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COVERING OF CURVES, GONALITY,
AND SCROLLAR INVARIANTS

E. Ballico

Abstract. Let f : X → Y be a degree k covering of smooth and connected projective curves
with pa(Y ) > 0. Here we continue the study of the Brill-Noether theory of divisors on X.

1. Introduction

Let X (resp. Y ) be a smooth and connected curve of genus g (resp. genus q)
and f : X → Y a degree k covering, k � 2. Thus g � kq−k+1 (Riemann-Hurwitz).
Let u : X → P1 be a degree z morphism computing the gonality gon(X) of X. We
always have z � k · gon(Y ) and if z = k · gon(Y ), then at least one degree z pencil
X → P1 factors through f . By Brill-Noether theory we have gon(X) � �(g +3)/2�
and gon(Y ) � �(q + 3)/2�. Hence z � min{�(g + 3)/2�, k · �(q + 3)/2�}. If z �
(g − kq)/(k − 1), then u factors through f by Castelnuovo-Severi inequality [5]. In
the first part we will consider several examples in which u does not factor through
f and study their scrollar invariants in the sense of [3]. To state our first result we
need the following notation/observation.

Remark 1. Let f : X → Y be a finite morphism between smooth and connect-
ed projective curves and D =

∑
niPi any divisor on X. Set f!(D) :=

∑
nif(Pi).

A key property of rational equivalence says that if D and D′ are linearly equivalent
divisors on X, then f!(D) and f!(D′) are linearly equivalent divisors on Y ; here
the smoothness of Y is essential, because it implies that rational equivalence and
linear equivalence are the same on Y . Hence for any d ∈ Z the map f! induces a
map f! : Picd(X) → Picd(Y ) such that h0(Y, f!(L)) � h0(X,L) for all L ∈ Picd(X).
Furthermore, if L is base point free, then f!(L) is base point free.

A modification of the proof of [2], Th. 1, (see section 2) will give the following
result.
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Theorem 1. Fix integers d, q, k, g such that q > 0, k � 2, g � kq − k + 1 and
kd − d − k + kq + 1 − (�d/2� + 1 − q) · (�k/2� + 1) � g � kd − d − k + kq + 1.
Set a := kd − d − k + kq + 1 − g and let δ(a) be the maximal integer t such that
(k−1−t)(d+q−1) � a. Let Y be a smooth and connected curve of genus q such that
there is a base point free M ∈ Picd(Y ). Then there exist a smooth and connected
genus g curve X, a degree k covering f : X → Y and a base point free L ∈ Picd(X)
such that f!(L) ∼= M and there is no base point free R ∈ Pic(Y ) such that f∗(R) = L
and h0(Y,R) = h0(X,L). Furthermore, ed−1(L) � max{ed−1(M), δ(a) + 1}. If
(d + k − 1)(t + 1 − k) > (t + 1)q, then ed−1(L) � k − 2.

Obviously, in the statement of Theorem 1 we have δ(a) � k − 1. Notice that
δ(a) = k − 1 if a = 0 and that δ(a) = k − 2 if a � d + q − 1.

Remark 2. Take the notation of the statement of Theorem 1. Obviously, we
have gon(X) � d and gon(Y ) � d. Hence, if gon(Y ) > d/k, then the gonality of
X is computed by a pencil not coming from Y , while if gon(Y ) = d/k, then there
is at least one pencil on X computing gon(X), but not coming from Y . If either
1 � q � 2 or q � 3 and Y has general moduli, then gon(Y ) = �(q + 2)/2�. Hence if
�(g+3)/2� < k ·�(q+3)/2�} (resp. �(g+3)/2� = k ·�(q+3)/2�}, then we may apply
the first part of this remark. Hence either 1 � q � 2 or q � 3 and Y has general
moduli, then there is a small, but non empty, interval of integers g for which both
Theorem 1 and the first part of this remark may be applied.

In section 3 we will continue [1] and study the rank k− 1 vector bundle Ef :=
f∗(OX)/OY .

We work over an algebraically closed field K with char(K) = 0.

