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A MAPPING THEOREM ON ℵ-SPACES

Zhaowen Li

Abstract. In this paper we give a mapping theorems on ℵ-spaces by means of strong
compact-covering mappings and σ-mappings. As an application, we get characterizations of quo-
tient (pseudo-open) σ-images of metric spaces.

ℵ-spaces form one class of generalized metric spaces, and play an important
role in metrization theory. The concept of σ-mappings was introduced by S.Lin in
[5], and by using it, σ-spaces are characterized as σ-images of metric spaces. In
[17], g-metrizable spaces are characterized as weak-open σ images of metric spaces.
The purpose of this paper is to establish the relationships between metric spaces
and ℵ-spaces by means of strong compact-covering mappings and σ-mappings, and
get characterizations of quotient (pseudo-open) σ-images of metric spaces.

In this paper all spaces are regular and T1, all mappings are continuous and
surjective. N denotes the set of natural numbers, ω denotes N∪{0}. For a collection
P of subsets of a space X and a mapping f : X → Y , denote f(P) = {f(P ) : P ∈
P}. For two families A and B of subsets of X, denote A∧B = {A∩B : A ∈ A and
B ∈ B}.

Definition 1. Let P be a cover of a space X.
(1) P is a k-network for X [9] if for each compact subset K of X and its

open neighborhood V , there exists a finite subcollection P ′ of P such that K ⊂
∪P ′ ⊂ V .

(2) P is called a cs-network for X if for each x ∈ X, its open neighborhood
V and a sequence {xn} converging to x, there exists P ∈ P such that {xn : n ≥
m} ∪ {x} ⊂ P ⊂ V for some m ∈ N .

(3) P is called a cs∗-network for X if for each x ∈ X, its open neighborhood V
and a sequence {xn} converging to x, there exist P ∈ P and a subsequence {xnk

}
of {xn} such that {xnk

: k ∈ N} ∪ {x} ⊂ P ⊂ V .
A space X is called an ℵ-space if X has a σ-locally finite k-network.
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Definition 2. Let f : X → Y be a mapping.
(1) f is called a σ-mapping [5] if there exists a base B for X such that f(B) is

a σ-locally finite collection of subsets of Y .
(2) f is called a strong sequence-covering mapping [15] if each convergent

sequence (including its limit point) of Y is the image of some convergent sequence
(including its limit point) of X.

(3) f is called a sequence-covering mapping [10] if each convergent sequence
(including its limit point) of Y is the image of some compact subset of X.

(4) f is a sequentially-quotient mapping [11] (resp. subsequence-covering map-
ping [8]) if, whenever K is a convergent sequence (including its limit) in Y , then
there is a convergent sequence L (including its limit) in X (resp. compact subset L
of X) such that f(L) is a subsequence of K.

(5) f is a compact-covering mapping if each compact subset of Y is the image
of some compact subset of X.

(6) f is a strong compact-covering mapping [6] if it is both strong sequence-
covering and compact-covering.

Theorem 3. The following are equivalent for a space X:
(1) X is an ℵ-space;
(2) X is a strong compact-covering σ-image of a metric space;
(3) X is a strong sequence-covering σ-image of a metric space;
(4) X is a sequence-covering σ-image of a metric space;
(5) X is a subsequence-covering σ-image of a metric space;
(6) X is a sequentially-quotient σ-image of a metric space;
(7) X is a compact-covering σ-image of a metric space.

Proof. (1) =⇒ (2). Suppose X is an ℵ-space. Then X has a σ-locally finite
cs-network by Theorem 4 in [4]. Let P =

⋃{Pi : i ∈ N} be a σ-locally finite
cs-network for X, where each Pi = {Pα : α ∈ Ai} is a locally finite collection of
subsets of X which is closed under finite intersections and X ∈ Pi ⊂ Pi+1. For
each i ∈ N , endow Ai with the discrete topology; then Ai is a metric space. Put

M =
{

α = (αi) ∈
∏
i∈N

Ai : {Pαi
: i ∈ N} ⊂ P

forms a network at some point x(α) ∈ X

}
,

and endow M with the subspace topology induced from the usual product topology
of the collection {Ai : i ∈ N} of metric spaces. Then M is a metric space. Since
X is Hausdorff, x(α) is unique in X for each α ∈ M . We define f : M → X
by f(α) = x(α) for each α ∈ M . Since P is a σ-locally finite cs-network for X,
f is surjective. For each α = (αi) ∈ M , f(α) = x(α). Suppose V is an open
neighborhood of x(α) in X; there exists n ∈ N such that x(α) ∈ Pαn

⊂ V . Set
W = {c ∈ M : the n-th coordinate of c is αn}; then W is an open neighborhood of
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α in M , and f(W ) ⊂ Pαn
⊂ V . Hence f is continuous. We will show that f is a

strong compact-covering σ-mapping.
(i) f is a σ-mapping.
For each n ∈ N and αn ∈ An, put
V (α1, . . . , αn) = {β ∈ M : for each i ≤ n, the i-th coordinate of β is αi}.

