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DIRECT AND INVERSE THEOREMS FOR SZASZ-LUPAS TYPE
OPERATORS IN SIMULTANEOUS APPROXIMATION

Naokant Deo

Abstract. In this paper we give the direct and inverse theorems for Szasz-Lupas operators
and study the simultaneous approximation for a new modification of the Szész operators with the
weight function of Lupas operators.

1. Introduction

Let f be a function defined on the interval [0,00) with real values. For f €
[0,00) and n € N, the Széasz operator Sy, (f,x) is defined as follows:

S0 (7:0) = 3 susle) /), where s, i) = L
The Szasz-type operator L, (f,z) is defined by
Lu(£.2) = 3 surl@)éns(h)
where
£(0), for k=0

¢n,k(f) = { nfooo Sn,k(t)f(t)dt’ for k = 1; 27 R

In [10], Mazhar and Totik introduced the Szész-type operator and showed
some approximation theorems. Lupas proposed a family of linear positive operators
mapping C [0, 00) into C [0, 00), the class of all bounded and continuous functions
on [0, c0) namely,

o0 n+k—1 a*
(B0 @) = 3 pus(a) /), whereposte) = (" E ) i
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Motivated by the integration of Bernstein polynomials of Derriennic [4], Sahai
and Prasad [11] modified the operators B,, for function integrable on [0, c0) as

(Muf) 2) = (=1 & pos(a) / " k() dt.

Now we consider another modification of operators with the weight function
of Lupas operators, which are defined as

(V) (@) = (0= 1) 3= s0ao) | " k(O () dr. (L1)
k=0 0

The norm HHC on the space Cy, [0,00) = {f € C'[0,00) : |f(t)’ < Kt* for some
a >0 and K > 0} is defined by

7l =

To improve the saturation order O(n~!) for the operator (1.1), we use the
technique of linear combination as described below:

k
Vn (f= k7 :17) = ZO C(]v k)Vdjn(f7 CC)7
J:

sup ff(t)‘ t—e.
0<t<o0

where
k

C(j,x):Hd.d_jdl for k # 0 and C(0,0) =1
J i

=0
ij

and dy,dy,ds,...,d; are (k+1) arbitrary, fixed and distinct positive integers. For
our convenience we shall write the operator (1.1) as

Vo(f,x) = /000 W(n,z,t)f(t)dt,

where -
W(n,z,t) = (n—1) kZ::O S ke (T) P ke (1)

The function f is said to belong to the generalized Zygmund class Liz («a, k, a, b)
if there exists a constant M such that
war(f,m, a,b) < Mn**, n >0,
where wor (f, 7, a,b) denotes the modulus of continuity of 2k-th order of f(z) on the
interval [a, b]. The class Liz (a, 1, a,b) is more commonly denoted by Lip*(«, a, b).
Let f € C, [0,00) and 0 < a1 < ag < a3 < by < by < by < co. Then for m € N

the Steklov mean f,, ,,, of the m-th order corresponding to f, for sufficiently small
values of 7 > 0 is defined by

Fumla) =7 ( [ "/Q)M{fu) £ (-nmiam f<w>}ﬁldxi, (12)

—n/2 tgl z;

where z € [a1,b1] and A f(z) is the m-th order forward difference with step
length 7.
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The direct results in ordinary and simultaneous approximation for such type
of modified Szasz-Mirakyan operators were studied by many researchers see e.g. [2],
[5], [6] and [12].

2. Auxiliary results

In this section, we shall give some basic results, which will be useful in proving
the main results.

LEMMA 2.1. [9] For m € N U {0}, let the m-th order moment for the Szisz
operator be defined by

n

00 k m
pnonl) = % suate) (=)
k=0
Then we have iy, o(x) =1, pp1(x) =0 and

n,U/n,erl(‘r) = (:U’fn,m(x) + m;ufn,mfl(ﬁ)) , forn € N.
Consequently,
(1) pn,m(x) is a polynomial in x of degree [m/2];
(i) for every x € [0,00), fnm(z) = O (n~lmFV/2) where 3] denotes the
integral part of 3.
LEMMA 2.2. Let the m-th moment for the Szdasz operator be defined by
Hnm(z) = (n—1) snvk(x)/ P k() (t — )™ dt.
k=0 0
Then
(i) pno(@) =1, proa(@) = G252, n > 2;

(i) (1 — 1m0 — Dponms1(2) = @ [y (@) + M2+ 2 a(@)] + (m 4 1) x
(14 22) i m ()
(ii1) p,m(z) = O (n~mFV2) for allx € [0, 00).

