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ASYMPTOTIC BEHAVIOUR OF DIFFERENTIATED
BERNSTEIN POLYNOMIALS

Heiner Gonska and Ioan Rasa

Abstract. In the present note we give a full quantitative version of a theorem of Floater
dealing with the asymptotic behaviour of differentiated Bernstein polynomials. While Floater’s
result is a generalization of the classical Voronovskaya theorem, ours generalizes a hardly known
quantitative version of this theorem due to Videnskii, among others.

1. Introduction
In a recent article Floater [2] proved the following
THEOREM 1. If f € C*+2[0,1] for some k > 0, then

1 d

k
lim 0 {(B,f) (@) = fP @)} = 5 {1 =) (@)},

n—oo

uniformly for x € [0,1].

Here B, is the Bernstein operator defined for a function f: [0,1] — R and
x € 10,1] by

Buf(x) =Y f () Pai(a),
=0 n
where

poste) = (7)==, i< 0.

In the sequel we will also use the abbreviations X = z(1 — x) and e;(z) = z* for
i =0,1,2,.... Floater’s result is a generalization of the classical Voronovskaya
theorem (see [10]) which is obtained for £k = 0. In a recent paper [3] the latter
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theorem was given in quantitative form as follows, improving an earlier estimate

by Videnskil (see [9]).

THEOREM 2. For f € C?[0,1], = € [0,1] and n € N one has

wmwmwﬂm—““@4m4<whﬂﬁ«@ 2+%“@>

2 2 n n

Here @ is the least concave majorant of w, the first order modulus of continuity,
satisfying
w(fie) <o(fie) < 2w(fre),  €20.
The above inequality follows from a more general asymptotic statement which was
inspired by results of Bernstein [1] and Mamedov [7]. This is given in

THEOREM 3. Let g € Ny, f € C0,1] and L: C[0,1] — C]0,1] be a positive
linear operator. Then

q (T) €T

L{fia) — 3 Ll(er — 2)riz) - L0

r=0 7!
_ 4. _ la+l.
< L(|ex a:|q,a:)® (f(Q); L(ley — x|t x) )

q! (g +1)L(ler — z[%; )

It is the aim of this note to prove a quantitative version of Floater’s result. In
doing so we will make essential use of a corollary of Theorem 3 for the case ¢ = 2.

COROLLARY 1. Under the assumptions of Theorem 8 one has, for ¢ = 2, the
inequality

L(f;x) = f(x) - L(eos ) — f'(x) - L(ey — w32) — %f”(x) L((er — 2)* @)

2 ~ " 1 L 61_x4;x
.L((61—33)§$)'w< 137 M)

<

N | =

The square root is obtained by using the Cauchy-Schwarz inequality for positive
linear functionals.

2. An auxiliary result

An operator L: C[0,1] — C*¥[0,1] is said to be convex of order k — 1 if it
preserves convexity of order kK — 1, k € NU {0}. This means that any function f
with divided differences

[0, ..., zk; f] >0 for any zg < --- <z € [0, 1]

is mapped to a function Lf having the same property.
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The Bernstein operator is an example of a mapping which is convex of all
orders k € N U {0}.

For an operator L being convex of order k — 1 and satisfying L(IIx_1) C I
consider

T (e k-1
I+ C[0,1] = C[0,1] given by (ka)(m):/o =

Let Q% := D¥ o L o I}, where D* = %kk.

Q* may be considered as a k-th order Kantorovich modification of L. Since
L is convex of order k — 1, it follows that Q¥ is a linear and positive (convex of
order —1) operator. Since I D¥f — f € _; and L(II;_1) C Ii_1, we have
L(IyD*f — f) € Hy_1. It follows D¥LI;,D*f = D*Lf, hence Q*D* f = D¥Lf, for
all f € C*0,1].

To our knowledge the latter construction is due to Sendov and Popov [8].

3. Main result

In this section we will prove the main result of this note by providing the
following quantitative version of Floater’s convergence result.

THEOREM 4. If f € C*+2(0,1] for some k > 0, then
1 d*

n[(Bnf) M (z) = fP(@)] = 5 - ——{a(l - 2)f"(2)}
1), e ) (2 ol . L
<0(3): max (79@N -+ 005 (142 22 ).