2. Proof of Theorem 1

Remark 3. Let Y be a smooth and connected projective curve. Set q := pa(Y )
and S := Y × P1. Hence h1(S,OS) = q. Let π1 : S → Y and π2 : S → P1 denote
the two projections. For any R ∈ Pic(S) there are unique M ∈ Pic(Y ) and k ∈ Z
such that R ∼= π∗

1(M) ⊗ π∗
2(OP1(k)). Set OS(M,k) := π∗

1(M) ⊗ π∗
2(OP1(k)). If

k < 0, then h0(S,OS(M,k)) = 0 and h1(S,OS(M,k)) = (−k − 1) · h0(Y,M)
(Künneth formula). If k � 0, then h0(S,OS(M,k)) = (k + 1) · h0(Y,M) and
h1(S,OS(M,k)) = (k + 1) · h1(Y,M) (Künneth formula). Furthermore, if M is
spanned and k � 0, then OS(M,k) is spanned, while if M is (birationally) very
ample and k > 0, then OS(M,k) is (birationally) very ample. Fix integers k � 2
and d > 0 and M ∈ Picd(Y ) such that |M | has no base point. Let C ⊂ S be an
integral curve in the linear system |OS(M,k)| and ν : X → C the normalization
map. Set A(C) := Sing(C) and let B(C) ⊂ S the conductor of ν. We recall that
B(C)red = A(C) and that B(C) = A(C) if each singular point of C is either an
ordinary double point or an ordinary cusp. For any A ∈ Pic(Y ) and any integer
x set OC(A, x) := OS(A, x)|C and OX(A, x) := ν∗(OC(A, x)). We will also write
OC(0, x) (resp. OX(0, x), resp. OS(0, x)) instead of OC(OY , x) (resp. OX(OY , x),
resp. OS(OY , x)). Notice that OC(A, x) is a line bundle of degree k · deg(A) + x ·
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deg(M). The morphism π1 ◦ ν : X → Y is a degree k covering between smooth
and projective curves. Since ωS

∼= OS(ωY ,−2), then ωC
∼= OC(M ⊗ ωY , k − 2)

(adjunction formula). Thus pa(C) = kd − d − k + kq + 1.

Remark 4. Use the set-up of Remark 3. Notice that h0(S, ωS(OY ,−t)) = 0
for all t � 0 and h1(S, ωS(OY ,−t)) = h1(S,OS(OY , t) = q(t + 1) for all t � −1.
Consider the exact sequence

0 → OS(−M, t − k) → OS(0, t) → OC(0, t) → 0 (1)

Since OS(M,k − t) is ample for all t < k, we have h1(S,OS(−M,−k + t) = 0
for all t < k (Kodaira’s vanishing). Obviously, h0(S,OS(−M,−k + t) = 0 for all
t < k. Hence from (1) we get h0(C,OC(0, t) = t + 1 for −1 � t < k. Now assume
t � k. Since h1(S,OS(0, t)) = (t + 1)q and h1(S,OS(−M, t − k) = h1(S,OS(M +
ωY , k − t − 2)) = (d + q − 1)(t + 1 − k) (Riemann-Roch and Serre duality), the
long cohomology exact sequence of the exact sequence (1) gives h0(C,OC(0, t)) �
t+1+(d+q−1)(t+1−k)− (t+1)q. Hence if (d+k−1)(t+1−k) > (t+1)q, then
ed−1(OC(0, 1)) = k and hence ed−1(L) � k−2, where L := ν∗(OC(1, 0)) ∈ Picd(X).

Remark 5. Take the set-up of Remarks 1 and 3. Notice that f!(L) ∼= M . Let
ei(M), 1 � i � d − 1 (resp. ei(L), 1 � i � d − 1) denote the scrollar invariants of
M (resp. L) [3]. Thus e1(L) � · · · � ed−1(L) � 0, e1(M) � · · · � ed−1(M) � 0,
e1(L) + · · · + ed−1(L) = g − d + 1, and e1(M) + · · · + ed−1(M) = q + d − 1.
We only need that the integer m := ed−1 + 2 is characterized by the property
h0(X,R⊗(m−1)) = m and h0(X,R⊗m) � m + 2. Fix any integer t � 1 such that
h0(Y,M⊗t) = t + 1. Hence h0(X,L⊗t) � h0(Y, f!(L⊗t)) = h0(Y,M⊗t) = t + 1.
Hence h0(X,L⊗t) = t + 1. Thus ed−1(L) � ed−1(M).

Remark 6. Take the set-up of Remarks 3 and 5, but assume that C is nodal
(and hence B(C) = A(C)) and that its singular points are general in S. Set
A := Sing(C) and a := �(A). Thus a = pa(C) − pa(X) = kd − d − k + kq + 1 − g.
Let δ(a) be the maximal integer t such that h0(S,OS(M + ωY , k − 2 − t)) � a,
i.e. (k − 1 − t)(d + q − 1) � a. Obviously, δ(a) only depends from Y,M, k, a.
By the generality of A we have h0(S, IA(M + ωY , k − 2 − t)) = h0(S,OS(M +
ωY , k − 2 − t)) − a for all t � δ(a). Thus by adjunction theory and Riemann-
Roch we have h0(X,L⊗t) = h0(C,OC(0, t)) for all t � δ(a). By Remark 4 we get
ed−1(L) � min{δ(a) − 1, k − 2}.