Proof. By the definition of p,, ., (x), we can easily obtain (i). Now the proof of
(ii) goes as follows:

() = (1= 1) 35 0,0 [ a0t = )" e = i1 ()
k=0 0

Using relations t(1+t)p;, ;.(t) = (k—nt)pn k() and zs, ;. (7) = (k—nz)sy k (),
we get

z I:H;L,m(x) + mﬂn,m—l(x)}

—(n—1)3 (k—nz)sni(@) /OO Pan()(t — )™ dt
k=0 0
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— (1) sunl2) /Oo [(k — nt) + 1 (t — 2)] pas(t)(t — )™ dt
k=0 0
(1= 1) 3 snsl) [ OF WO 2"+ i (2)
k=0 0
=(n-1) 5 Sn,k () / [(A422)(t —2)+ (t — ) + 21+ 2)] p), () (t — 2)™ dt
k=0 0
+ n/~‘mm+1($)
= —(m+ 1)1+ 22)pnm(z) — (M + 2) pnmt1(z) — ma(1 + ) pn,m—1(x)
+ nﬂn,m+1($)

This leads to proof of (ii). The proof of (iii) easily follows from (i) and (ii). m

LEMMA 2.3. If f is differentiable r times (r =1,2,3,...) on [0,00), then we
have

() _ i —r— s - ")
(1) () = = & ss@) [ par V0 e
Proof. By Leibnitz’s theorem in (1.1)

() @=e-0 g E ()G [ moroa

i=0 k=i \!

—(n-1) E’: e [T S () cowon o a

Again using Leibnitz’s theorem

b $ 1 (] it

Pg_)r,kw(t) = h—r—1)

- n'(n—r—1) & e . (r
(v5) (o) = U S @) [0 0F @)
(n—2)! k=0 0
integrating by parts r times, we get the required result. m
LEMMA 2.4. For the function f,..(x) defined in (1.2), there hold:
(@) fpm € Clar, bil;
(ZZ) ’|f7$TT)nHC[a2’b2] < MTW_TWT(f?n7a17b1)7 r= 17 2a s, My
(ZZ’L) Hf - fmmHC[ag,bﬂ S Mm+1wm(f7n7 ai, bl)a
(iv) Hf777mHC[a2,b2] < Mm+2Hch[a2,b2] < M/Hcha’

where M; are certain constants independent of f and n.

For the proof of the above properties of the function f;, ., (z) we refer to [12,
page 167].
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LEMMA 2.5. [8, 9] There exist polynomials ¢, ; »(x) independent of n and k
such that

dr , 4
rdmr [e_"x(nx)k] = > nl‘k; — nw‘]qi7j,T(x) [e‘”“(nx)k]
S

LEMMA 2.6. Let f € Cy [0,00). If f*+2) egists at a point = € (0,00), then

2k+2

Jim "V (f, b, 2) — f(2)} = ZO Q(p. k,x) [P (x),
=

where Q(p, k,x) is a certain polynomial in x of degree p.
The proof of Lemma 2.6 follows along the lines of [7].

LEMMA 2.7. Let § and v be any two positive numbers and [a,b] C [0,00).
Then, for any m > 0 there exists a constant M, such that

H/ Vo (f, z)t7dt
lt—|>6

The proof of this result follows easily by using Schwarz inequality and Lemma
2.7 from [1].