Here O (%) and O(1) represent sequences of order O (%) and O(1), respectively,
which depend on the fized k.

Proof. Put QF := D*B, I},. For this positive linear operator we apply Corol-
lary 1 and write the left hand side of the inequality for f € C**2[0,1] as

Qk(f®:iz) = fP (@) - Qh(eoiz) = fHH) (@) - Qh(er — 252)
— 5 1 @) Qh((er — %)

= DBy (f;2) — fP (@) + FP(2)(1 = Qf (eo; ) — FHTV (2) - Qb (e1 — a3 )
1 1 gk

D@ Qh((en — 0)%0) — a1~ a) - [ ()}
1 d* "
b o el ) (@)
DB (Fa)— F By — LDy

—{(Qk(eosz) = 1) - f P (@) + FF () - QF(e1 — a3 2)

k
4 576D @) - Qh((er — %) — o el =) @)
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Multiplying the inequality of Corollary 1 by n and using the (second) triangular
inequality yields

B (Fia)— Oy — Ly
0 AD*Bu(fi2) = [P @)} = 5 {1 =) (@)}

< |- @h(eoi) = 1) FD @) + 54 (@) - Qe — w3)

k
S FE @) e @ (e — %) — 5 el — ) - £ (@)

no Ak e — )2 ) O (k+2),1 Qr((e1 — )% x)
ty Gl m o) (f ’3\/Qﬁ<<e1—x>2m)>'

Both summands of the r.h.s. will now be inspected separately. In order to do so,
first observe that by Leibniz’ rule one has

1 dF

1dr k(k — 1)
2 daxk

X/ @)} =3 {f(’““)(x) Xtk [ (@) X = (x)(—z)}.

Note that this is correct also for k € {0,1}. So the first summand can be estimated
from above by

v (@b a) = 1)+ LEZD L @) - Qhfer = i) - S A7)

+ ’ -Qﬁ((ﬁ —.’L’)Q;.T) _ ;X’ . |f(k+2)(x)|

= AL @)+ B - [f5Y (@) + O - 1 F 5 ().

|3

Now for n > 1 and k > 0, also noting that (n)o = 1, we have

Ay = n'<(n)k1>+k(k_1)‘

nk 2
k terms
—1...(n—k+1)—n* kk-1
| M=) =k Dt k=)
n 2

nk—1 2 5 T3 n

B (n)knk+k(k1)lg‘k(k1) k(k1)‘+0<1)'

In order to verify the last inequality it is only necessary to observe that

1 1 k(k—1) ,_
e — n*} = oy {"k - %”k '

+ (lower order terms in n) — nk} .

Note that A% =0 for k € {0,1}.
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Moreover (see [5], pp. 44-45), for n > 1 and k > 0 we get

.%.ﬁ)ﬁ_ﬁ
nk  2n 2

(’7;‘,1’“_1’g’;|x’-’““€_1):o(1>.

k
= |n-Qiler i) — - X' X

k
= 21X/
2| | 2k n

We also have BF = 0 for k € {0,1}. For the last factor we have (see [6], p. 26) for
n>k+2

Ck =[5 -kl - %) - 53X
=z (")’“ (n—k(k+1)) - X+—k(3k+1) _fx
2 npkt2
1 1 (n)k
=3 { kE(k+1)) - }+24 k+1l<:(3k:+1)‘
1 1
5 (kJ)rl( k(k+1))—1‘+0<n).
It remains to consider the quantity inside |...|. The latter is equal to
1 k(k—1) ,_ -
| ("k - %”k L O ) (n = k(k + 1)) -1

S o(3)-0[2) o(2) o(3) -0 (2)

Note that C* = 0 for k = 0. So we know that

nAD B (fiw) = [P @) = 5 - Trfa(l =) (@)

1 dk ’
<0 <i> -max{|f® (2)], |[fE ()], [ FFT) (2)]}

+ g .Qﬁ((el —x)2;x) - (f(’f+2);;\/Qk((el_W> 7

n((er — )% )

where O depends only on k.
For the factor in front of &(f*+2);...) we have already observed that

% Q((e1 — )% 1) = g : :Z)+k2 [(n —k(k+1))- X + %k(i&k + 1)] = 0(1).

