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WEAK FORMS OF OPEN MAPPINGS AND
STRONG FORMS OF SEQUENCE-COVERING MAPPINGS

Ying Ge

Abstract. In this paper, we discuss some weak forms of open mappings and some strong
forms of sequence-covering mappings, and establish some relations among these mappings. As
some applications of these results, we obtain that images of metric spaces under certain weak
forms of open mappings can be characterized as images of metric spaces under certain strong
forms of sequence-covering mappings.

1. Introduction

Strong forms of sequence-covering mappings form an important class of map-
pings. Many interesting characterizations of images of metric spaces under these
mappings have been obtained [7, 8, 10, 5, 4]. Recently, some weak forms of open
mappings have attracted considerable attention, and some characterizations of im-
ages of metric spaces under these mappings have been obtained [13, 6, 7]. Note that
these images are equivalent to images of metric spaces under certain strong forms of
sequence-covering mappings. Naturally, we can ask: are these weak forms of open
mappings and these strong forms of sequence-covering mappings, in case they are
defined on metric spaces, equivalent? This arouses our interest in relations between
weak forms of open mappings and strong forms of sequence-covering mappings.

In this paper, we investigate these mappings to establish some relations among
them, and prove that a mapping f defined on a first countable space is open (resp.
almost open) if and only if it is weak-open (resp. almost weak-open), if and only
if it is sn-open (resp. almost sn-open) and quotient, if and only if it is 2-sequence-
covering (resp. 1-sequence-covering) and quotient. As some applications of these
results, we obtain that images of metric spaces under these mappings are equivalent.

Throughout this paper, all spaces are assumed to be regular T1 and all map-
pings are continuous and onto. N denotes the set of all natural numbers. {xn}
denotes a sequence, where the n-th term is xn. Let X be a space and P ⊂ X. A
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sequence {xn} converging to x in X is eventually in P if {xn : n > k}∪{x} ⊂ P for
some k ∈ N; it is frequently in P if {xnk

} is eventually in P for some subsequence
{xnk

} of {xn}. Let P be a family of subsets of X. Then
⋃P and

⋂P denote the
union

⋃{P : P ∈ P} and the intersection
⋂{P : P ∈ P} respectively. For terms

which are not defined here, we refer to [2].

2. The Main results

Definition 2.1. Let X be a space.
(1) Let x ∈ P ⊂ X. P is called a sequential neighborhood of x in X if whenever

{xn} is a sequence converging to the point x, then {xn} is eventually in P ;
(2) Let P ⊂ X. P is called a sequentially open subset in X if P is a sequential

neighborhood of x in X for each x ∈ P ;
(3) X is called a sequential space if each sequentially open subset in X is open;
(4) X is called a Fréchet space if for each P ⊂ X and for each x ∈ P , there

exists a sequence {xn} in P converging to the point x.

Remark 2.2. (1) P is a sequential neighborhood of x if and only if each
sequence {xn} converging to x is frequently in P .

(2) The intersection of finitely many sequential neighborhoods of x is a sequen-
tial neighborhood of x.

(3) It is well known that first countable =⇒ Fréchet =⇒ sequential.

Definition 2.3. Let P =
⋃{Px : x ∈ X} be a cover of a space X such that

for each x ∈ X, the following conditions (a) and (b) are satisfied:
(a) Px is a network at x in X, i.e., x ∈ ⋂Px and for each neighborhood U of

x in X, P ⊂ U for some P ∈ Px;
(b) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
(1) P is called a weak base [1] of X if whenever G ⊂ X, G is open in X if

and only if for each x ∈ G there exists P ∈ Px with P ⊂ G, where Px is called a
wn-network (i.e., weak neighborhood network) at x in X. Furthermore, X is called
g-first countable [11] if Px is countable for each x ∈ X;

(2) P is called an sn-network [3] of X if each element of Px is a sequential
neighborhood of x in X for each x ∈ X, where Px is called an sn-network at x
in X. Furthermore, X is called sn-first countable [3] if Px is countable for each
x ∈ X.

Remark 2.4 [10]. For a space, weak base =⇒ sn-network. An sn-network for
a sequential space is a weak base. So g-first countable =⇒ sn-first countable and
for a sequential space, g-first countable ⇐⇒ sn-first countable.