< M,n~ ™.
Cla,b]

3. Main results

THEOREM 3.1. (Direct Theorem) Let f € Cy[0,00). Then, for sufficiently
large n, there exists a constant M independent of f and n such that

||Vn(fa ka ) - ch[a2,b2] < max {Clw2k+2(f; n_1/2a ai, bl)CQn_(k+1) Hcha} )
where C; = C1(k) and Cy = Co(k, f).
Proof. By linearity property

HVn(f’ k) = f||C[a2,b2] < ||Vn ((f = f2k+2m) k) HC[az,bz]

+ HV" (fokt2m, ks .) — f2k+2mHC[a2,b2] + ||f - f2k+2m||0[a2,b2]
= Al + AQ + Ag, say.

By property (iii) of Steklov mean, we get
As < Crwag2(fim, a1, b1).

Next, by Lemma 2.6, we get

Ay < C’Zn—(k-‘rl)|‘f2k+2,an[a1,b1]'
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Using the interpolation property [5] and properties of Steklov mean,
Ay < 03”_(k+1){’|f“oa + 77_(2k+2)W2k+2(fa 77)}-

To estimate Aq, we choose as, by such that
0<ar <as <ag <bg <by <b <o0.
Also let ¥(t) be the characteristic function of the interval [ag, bs], then
< |V () (F(t) = forgan(t))k,.) HC[%bS]
1V (= 90) (FE) — Farszn(®) k) s
= A4+ A, say.
We note that in order to estimate A4 and As, it is sufficient to consider their

expressions without the linear combination. It is clear that by Lemma 2.3, we
obtain

Vo (8) (F(8) = fonrzn(®) )
—(n—1) Y suile) / Pk (OG(E) (J(1) = Jorsan(D)) d.

k=0
Hence,

Ve (@ (t) (f(£) = farr2m(t)) ) Hc[ahbﬂ < C4||f- f2k+2ﬂ7||0[a2,b2]'

Now for = € [as,b3] and t € [0,00) /[az2,b2] we can choose an 7, satisfying
|t — x| > n1. Therefore by Lemma 2.5 and Schwarz inequality, we have

I=|Va (1= %) (F(1) = forsza(®) ,2) |

<(n—-1) |¢mr )| $ Z Sn :U)|kfmc|j><
21+_7><07‘
X/o Pk (t) (1 ) | f(t) = faryan(t)|dt
§C5||fHCa(n—1) > oty sn’k(m)‘k—nﬂj/ Dk () dt
2itisr k=0 [t—z|>m
§C5n1_28||f||ca(n—1)22< ESnk )|k—nx|j><
o 11/; ) 1/2
< [“rstwae) ([ matee -0 ar)
0 0
(oo N 1/2
<ot Wflo, [T, n{ & suata)lh—nai} " x
S

x ((n )Y sale) /OOo Pan(B)(E — )4 dt) v

k=0
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Hence, by Lemma 2.1 and Lemma 2.2, we have
1< Cql|fllg, Sn+a9 < Con1| £l

where ¢ = (s — m/2). Now choose s > 0 such that ¢ > k + 1. Then
I'< Con™ ™V ]|,

Therefore by property (iii) of Steklov mean, we get
A <G| f - f2k+2,nH()[a27b2] + 06"7(k+1)||f”ca
< Cswanya(fim,a1,01) + Con™ FHV| £l

Hence with 17 = n~'/2, the theorem follows. m

THEOREM 3.2. (Inverse Theorem) If 0 < @ < 2 and f € C,[0,00) then in
the following statements (i) = (ii):

i) HVn(f, k,x) — f(m)HC[al,bl]

(#3) f € Liz(a, k + 1,a2,b3).