Hence it remains to consider the square root in &(f*+2);...). This is done in the
following lemmas dealing with the moments of Q*. m

LEMMA 1. Suppose that L,: I — II, n > 1, is a linear operator mapping
polynomials into polynomials and such that L,(II;) C II;, n > 1,5 > 0. If we
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define
1
My m(z) == %Ln((el —x)™x),n>1,m >0,
1
Rﬁ,p('x) = HQI:L((el - x)p;x),n > 17k > Oap > 07
then

Ry =% (,r ) M,

i \PTk—j
Proof. We will use the notation %) f = I f to denote a k-th antiderivative of
1, feC)o,1].
First observe that
M,y €10, for n>1 and m > 0.
Now let k > 0, p > 0 be fixed, f € II,,, z € [0,1]. Then

j=0 It
and hence
ptk )
La(®)(@) = £ (DN (@) Mo ().
=
Thus

p+k ‘ Ptk k. [f o »
TR (CREITREES v o () [CHE

§=0i=0
Noting that M\ = 0if 0 <i < k — j, we may write
+k k .
A=t v (D).
=0 i=max{0,k—j} \? 7
Substituting i +j — j = ¢, i = £ + k — j, the latter becomes

ptk J k —0)
S ( ) FOMY
7=0 £=max{j—k,0} l+k— J 7

p+k min{{+k,p+k} k .
= OMYUY f e,
PR <€+k —j)f ni oL €T

This is correct in view of (a;, € R)

ke
aje, if E+0<k+
ptk j p+k EZ 36 - p;
DX =,
7=0 ¢=max{j—k,0} £=0 P

aje, if k+0>Fk+p.
j=¢
ptk min{l+k,ptk}

= > aje

=0 =t
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Note that the L.h.s. corresponds to “horizontal summation first, then vertical”, while
the r.h.s. corresponds to the opposite.

We obtain Rﬁyp(x) if we put f = I%(el — 2)? in QFf, also observing that
fO@x)=0for £ €{0,...,p+k}\ {p} and f® (x) = 1. Hence

b Ok (—p)
Ry plz) = 2 (erk j)Mn,j (), n>1,k>0,p>0. =
J=p

In order to come up with a description of the asymptotic behavior of the ratio
in question, we investigate the quantities Rf”;’p(x) further in case that L, = B,.
We have the following

LEMMA 2. For the Bernstein operators B, we have

Rk
n—tt <A n>1
Rn2

Ly

9

for some positive constant A.

Proof. For B,, we have

X iz .
M pj(2) = —5—5 _;)aji(n)XZ,

XX izl X
M 2j1(2) = —o5 ZO bji(n) X",

where aj;(n) and b;;(n) are polynomials in n, of degree 7.

By the previous lemma,

Rt , = kf P mlen L (X2up1(n) + Xo(n) + we_1(n))
n,4 A \kra—j) 2 k+1 k k-1 ,

where ug41, vr and wy_1 are polynomials of degrees indicated by the corresponding
indices. Analogously,

1
Ry, = E(XQkH(”) +7rk(n)).
Now the claim of the lemma is a consequence of the latter two representations. m

Continuation of the proof of Theorem 4. All we have to observe is that
k — )4 4! Rk (z 1
an((el :C)va _ 274( ) S GA*,
Qr((er —x)? ) 21 Ry, 5(x) n

where A is the uniform bound from Lemma 2. The final statement follows from
the inequality

O(f;ce) < (c+1)-0(f;€), c,e>0. m
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REMARK 1. We noted earlier that A¥ = B¥ = C* =0 for k = 0. In this case

the inequality of Theorem 4 can be replaced by

(B f (@) ~ f(@)] - L2l - 2) - () < O(1) - ( . jﬁ) |

In fact, looking at the proof again shows that we even get the right hand side

2

2 Bu((er —2)%2) - @ w1 [Baller —2)h2) ) _ z(l — ) w( o 1 > .

"3\ Bn((ex —x)%2) ) — 2

"3vn

This is the quantitative version of the classical Voronovskaya theorem given first
in [4].
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