Let B = {V (α1, . . . , αn) : αi ∈ Ai(i ≤ n) and n ∈ N}. Then B is a base for M .
To prove f is a σ-mapping, we only need to check that f(V (α1, . . . , αn)) =⋂

i≤n Pαi
for each n ∈ N and αn ∈ An because f(B) is σ-locally finite in X by this

result.
For each n ∈ N , αn ∈ An and i ≤ n, f(V (α1, . . . , αn)) ⊂ Pαi

, hence
f(V (α1, . . . , αn)) ⊂ ⋂

i≤n Pαi
. On the other hand, for each x ∈ ⋂

i≤n Pαi
, there

is β = (βj) ∈ M such that f(β) = x. For each j ∈ N , Pβj
∈ Pj ⊂ Pj+n, and

thus there is αj+n ∈ Aj+n such that Pαj+n
= Pβj

. Set α = (αj), then α ∈ V
(α1, . . . , αn) and f(α) = x. Thus

⋂
i≤n Pαi

⊂ f(V (α1, . . . , αn)). Hence f(V (α1,
. . . , αn)) =

⋂
i≤n Pαi

. Therefore, f is a σ-mapping.

(ii) f is strong sequence-covering.
For each sequence {xn} converging to x0, we can assume that all x′

ns are
distinct, and that xn �= x0 for each n ∈ N . Set K = {xm : m ∈ ω}. Suppose V is
an open neighborhood of K in X. A subcollection A of Pi is said to have property
F (K,V ) if:

(a) A is finite;
(b) for each P ∈ A, ∅ �= P ∩ K ⊂ P ⊂ V

(c) for each z ∈ K, there exists a unique Pz ∈ A such that z ∈ Pz

(d) if x0 ∈ P ∈ A, then K \ P is finite.
Since P is a σ-locally finite cs-network for X, there are A ⊂ Pi, with F (K,V )

property, and we can assume that {A ⊂Pi : A has the property F (K,X)} = {Aij :
j ∈ N}.

For each n ∈ N , put
P ′

n =
∧

i,j≤n

Pij ;

then P ′
n ⊂ Pn and P ′

n also has the property F (K,X).
For each i ∈ N , m ∈ ω and xm ∈ K, there is αim ∈ Ai such that xm ∈ Pαim

∈
P ′

i. Let βm = (αim) ∈ ∏
i∈N Ai. It is easy to prove that {Pαim

: i ∈ N} is a network
of xm in X. Then there is a βm ∈ M such that f(βm) = xm for each m ∈ ω. For
each i ∈ N , there is n(i) ∈ N such that αin = αio when n ≥ n(i). Hence the
sequence {αin} converges to αio in Ai. Thus the sequence {βn} converges to β0 in
M . This show that f is strong sequence-covering.

(iii) f is compact-covering.
Since Y has a σ-locally finite cs-network, for each compact subset L of Y , L

has a countable cs-network. So L is metrizable. We can prove that f is compact-
covering by the proof of Theorem 2 in [6].
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(2) =⇒ (3) =⇒ (4) =⇒ (5), (6) =⇒ (5), (2) =⇒ (7) =⇒ (4) are obvious.
(5) =⇒ (6). Suppose X is the image in the metric space M under a

subsequence-covering σ-mapping f . It suffices to show f is sequentially-quotient.
For each convergent sequence {xn} of X with xn → x, set K = {xn : n ∈ N}∪{x}.
Since f is subsequence-covering, there exists a compact subset L of M such that
f(L) is a subsequence of {xn}. Denote this subsequence of {xn} by {xnm

}. For
each m ∈ N , let f(am) = xnm

with am ∈ M . Then {am} is a sequence in compact
metrizable subspace L of M . Thus {am} has a convergent subsequence {ami

} with
ami

→ a. Obviously, f(a) = x. Put S = {ami
: i ∈ N} ∪{a}, then f(S) is a

subsequence of K. This implies that f is sequentially-quotient.
(6) =⇒ (1). Suppose X is the image of a metric space M under a sequentially-

quotient σ-mapping f . Since f is a σ-mapping, there exists a base B for M such
that f(B) is a σ-locally finite collection of subsets of X. Since sequentially-quotient
mappings preserve cs∗-networks by Proposition 2.7.3 in [3], f(B) is a σ-locally finite
cs∗-network for X. Hence X is an ℵ-space by [14, Lemma 1.17, Theorem 1.4].