= O (n=**+D/2) "where f € Cyla, b],

Proof. Let us choose points a’,a”,b’,b” in such a way that a; < @’ < a”

a
as < by <b” < < by. Also suppose g € C§° with supp(g) C [a”,b"] and g(z) =
for © € [aq, b2]. It is sufficient to show that

V(79 ) = £l ey = O (n7FF9/2) = (i), (3.1)

<
1

Using F' in place of fg for all the values of r > 0, we get

8292 s < 292 V() BBV F ) |

(3.2)

”,b”] HC[a”,b”] + ||

By the definition of AZF+2,

14292V, (F ) e

2k+2
H/ / Fk.’L‘+ Z )d%l...dmngrg

1=1

C[a// ,b”}

< 22|22 (R g ||C[a,,7b,,+(2k+2)r]

2k+2{”v(2k+2 (F — Fpo42,k, ) ||C[a,,7b,,+(2k+2)r]

+ HVTE2k+2) (Fn,2k+27 k (33)

) HC[a”,b”+(2k+2)r]}’

where Fj i1 is the Steklov mean of (2k + 2)-th order corresponding to F. By
Lemma 3 from [1], we get

oS 82k+2
/0 Ox2k+2

Wa(t, ) dt’

> i 9,526 42(x) o
< Y (n-1) Y nllk- nx‘jwsn,k(x)/o Pn,k(t) dt.

2045 <2k+2 k=0
i,520
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Since [;° pnk(t) dt = —5, by Lemma 2.1,

[ oo 2j
3 spi(@)(k—nx)? =n Y s,%(7) (% — x) = 0O(n) (3.4)
k=0

k=0

Using Schwarz inequality and Lemma 2.1, we obtain

2k+2 k+1
HVn( )(F Fp ki, ks ) HC[a”,b”+(2k+2)r] < Kin HF_F 12k+2HC[a”,b”] (3:5)
By Lemma 2 from [1], we get
oo 8k )
/ [kWn(t,x)} (t—x)'dt=0, for k>i. (3.6)
0 a.’If
By Taylor’s expansion, we obtain
2k41 F( %k-&-Q( ) 2k+2 (t — $)2k+2
Fn72k+2(t) Z;) mT(t — I’) F7(7 2k+2) (S)W, (37)
where t < £ < z. By (3.6) and (3.7), we get
82k+2
H8x2k+2 RECELR Cla” b +(2k+2)7]
|C J k | (2k+2) o7k 2 2k+2
6 (2k + 2)! H ’72’”2H Cla’ b"] /0 Ox2k+2 gazrra Wamn(t7) | (t=2) dtHC[aN,bH]'

Again applying Schwarz inequality for integration and summation and Lemma
3 from [1], we obtain

I / B A PR e
= S z T
o Ox2k+2 T )
S qi,j okt2(T
<(mn-=-1) > X nsn7k(x)|k;—nx‘]’ S eI ‘ / Pk (t —z)?k 2t

2i+j<2k+2 k=0
,5>0

: |Qi,j,2k+2<$)| s 2
< vl - 1 . _ J
T 2itj<ok+e " x2k+2 kzzzo snk(@)(k = ne) 8
i,5>0
- 0o 1/2
« {(n DS (@) / pan(8)(t — x)4k+4dt} . (3.9)
k=0 0

Using Lemma 2 from [1],

(n=1) 3 sni(x) /O k(O — )t = T, () = O (n=CH2) - (3.9)

k=0
Using (3.4) and (3.9) in (3.8), we obtain

1<

< w220l o0 (1t+0) ~ o).
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Hence

||W7§2k+2) (F okga k Kz‘ F(2k+2

2k+2 (3.10)

HC[a” b +(2k+2)r] — Hc[a// b”]
On combining (3.2), (3.3), (3.5) and (3.10) it follows

HA72“]€+2F||C[(I”,I)”] S |‘A72nk+2 F— Vn(F7 ]{7, . ||C " b1

+ Kyr 2 (W F = Fyaica| iy IE5 s g )

Since for small values of r the above relation holds, it follows from the properties
of F, ox+2 and (3.1) that

wapt2(F, b, [a”,0"])
<K, {n—a(k+1)/2 4 p2kt2 (nk+1 +77—2k+2)

(Fyn,la", 0"}

Choosing 7 is such a way that n < n~2 < 2r and following Berens and Lorentz [3],
we obtain

W2k+2

war+2(F b, [a”,6"]) = O, (3.11)
Since F(z) = f(x) in [ag, ba], from (3.11) we have
Was2(f, by [az, ba]) = O(h*FTY) e, f € Liz(a, k + 1, a2, by).
Let us assume (i). Putting 7 = a(k 4+ 1), we first consider the case 0 < 7 < 1.
For z € [d/,b'], we get