Proof of Theorem 1. Set a := kd − d − k + 1 − g. Let A ⊂ S := Y × P1 be
a general subset with �(A) = a. The proof of [2], Th. 1, gives the existence of an
integral nodal curve C ∈ |OS(M,k)| such that A = Sing(C). Let ν : X → C be the
normalization map. Apply Remarks 3, 5 and 6.

3. The vector bundle Ef := f∗(OX)/OY

In this section we fix the following set-up. Fix positive integers k, d. Let Y
be a smooth and connected projective curve, C an integral projective curve and
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u : C → Y a degree k morphism. Let ν : X → C be the normalization map.
Set f : u ◦ ν, q : = pa(Y ), γ := pa(C), and g := pa(X). Since Y is smooth, C
and X are locally Cohen-Macaulay and u, f are finite, u and f are flat ([4], Prop.
III.9.7). Furthermore, every torsion free finite rank sheaf on a one-dimensional
regular local ring is free. Thus u∗(OC) and f∗(OX) are locally free. Since char(K) =
0, the trace map shows that OY is in a natural way a direct factor of u∗(OC)
and f∗(OX). Hence there are rank k locally free sheaves Eu and Ef on Y such
that u∗(OC) ∼= OY ⊕ Eu and f∗(OX) ∼= OY ⊕ Ef . Following [1] we will say
that Eu (resp. Ef ) is the bundle associated to u (resp. f). Since X and C are
integral, we have h0(X,OX) = h0(C,OC) = 1. Since f and u are finite, we have
R1f∗(OX) = R1u∗(OC) = 0. Thus the Leray spectral sequences of f and u give
χ(Eu) = χ(u∗(OC)) − χ(OY ) = q − γ and χ(Ef ) = χ(f∗(OX)) − χ(OY ) = q − g.
Thus by Riemann-Roch we have deg(Eu) = χ(Eu)+ (k− 1)(q− 1) = kq−k−γ +1
and deg(Ef ) = χ(Ef ) + (k − 1)(q − 1) = kq − k − g + 1.

Castelnuovo-Severi inequality gives a strong restriction on the cohomological
properties of the associated bundle Ef when f does not factor non-trivially through
another smooth curve, i.e. when there are no (Y ′, f1, f2) such that Y ′ is a smooth
curve, f1 : X → Y ′, f2 : Y ′ → Y , f = f2 ◦ f1 and 1 < deg(f1) < k. Notice that this
is always the case if k is prime.

Theorem 2. Let f : X → Y be a degree k � 2 covering between smooth
projective curves which does not factor non-trivially through another smooth curve.
Set g := pa(X) and q := pa(Y ). Then there exists no effective divisor D on Y such
that deg(D) � (g − kq)/k(k − 1), h0(Y,OY (D)) = 1, and h0(Y,Ef (D)) > 0.

Proof. Set L := f∗(OY (D)). By the projection formula we have h0(X,L) =
h0(Y,OY (D))+h0(Y,E(D)) � 2. Let B the base point of |L|. Hence deg(L(−B)) �
deg(L) < (g−kq)/(k−1). Hence the morphism induced by |L(−B)| factors through
f . Hence L(−B) ∼= f∗(OY (D′)) for some D′ ⊆ D such that the linear system |D′|
induces a non-constant morphism. Since h0(Y,OY (D)) = 1, this is absurd.

Motivated by Theorem 2 we now introduce the following invariants of a cov-
ering f : X → Y of smooth curve. Fix an integer z � 1. Let ε(f, z) denote the
minimal integer t � 0 such that h0(Y,Ef (D)) � z for some effective degree t di-
visor D on Y . Set ε(f) := ε(f, 1). Let η(f, z) denote the minimal integer t such
that that h0(Y,Ef ⊗ R) � z for some R ∈ Pict(Y ). Set η(f) := η(f, 1). Hence
η(f, z) � ε(f, z). The connectedness of X is equivalent to the inequality ε(f) > 0.
In many cases of coverings consideeed in [1] it is quite easy to compute these in-
variants and the divisors D (resp. line bundles R) which are “extremal”, i.e. which
compute ε(f, z) (resp. η(f, z)). For instance, in the case considered in [1], Th. 1.4,
we have η(f) = η(f, k − 1) = ε(f) = ε(f, k − 1) = b(γ − k + 1)/(k − 1).
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