Lemma 4 Suppose f is a quotient mapping from a k-space M onto a space
X. If P is a k-network for M and f(P) is point-countable in X, then f(P) is a
k-network for X.

Proof. Denote F = f(P). Suppose K ⊂ V with K non-empty compact and V
open in X. Put

A = {F ∈ F : F ∩ K �= ∅ and F ⊂ V }.
Then K ⊂ ∪A′ for some finite A′ ⊂ A. Otherwise, for any finite A′ ⊂ A, K \∪A′ �=
∅. For each x ∈ K, put

Ax = {F ∈ F : x ∈ F ⊂ V };
then Ax is countable, and A = ∪{Ax : x ∈ K}. Denote Ax = {Fi(x) : i ∈ N} for
each x ∈ K. Take x1 ∈ K; then there exists a infinite subset D = {xn : n ∈ N}
of K such that for each n, xn+1 ∈ K \ ⋃

i,j≤n Fi(xj). So D has a cluster point by
the compactness of K. Let x be a cluster point of D, and set B = D \ {x}; then
B is not closed in X. Since f is a quotient mapping, f−1(B) is not closed in M .
Since M is a k-space, there exists a compact subset L of M such that f−1(B) ∩ L
is not closed in L. Let g = f |L : L → f(L); then g is a closed mapping, and
g−1(B ∩ f(L)) = f−1(B)∩L. So B ∩ f(L) is not closed in f(L). Hence B ∩ f(L) is
an infinite subset of X, and D ∩ f(L) is such. By K ∩ f(L) �= ∅, H = L∩ f−1(K)
is non-empty compact in M and H ⊂ f−1(K) ⊂ f−1(V ), H ⊂ ∪P ′ ⊂ f−1(V ) for
some finite P ′ ⊂ P. Thus f(H) ⊂ f(∪P ′) ⊂ V . Denote P ′ = {Pm : m ≤ q}. We
can assume that Pm ∩ H �= ∅ for each m ≤ q; then f(Pm) ∈ A. Since

D ∩ f(∪P ′) ⊃ D ∩ f(H) = D ∩ f(L),

D ∩ f(∪P ′) is infinite. Thus f(Pm) includes infinitely many points of D for some
m ≤ q. Take xj ∈ D ∩ f(Pm); then f(Pm) = Fi(xj) for some i ∈ N . However,
there exists n > i, j such that xn ∈ Fi(xj), a contradiction. Hence K ⊂ ∪A′ ⊂ V
for some finite A′ ⊂ A. So F is a k-network for X.
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The following two corollaries can be proved using Theorem 3, Lemma 4 and
[3, Proposition 2.1.16, Theorem 2.7.23].

Corollary 5. The following are equivalent for a space X:
(1) X is a k- and ℵ-space;
(2) X is a strong compact-covering and quotient σ-image of a metric space;
(3) X is a quotient σ-image of a metric space.

Corollary 6. The following are equivalent for a space X:
(1) X is a Fréchet space and ℵ-space;
(2) X is a pseudo-open σ-image of a metric space;
(3) X is a closed s-image of a metric space.

Example 7. Let Z be the topological sum of the unit interval [0, 1], and the
collection {S(x) : x ∈ [0, 1]} of 2ω convergent sequences S(x). Let X be the space
obtained from Z by identifying the limit point of S(x) with x ∈ [0, 1], for each
x ∈ [0, 1]. Then, from Example 2.9.27 in [3] (or Example 9.8 in [10]), we have the
following facts:

(1) X is a compact-covering, quotient compact image of a locally compact
metric space.

(2) X has no point-countable cs-network.
From the fact above, Theorem 4 in [4], Theorem 3 and Corollary 5, the follow-

ing hold:
(a) A compact-covering compact image of a metric space need not be a

compact-covering σ-image of a metric space.
(b) A quotient π-image of a metric space need not be a quotient σ-image of a

metric space.
(c) A quotient s-image of a metric space need not be a quotient σ-image of a

metric space. But a quotient σ-image of a metric space is a quotient s-image of a
metric space.
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