (@,u, f) — 00 (z,u, f), R(hm) %0,
0,
v;l)(a:,u,f + M) — v; )(xju,f)
B,.(z,A) = B

0,

~ M (@, f), R #0
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Let F,, be defined by F,(z,6, ) = v(f)(a: w(2)+0R(hm), f+)\l~zm)—v£2f) (z,u(x), f).

So,
1 N 1 .
r(hm)|:‘ / / A (2,0)R2 () d6 dex + / / Bon (2, N2, d\ dz
Qo

/// (2,0, N R(n ), dX d6 daz| .

< [ [ ntemti|asans [ [ oo s
T [ ene
<[l of [ frirne)”
el ()T
I T
=[] 14t dm] IR 2oy
L1 |Bm(x,A>|3dx]5dA||ﬁm||jf_nQ o
(s (pae)
<af [ 14tz dx] 48 1) sy
relbolivoe [ [ ][ |Fm<x,e,x>|’édx]%d0dA
Al [ ]

[ [1frteant o] o]

Let us remark that A,,(z,0), Bn(z,A), Fr(z,0,\) — 0 almost everywhere.

Thus

2
]da
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On the other hand, using the mean value theorem, we deduce that there exists
a sequence k,,(z) such that 0 < k,,,(z) <1 and

| Am(2,0)|F = [[v2) (@, u(2) + k() O[R(hm)](), f) = v2) (2, u(z), £)]6] *
< [[v2 (@, u(@) + km(2) 8 [R(hm)](2), )] + [vE) (2, u(@), )] F
< [a(ju(@) + kn (@)BIR(R )1( )=+ [£(@)] %) + ba(a)]
+a(ju(@)|* +[f@)]7) + |ba(2)]
< [a[(ju(= >|+\R< m)(@ >|>% | F@)*]
alfu(@)|® + @) *] + 2/ba()]] ¥
< [2a(| Zo(@)| ¥ + |f(x>|7”>+2|b2<x>|]% € LY(Q).
Analogously, for By, we deduce that there exists Sy, (x): 0 < Sp(z) <1 and
|Bun (2, NI F = [08)(2, u(@), (@) + Enm) — 01 (@, ule), f(@)A|*
< [a(lu(= >|2% +1f(@ >+smAh %) + [ba(2)]
+a(fu(@)| ¥ + [f(@)| %) + |ba(a)]]
< [2a(lu(@)| ¥ +2Z:(2)]%) +2/b(2)]] * € L1(Q).
Analogously, for F,, we obtain
| (2,0, V)| = [0 (2, u(z) + 0R(Rm), £ + M, )= o2 (@, u(@), )| *
< [a(ju(@) + 8R(hm)| ™ + |f + Nom| ™
+u(@)|F + [ £(@)] 7)) + 2lba(2)]] *
< [2a(1Zo(@)|* + | Z1 ()| %) + 2|ba(2)]] * € LH(Q).

Let us remark that A,,(x,6) — 0, B,.(z,A\) — 0, F,,(x,0,\) — 0 almost every-
where. Thus, using the dominated convergence theorem, we conclude that

1 2
/[/ |Am(x,0)|gdx] do — 0,
0 Q
1 z
/[/ |Bm(x7)\)|%dx] d\ — 0,
0 Q
1,1 ; 2
//U |Fm(a:,9,)\)|2da:] drd6 — 0,
o Jo Q

but this contradicts (2.3). m

)
)0

n
2

THEOREM 2.2. Let the following condition be added to the conditions of The-
orem 2.1:

[0 @, )]+ 10 @y, P < allulF + 1£1%) + b (@),
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Then the functional G is a (Tp, ||-|lw1.2(q)) - Taylor mapping of first and second order
at each point f € F.

Proof. We must estimate r(h) = G(f + h) — G(f) — G (f)h as in the proof
of Theorem 2.1, representing r(h,,) in the form:

r(hm):/QAm(x)R(ﬁm)dx+/QBm(x)ﬁm dz,

where
v(2, 4+ R(hm), f + b)) — (2,0, f + ) (1) B

Ap(2) = R(h) v’ (@,u, f), B(hm) #0,
0, R(ilm) =0,
v(w,u,f +7Lm) - v(w,u, ) () -

Bp(z) = P vy (@,u, f), hm #0,

0, hm = 0,
while h,, is the same as in the proof of Theorem 2.1. These estimates are omitted. m
Now let us give sufficient conditions of optimality for the problems (1.3), (1.4)
and (1.5).

THEOREM 2.3. Suppose that in the problem (1.4), vy satisfies the conditions
of Theorems 2.1 and 2.2. Then the functionals

Jk(f)E/ka(xvuvf)dx 7(k:31+17~~-731+52)

are (Tp, || - [lw1.2())- Taylor mappings of first and second order at each point f € F
and Ji(f) = [ ve(@,u, f) dz + cill flf12(q) (K =0,...,51) are lower

(Tps I lw.2(@))-semi- Taylor mappings of first and second order at each point f € F.
Consequently, EIJ,EI)(f) and EIJ,gz)(f), (k=0,...,81+ 82).