Definition 2.5. Let f : X −→ Y be a mapping.
(1) f is called an open (resp. closed ) mapping [2] if f(U) is open (resp. closed)

in Y for each open (resp. closed) subset U in X;
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(2) f is called a weak-open mapping if there exists a weak base P = {Py :
y ∈ Y } of Y such that for each y ∈ Y and for each x ∈ f−1(y), whenever U is a
neighborhood of x, then P ⊂ f(U) for some P ∈ Py;

(3) f is called an sn-open mapping if there exists an sn-network P = {Py :
y ∈ Y } of Y such that for each y ∈ Y and for each x ∈ f−1(y), whenever U is a
neighborhood of x, then P ⊂ f(U) for some P ∈ Py;

(4) f is called an almost open mapping [8] if for each y ∈ Y there exists
x ∈ f−1(y) such that f(U) is a neighborhood of y for each neighborhood U of x;

(5) f is called an almost weak-open mapping [13] if there exists a weak base
P = {Py : y ∈ Y } of Y satisfying the condition: for every y ∈ Y , there exists
x ∈ f−1(y) such that whenever U is a neighborhood of x, P ⊂ f(U) for some
P ∈ Py;

(6) f is called an almost sn-open mapping if there exists an sn-network P =
{Py : y ∈ Y } of Y satisfying the condition: for every y ∈ Y , there exists x ∈ f−1(y)
such that whenever U is a neighborhood of x, P ⊂ f(U) for some P ∈ Py;

(7) f is called a 1-sequence-covering mapping [10] if for every y ∈ Y there
exists x ∈ f−1(y), such that whenever {yn} is a sequence converging to y in Y ,
there exists a sequence {xn} converging to x in X with each xn ∈ f−1(yn);

(8) f is called a 2-sequence-covering mapping [7] if for each y ∈ Y and for each
x ∈ f−1(y), then whenever {yn} is a sequence converging to y in Y , there exists a
sequence {xn} converging to x in X with each xn ∈ f−1(yn);

(9) f is called a quotient mapping [2] if U is open in Y if and only if f−1(U)
is open in X.

Remark 2.6. S. Xia introduced “weak-open mapping” in [13]. Since “weak-
open mapping” in [13] is not only weak to “open mapping” but also weak to “al-
most open mapping”, “weak-open mapping” in [13] is called “almost weak-open
mapping” in this paper by Definition 2.5(5), and we define another mapping in this
paper as “weak-open mappings” by Definition 2.5(2).

Remark 2.7. The following implications except for (∗) and (∗∗) hold from
Definition 2.5. Implications (∗) and (∗∗) hold from Proposition 2.9(2) and Propo-
sition 2.13(2), respectively. For every mapping

open =⇒ weak-open =⇒ sn-open
(∗)⇐= 2-sequence-covering

⇓ ⇓ ⇓ ⇓
almost open =⇒ almost weak-open =⇒ almost sn-open

(∗∗)⇐= 1-sequence-covering

The following Lemma is due to the proof of [10, Theorem 4.4].

Lemma 2.8. Let f : X −→ Y be a mapping. If {Bn} is a decreasing network
at some x in X, and each f(Bn) is a sequential neighborhood of y = f(x) in Y ,
then whenever {yn} is a sequence converging to y in Y , there exists a sequence {xn}
converging to x in X with each xn ∈ f−1(yn).
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Proof. Let {Bn} be a decreasing network at some x ∈ X, and each f(Bn) be a
sequential neighborhood of y = f(x) in Y . If {yn} is a sequence converging to y in
Y , then for each k ∈ N, there exists nk ∈ N such that yn ∈ f(Bk) for all n ≥ nk.
Thus f−1(yn)∩Bk 6= ∅ for each n > nk. Without loss of generality, we can assume
1 < nk < nk+1 for each k ∈ N. For each n ∈ N, pick

xn ∈
{

f−1(yn), n < n1

f−1(yn) ∩Bk, nk ≤ n < nk+1

Then xn ∈ f−1(yn) for each n ∈ N. It is easy to show that {xn} converges to x. In
fact, let U be a neighborhood of x; then there exists k ∈ N such that x ∈ Bk ⊂ U .
Obviously, xn ∈ Bk ⊂ U for each n > nk, so {xn} converges to x.

Proposition 2.9. Let f : X −→ Y be a mapping. Then the following hold:
(1) If f is sn-open and X is first countable, then f is 2-sequence-covering;
(2) If f is 2-sequence-covering, then f is sn-open;
(3) If f is almost weak-open, then f is quotient.

Proof. (1) Let f be sn-open and X be first countable, P =
⋃{Py : y ∈ Y }

be a sn-network of Y as stated in Definition 2.5(3). Since X is first countable for
each y ∈ Y and each x ∈ f−1(y) there exists a countable decreasing neighborhood
base {Un} at x in X. For each n ∈ N, there exists Pn ∈ Py such that Pn ⊂ f(Un).
Pn is a sequential neighborhood of y in Y , so is f(Un). By Lemma 2.8, whenever
{yn} is a sequence converging to y in Y , there is a sequence {xn} converging to x
in X with each xn ∈ f−1(yn). So f is 2-sequence-covering.