Va(fg.k x) — f(z)g(x) = g(x)Va (f(t) — f(2)) , K, 2) +
b1

£X 0GR [ Wayalta)f @) (00t) - gla)) dt + O (n+)

7=0 ay
—L+L+0 ( k+1)) (3.12)
where the O-term holds uniformly for z € [a’,b']. Now by assumption

Valfok ) = Fllegar o = O (”4/2> ;

we have

15 = 19l IV = Pl < Kon™72. (313)

By the Mean Value Theorem, we get
by

=% COK) [ Wanlta) [0t~ )} ar

ai

Once again applying Cauchy-Schwarz inequality and Lemma 2 from [1], we get

HI2HC[(1/7I)/] S HfHC[ahbl a’ b/] (Z |C(], )|)
oo 1/2
_ 7)? — —7/2
X or%ljagxk /0 Wa, n(t, @) (t — z)dt Cr =0 (n ) . (3.14)

Combining (3.12-3.14), we obtain
||V’n(fgak7 ) - ngC[a’ b =0 (n77/2> s for0< S 1.
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Now to prove the implication for 0 < 7 < 2k + 2, it is sufficient to assume it
for 7 € (m — 1,m) and prove if for 7 € (m,m+1), (m=1,2,3,...,2k+1). Since
the result holds for 7 € (m — 1, m), we choose two points 1, y; in such a way that
ay <1 <a <V <y; <by. Then in view of assumption (i) = (1) for the interval
(m — 1,m) and equivalence of (i7) it follows that f(™~1) exists and belongs to the
class Lip(1 — 8, 21,y1) for any § > 0.

Let g € C§° be such that g(x) = 1 on [a”, V"] and supp g C [a”,b"]. Then with
X2(t) denoting the characteristic function of the interval [z1, 1], we have

HVn(fag7k7 ) - ngC[a’,b/] < HVn(g(x)f(t) - f(.%')),k, ’>HC[(N,b’]+
+ [ValF D90 = g@DXB) k) gy + O (n7ED) . (315)

Now
[Valg@)(F(t) = F@Ds ks M epar iy < N9l g o Ve lF ) = Fll gy

-0 (n*f“) . (3.16)

Applying Taylor’s expansion of f, we have
I = [|[Va(F(£)g() — g@))X(®)s ks M ) =
m—1 £(4) (m—1) _ flm=1)(,
n([ Zlf (x)(t_x)”r{f (&) — fV(x)}

v, I\ } - 0k, )H
| P T CORICINORES]
where ¢ lies between ¢ and x. Since f(™~Y € Lip(1 — 6, 21,v1),
_ _ 1-6 1-6
£ D) = f D (@)| < Kelé —af " < Kelt — |
where Kg is the Lip(1 — 6,21, 4:) constant for f(™~1) we have
m_1 f(i) (x) i
Is < |\Val > == —2)"(g(t) — g(x))x(t), K, .
i=0 Cla’,b']
K6 k i m+1—9
ot L4 (]go 061 )Vt =™ 50 g
= I4 + I5 say. (317)
By Taylor’s expansion of g and Lemma 2.6, we have
L=0 (n*“““)) . (3.18)
Also, by Holder’s expansion of g and Lemma 2 from [1], we have
AT > |cG.k)) x
—_ (m _ 1)! C[a”,b”] ]:0 Y
Y1
m+1—94
" 0 /1 Wan(t = )]t =2l HC[aub'J
(m+1—38)
Y1 2(m+1)
< K7 max W, n(t —2)(t — x)Q(mH)dt
0<i<k || /s, Cla’ ]

—0 (n—<m+1—5)/2) -0 (nfm) 7 (3.19)
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by choosing § such that 0 < § < m + 1 —§. Combining the estimates (3.15-3.19),
we get

Vafg.k, ) = S9lpar iy = O (n772)

This completes the proof of the Theorem 3.2. m
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