Let us suppose also that J(f) = 0, 37* € (R**)*, Ja > 0 Ef(f,y’f",l) =0
and Yh € kerJO(f) Lss(f, 7% 1)(h,h) > 2al|hlf}y1z(qy, where Li(f,5*,1) and
Lff(f, 7*,1) are given by formulas (1.10), (1.11). Then [ is a strict Tp-local min-
imum point.

Proof. All conditions of Theorem 1.5 in [5] are satisfied, so Fis a strict Tp-local
minimum point. m

THEOREM 2.4. Suppose that in the problem (1.5), vy satisfies the conditions
of Theorems 2.1 and 2.2. Then the functionals

MﬁEmemﬁM,%=a+hwa+m

are (Tp, || - llwr.2(q))-Taylor mappings of first and second order at each point
f € F and Ju(f) = vak(x,u,f)dar—i—ck||f||%,V1_2(Q), (k =0,...,81) are lower
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(Tp, I lw1.2(@)) -semi- Taylor mappings of first and second order at each point f € F.
Consequently, HJlgl)(f) and 3J,§2)(f), (k=0,...,81 + 83).

Let us suppose also that f € F, J(f) = 0, Jk(f) =0, (k=0,...,%1).
Let us put L = {h € WF*(Q)/JV(PHh = 0,k = L.ooys1, JO(Hh = 0.
Suppose that IX € (R°Y)*, Ig* € (RSZA)*, Iy >0, 3N > 0, (k = 1,..,81):
Ly(f,75M1) = 0 and Yh € L Lgs(f,7°, 0 1)(~h) > 29[[hl[51.00g, where
Li(f,7%,M1) and Lsp(f, 7", A1) are defined by formulas 1.7 and 1.8. Then f

is a strict T,-local minimum point.

Proof. All conditions of Theorem 1.6 in [5] are satisfied, so fis a strict Tp-local
minimum point. ®

THEOREM 2.5. Suppose that in the problem 1.3, vy satisfies the conditions of
Theorems 2.1 and 2.2. Then the functionals

Jk(f)s/ka(m,f)dx, (k= s141,...,50 4+ 82)

are (7p, || - llwr.2(@))-Taylor mappings of first and second order at each point
f € F and Jp(f) = vak(x,u,f)dx—l— ck||f||%V1‘Z(Q), (k =0,...,81) are lower
(7p, I llw.2(@))-semi- Taylor mappings of first and second order at each point f € F.
Consequently, EIJ,gl)(f) and 3],&2)(]“), (k=0,...,81 + 82).

Let us suppose also that Jél)(f) =0 and Ja > 0, Vh € W, %(Q) Jéz)(f)(h, h) >
2a||h||%,v1,2(Q). Then f is a strict T,-local minimum point.

Proof. All conditions of Theorem 1.4 in [5] are satisfied, so Fis a strict Tp-local
minimum point. m

REMARK 2.1. Let us remark that in Theorems 2.1 and 2.2, the increase
conditions satisfied by v are not sufficient to certify the Frechet differentiability of
functional G : (Wy*(Q), || - lzr(@)) — R**.

Indeed, suppose we have n = 3 and % <p<1. Let usdefinev: QxRxR — R
by: v(z,u, f) = a[|ul? +|f]3] + |bo(z)|, where by(z) € C(Q),a € R,a > 0.

Let d,, — +00 and put a,, = |dm|%, SO am — 400 and Vo € Q Yu € R
Ym e N

[0(, s din)| 2 aldin|* = aldm|*|d]* 2 aldin | [dm]? = a0m|dm?.
Let f € W01’2(Q). By the countable additivity of Lebesgue measure, 3¢ > 0 3Q' C
Q: u(@) >0 and p(@,0Q) > 0 and Va € Q' |f(2)) < c.
In this case put: D = max{|v(z,u, f)|/|u| < ¢,|f| < ¢,v € Q} < co. Let us

choose @, C Q' such that u(Qum) = |dm| Pam’. Let hm defined by:

~ dm — f(z), when z € Qn,

hom(z) =

0, when 2z € Q \ Qm.
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We have:
1B (@) 22(Q) < Nldmllzo(@u) + 1F (@) L2 (Qum)
o (@) + (@) < ™ +c(u(@nm))?

Consequently, ||ilm(x)||Lp(Q) — 0, i.e., bm(z) — 0 in LP(Q).
On the other hand, we have

IG(f + hm) — G(f)| =
\ / R(f + hm)](@), (@) + him(2)) — v(@, [R(F)](2), f(2))] dw

‘/ z, [R(f + hm))(2), d) da

m

- \ [ e R, f@) da
> a0 |dm|P — Du(Qm) = aai — +00.

Therefore, |G(f + hm) — G(f)| — +00. Thus G is not Frechet differentiable at each
point f € W01’2(Q). [
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