(2) Let f be 2-sequence-covering. For each y ∈ Y , we construct an sn-
network Py at y in Y as follows. For each x ∈ f−1(y), let Bx = {B :
B is a neighborhood of x}. Put P ′y = {f(B) : B ∈ Bx and x ∈ f−1(y)}; then each
element of P ′y is a sequential neighborhood of y in Y . In fact, Let P ′ = f(B) ∈ P ′y,
where B ∈ Bx for some x ∈ f−1(y). Since f is 2-sequence-covering, whenever {yn}
is a sequence converging to y in Y there exists a sequence {xn} converging to x in
X with each xn ∈ f−1(yn). Note that B is a neighborhood of x. {xn} is eventually
in B, so {yn} = {f(xn)} is eventually in f(B) = P ′. Thus P ′ is a sequential neigh-
borhood of y in Y . Put Py = {⋂Fy : Fy is a finite subfamily of P ′y}; then each
element of Py is a sequential neighborhood of y in Y from Remark 2.2(2). Also,
it is not difficult to check that Py satisfies the conditions (a) and (b) in Definition
2.3. Thus we obtain that Py is an sn-network at y in Y . Put P =

⋃{Py : y ∈ Y };
then P is an sn-network of Y . For each y ∈ Y and for each x ∈ f−1(y), whenever
U is a neighborhood of x, there exists B ∈ Bx such that x ∈ B ⊂ U , so f(B) ∈ Py

and f(B) ⊂ f(U). This proves that f is sn-open.
(3) This namely is [13, Proposition 3.2].

Proposition 2.10. Let f : X −→ Y be an sn-open mapping. If one of the
following two conditions is satisfied, then f is open:

(1) Y is a sequential space;
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(2) X is a sequential space and f is a quotient mapping.

Proof. Quotient mappings preserve sequential spaces, so condition (2) implies
condition (1). Thus we only need to prove that f is open if condition (1) is satisfied.

As f is an sn-open mapping, let P =
⋃{Py : y ∈ Y } be an sn-network of Y

as stated in Definition 2.5(3). Since Y is a sequential space, it suffices to prove
that whenever U is an open subset of X, then f(U) is a sequential neighborhood
of y in Y for each y ∈ f(U). Let y ∈ f(U); pick x ∈ f−1(y) ∩ U . Then U is a
neighborhood of x. So there exists P ∈ Py such that P ⊂ f(U). P is a sequential
neighborhood of y in Y , so is f(U). This completes the proof.

The following theorem is obtained from Remark 2.7, Proposition 2.9 and
Proposition 2.10.

Theorem 2.11. Let f : X −→ Y be a mapping. If X is first countable (espe-
cially, if X is metric), then the following are equivalent:

(1) f is an open mapping;
(2) f is a weak-open mapping;
(3) f is an sn-open, quotient mapping;
(4) f is a 2-sequence-covering, quotient mapping.

We denote some mapping property by P .

Corollary 2.12. The following are equivalent for a space X:
(1) X is an open, P -image of a metric space;
(2) X is a weak-open, P -image of a metric space;
(3) X is an sn-open, quotient, P -image of a metric space;
(4) X is a 2-sequence-covering, quotient, P -image of a metric space.

In a similar way as in the above proofs, we can obtain the following results.
For example, let f : X −→ Y be a 1-sequence-covering mapping. For every y ∈ Y ,
there exists xy ∈ f−1(y) satisfies Definition 2.5(7). In the proof of Proposition
2.9(2), if Py is replaced by {f(B) : B is a neighborhood of xy}, then it is obtained
easily that f is almost open.

Proposition 2.13. Let f : X −→ Y be a mapping. Then the following hold:
(1) If f is almost sn-open and X is first countable, then f is 1-sequence-

covering;
(2) If f is 1-sequence-covering, then f is almost sn-open.

Proposition 2.14. Let f : X −→ Y be an almost sn-open mapping. If one
of the following two conditions is satisfied, then f is almost open:

(1) Y is a sequential space;
(2) X is a sequential space and f is a quotient mapping.
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Theorem 2.15. Let f : X −→ Y be a mapping. If X is first countable (espe-
cially, if X is metric), then the following are equivalent:

(1) f is an almost open mapping;
(2) f is an almost weak-open mapping;
(3) f is an almost sn-open, quotient mapping;
(4) f is a 1-sequence-covering, quotient mapping.

