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SOME DECOMPOSITIONS OF SEMIGROUPS

Petar V. Protić and Neboǰsa Stevanović

Abstract. In this paper we will introduce the notion of a-connected elements of a semigroup,
a-connected semigroups, and weakly externally commutative semigroup, and we prove that a
weakly externally commutative semigroup is a semilattice of a-connected semigroups. Undefined
notions can be found in [4].

Let (S, ·) be a semigroup and a ∈ S. We define a binary operation (sandwich
operation) ◦ on the set S by x ◦ y = xay, where x, y ∈ S. Then S becomes a
semigroup with respect to this operation. We denote it by (S, a), and we refer
to (S, a) (for any a ∈ S) as a variant of (S, ·). Variants of semigroups of binary
relations have been studied by Blyth and Hickey [1], Hickey [2,3].

A semigroup S is called Archimedean if, for every couple a, b ∈ S, there exists
n ∈ Z+ such that an ∈ SbS.

Let S be a commutative semigroup, a ∈ S, then (S, a) is also a commutative
semigroup. By above mentioned (S, a) is a semilattice of Archimedean semigroups,
i.e. S =

⋃
α∈Y Sα, Y is a semilattice, Sα are Archimedean semigroups for every

α ∈ Y . Now, if x, y ∈ Sα, then there exists n ∈ Z+ such that

x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
n

∈ y ◦ S ⇐⇒ xnan−1 ∈ yaS .

This gives the motivation for the following

Definition 1. Let S be a semigroup and a ∈ S. The elements x, y ∈ S are
a-connected if there exist n,m ∈ Z+ such that (xa)n ∈ yaS and (ya)m ∈ xaS. The
semigroup S is a-connected if x, y are a-connected for all x, y ∈ S.

We remark that if (xa)n ∈ yaS and (ya)m ∈ xaS, then (xa)p ∈ yaS, (ya)p ∈
xaS where p = max{n,m}, m, n, p ∈ Z+.
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In [5] S. Lajos introduced the concept of external commutativity to semigroups.
A semigroup S is called an externally commutative semigroup if it satisfies the
permutation identity xyz = zyx. It has been shown in [6] that simple semigroups
and cancellative semigroups are all externally commutative semigroups.

In [7] M. Yamada gave the construction of arbitrary externally commutative
semigroups.

In [6] we have introduced the concept of weakly external commutativity.

Definition 2. If in a semigroup S there exist an element a so that for all
x, y ∈ S

xay = yax, (1)
holds, then a semigroup S is called a weakly externally commutative semigroup.

Example 1. Let the semigroup S be a given by the table
1 2 3 4

1 2 1 1 1
2 1 2 2 2
3 1 2 2 2
4 1 2 3 4 .

Then S is not an externally commutative semigroup since 3 · 4 · 4 = 2 6= 4 · 4 · 3 = 3.
However S is a weakly externally commutative semigroup because, x ·1 ·y = y ·1 ·x,
x · 2 · y = y · 2 · x, x · 3 · y = y · 3 · x for all x, y ∈ S.

Clearly, every externally commutative semigroup S is a weakly externally com-
mutative.

Example 2. Let K be a commutative monoid, T semigroup with zero. Let
ϕ : T − {0} −→ K be an arbitrary homomorphism. Let S = K ∪ T − {0} and
multiplication on S defined by:

A ◦B =
{

AB, for AB 6= 0 in T

ϕ(A)ϕ(B), for AB = 0 in T,

A ◦ c = ϕ(A)c, c ◦A = cϕ(A), c ◦ d = cd, for each c, d ∈ K.
It is not hard to prove that (S, ◦) is a semigroup. Moreover, if A, B ∈ T −{0},

s ∈ K are arbitrary elements then,

A ◦ s ◦B = (ϕ(A)s) ◦B = (ϕ(A)s)ϕ(B) = ϕ(A)sϕ(B)

= ϕ(B)sϕ(A) = (B ◦ s)ϕ(A) = B ◦ s ◦A.

Consequently, S is a weakly externally commutative semigroup. It is clear that S
will not be commutative or externally commutative if T is not such.

In [7] we have proved the the following result.

Lemma 1. Let S be a weakly externally commutative semigroup, then the set

B = {a ∈ S | (∀x, y ∈ S) xay = yax}
is an ideal in S.
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Lemma 2. Let S be a weakly externally commutative semigroup, x, y ∈ S and
a ∈ B. Then for k ∈ Z+ we have

(xay)2k = (xa)2k−1y2k−1xay, (xay)2k+1 = (xa)2k+1y2k+1 . (2)

Proof. We prove this lemma by induction. For k = 1, since by Lemma 1
xay ∈ B, it follows that

(xay)2 = xayxay, (xay)3 = xay(xay)xay = xaxa(xay)yy = (xa)3y3 .

Suppose that (2) holds, then

(xay)2k+2 = (xay)2k+1xay = (xa)2k+1y2k+1xay,

(xay)2k+3 = (xay)2k+2xay = (xa)2k+1y2k+1(xay)xay

= (xa)2k+1xa(xay)y2k+1y = (xa)2k+3y2k+3 .

Remark 1. From Lemma 2 it follows that

(xay)m ∈ (xa)m−1S (3)

for each x, y ∈ S, a ∈ B and m ∈ Z+.

Theorem 1. Let S be a weakly externally commutative semigroup, a ∈ B
arbitrary fixed element. Then S is a semilattice of a-connected semigroups.

Proof. We define a relation ρ on S by

xρy ⇐⇒ (∃n ∈ Z+) (xa)n ∈ yaS, (ya)n ∈ xaS. (4)

From (xa)2 = xaxa ∈ xaS it follows that ρ is a reflexive relation. Clearly ρ is a
symmetric relation. Let x, y ∈ S be elements such that xρy and yρz. Then

(∃n ∈ Z+) (xa)n ∈ yaS, (ya)n ∈ xaS ,

and
(∃m ∈ Z+) (ya)m ∈ zaS, (za)m ∈ yaS ,

There exist t, s ∈ S such that (xa)n = yat, (za)m = yas. Now by (3) we have

(xa)(n+1)(m+1) = (xa)n(m+1)(xa)m+1 = (yat)m+1(xa)m+1

∈ (ya)mS(xa)m+1 ⊆ zaS,

(za)(n+1)(m+1) = (za)n(m+1)(za)m+1 = (yas)n+1(za)n+1

∈ (ya)nS(za)n+1 ⊆ xaS ,

whence xρz so ρ is a transitive relation.
Hence, ρ is an equivalence relation.
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Clearly, from xρy we have that (xa)2n+1 ∈ yaS. Let z ∈ S be an arbitrary
element. Since a ∈ B and B is an ideal, by Lemma 2 we obtain

(xza)2n+2 = x(zax)2n+1za = x(xaz)2n+1za = x(xa)2n+1z2n+1za

= x(xa)2n+1zz2n+1a ∈ xyaSzz2n+1a

= xzaSyz2n+1a = yzaSxz2n+1a ⊆ yzaS .

Analogously, (yza)2n+2 ∈ xzaS, so xzρyz. Hence ρ is a right congruence on S.
Similarly,

(zxa)2n+2 = z(xaz)2n+1xa = z(xa)2n+1z2n+1xa ∈ zyaSz2n+1xa ⊆ zyaS ,

and analogously (zya)2n+2 ∈ zxaS. Hence, zxρzy and the equivalence relation ρ is
a left congruence on S.

By what has been said above it follows that ρ is a congruence on S.
Let x ