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ASYMPTOTIC PLANARITY OF DRESHER MEAN VALUES

Momčilo Bjelica

Abstract. A family of Dresher mean values is asymptotically planar with respect to its two
parameters. An asymptotic formula presenting this property holds if: (a) all variables converge
to the same value; and, equivalently, because of means homogeneity, (b) for variables with same
additive increment converging to infinity.

Suppose x = (x1, x2, . . . , xn), a = (a, a, . . . , a), and q = (q1, q2, . . . , qn) are
sequences of nonnegative reals and a > 0. Without loss of generality let the weights
qi be normalized by q1 + q2 + · · ·+ qn = 1. The geometric, the harmonic, and the
quadratic mean values respectively are

Gq(x) =
n∏

i=1

xqi

i , Aq(x) =
n∑

i=1

qixi, Qq(x) =

√√√√
n∑

i=1

qix2
i .

Note that σ2
q (x) = Q2

q(x) − A2
q(x) is a weighted variance of x, which satisfies

σ2
q (x + a) = σ2

q (x). Dresher mean values [2] are a two-parameter family of means
that increase with each parameter

Ds,t(x) =





(∑n
i=1 qix

s
i

/ ∑n
j=1 qjx

t
j

)1/(s−t)

, if s 6= t

exp
(∑n

i=1 qix
t
i log xi

/ ∑n
j=1 qjx

t
j

)
, if s = t.

Theorem. Dresher mean values for both cases s 6= t and s = t have the unique
asymptotic formulas

Ds,t(x) = Aq(x) +
s + t− 1

2a
(Q2

q(x)−A2
q(x)) + o(Q2

q(x− a))

= Aq(x) + (s + t− 1)(Qq(x)−Aq(x)) + o
(
Q2

q(x− a)
)

= Gq(x) + (s + t)(Aq(x)−Gq(x)) + o
(
Q2

q(x− a)
)
, x → a,
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and if a →∞, then

Ds,t(x + a) = a + Aq(x) +
s + t− 1

2a
(Q2

q(x)−A2
q(x)) + o(1/a)

= Aq(x + a) + (s + t− 1)(Qq(x + a)−Aq(x + a)) + o(1/a)

= Gq(x + a) + (s + t)(Aq(x + a)−Gq(x + a)) + o(1/a).

Asymptotic planarity implies Hoehn and Niven property for Dresher mean values

Ds,t(x + a)− a → Aq(x), a →∞.

Proof. Suppose s 6= t and h = x− a. Then

xs
i = as

(
1 +

hi

a

)s

= as

(
1 +

s

a
hi +

s(s− 1)
2a2

h2
i + o

)
, hi → 0,

n∑
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qix
s
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(
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s

a
Aq(h) +

s(s− 1)
2a2

Q2
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)
,

where o = o
(
h2

i

)
and o = o

(
Q2

q(h)
)
, respectively. Therefore
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1
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Since the obtained expression is well defined and continuous at s = t, for both cases
s 6= t and s = t we have

Ds,t(x) = a exp
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This gives the first line of the first formula. The third line follows from asymptotic
linearity of power mean values [1], particularly

(Qq(x)−Aq(x))/(Aq(x)−Gq(x)) → 1, x → a. (1)

In the second formula the first line follows from the above proof with a →∞,
o = o(1/a2), and o = o(1/a) in the last unspecified appearance of o. Hoehn and
Niven property [2], which is a consequence of asymptotic linearity property [1],
states

Mq(x + a)−Aq(x + a) → 0, a →∞,

where M is any power mean value. Therefore

Qq(x + a) + Aq(x + a)/2a → 1, a →∞,

what implies the second line. The third line follows from the asymptotic linearity
formula at infinity, i.e. (1) for the argument x+a and a →∞. (The second formula
also follows from the first one and from homogeneity of involved mean values.)

Conjecture. Let x be a sequence of reals and a > 0. The unified asymptotic
formula for Dresher mean values holds for convergent variables, as well as for an
additive infinitely increasing parameter

Ds,t(a + x) = a + Aq(x) +
s + t− 1

2a
σ2

q (x) + o(
σ2

q (x)
2a

)

= Aq(a + x) + (s + t− 1)(Qq(a + x)−Aq(a + x)) + o(
σ2

q (x)
2a

)

= Gq(a + x) + (s + t)(Aq(a + x)−Gq(a + x)) + o(
σ2

q (x)
2a

),

where either x → 0 or a → ∞. Infinitesimals σ2
q (x)/2a, Qq(a + x) − Aq(a + x),

and Aq(a + x)−Gq(a + x) are equivalent.
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