Corollary 2.16. The following are equivalent for a space X.
(1) X is an almost open, P -image of a metric space;
(2) X is an almost weak-open, P -image of a metric space;
(3) X is an almost sn-open, quotient, P -image of a metric space;
(4) X is a 1-sequence-covering, quotient, P -image of a metric space.

3. Some Examples

S. Lin gave an example: there exists a 1-sequence-covering, closed mapping
f : X −→ Y such that f is not almost weak-open [9, Example 1]. We can prove f
is also 2-sequence-covering by revising the proof of this example. So we have the
following example.

Example 3.1. 2-sequence-covering, closed mapping 6=⇒ almost weak-open
mapping.

Proof. Let X1 = {x : x ≤ ω1}, where ω1 denotes the first uncountable ordinal.
We define the topology on X1 as follows.

If x < ω1, then {x} is open in X1. If x = ω1, then the neighborhood base at
x is the neighborhood base at x in ordinal space ω1 + 1.

Put X2 = X1 and let X be the topological sum X1 ⊕X2 of X1 and X2. We
write ω1 in X1 and ω1 in X2 by x1 and x2 respectively. Put A = {x1, x2} ⊂ X and
Y is the quotient space X/A obtained from X by shrinking the set A to a point.
Let f : X −→ Y be the natural mapping. Then:

(1) f is a closed mapping, and it is not almost weak-open [9, Example 1].
(2) Let {yn} be a sequence in Y converging to y ∈ Y . Then there exists k ∈ N

such that yn = y for n > k.
If y 6∈ f(A), then {y} is open in Y . {yn} converges to y, so there exists

k ∈ N such that yn ∈ {y} for n > k, that is, yn = y for n > k. If y ∈ f(A),
let αn ∈ f−1(yn) for each n ∈ N, and put x0 =

⋃{αn : n ∈ N and αn < ω1};
then x0 < ω1. Put U = (x0, ω1]; then U is a neighborhood of ω1 in X, so f(U) is
neighborhood of y in Y . It is easy to see that {yn : n ∈ N and yn 6= y}∩ f(U) = ∅.
Since {yn} converges to y, there exists k ∈ N such that yn ∈ f(U) for n > k. So
yn = y for n > k.

(3) f is 2-sequence-covering.
Let y ∈ Y , and x ∈ f−1(y). If {yn} is a sequence in Y converging to y, then

there exists k ∈ N such that yn = y for n > k from the above (2). Pick xn ∈ f−1(yn)
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for n ≤ k, and put xn = x ∈ f−1(y) = f−1(yn) for n > k. The sequence {xn}
converges to x in X with each xn ∈ f−1(yn). So f is 2-sequence-covering.

By the above (1) and (3), we complete the proof of this example.
The following example is due to [7, Example 3.10].
Example 3.2. Open mapping 6=⇒ 1-sequence-covering mapping.
Proof. Let X = {0} ∪ (N ×N). Put V (n, i) = {(n, k) ∈ N ×N : k ≥ i} for

each n ∈ N and each i ∈ N. The topology on X is defined as follows.
If (n,m) ∈ N×N, then (n,m) is open in X. For 0 ∈ X, an open neighborhood

base at 0 is {{0} ∪ (
⋃{V (n, in) : n ≥ m}) : m, in ∈ N}.

Let Y = {0}∪{1/n : n ∈ N} be the subspace of the real line. Put f : X −→ Y
by f(0) = 0 and f((n, i)) = 1/n for each n ∈ N and each i ∈ N. Then f is an open
mapping, and it is not 1-sequence-covering [7, Example 3.10].

It is well known that open mappings preserve first countable spaces. However,
do open mappings preserve g-first countable spaces? This question was raised by
Y. Tanaka in [12, Question 2.19(2)], and it is still open. We have the following
relative question.

Question 3.3. Do open mappings preserve sn-first countable spaces?
If the answer to Question 3.3 is affirmative, then so is the answer to Y. Tanaka’s

question. Note that almost sn-open mappings defined on first countable spaces are
1-sequence-covering mappings from Proposition 2.13(1) and 1-sequence-covering
mappings preserve sn-first countable spaces [8, Corollary 2.4.13(1)]. It is an inter-
esting question whether first countability of X in 2.13(1) can be relaxed to sn-first
countability or g-first countability. We have the following question.

Question 3.4. Is each open mapping defined on an sn-first countable space
or on a g-first countable space a 1-sequence-covering mapping?
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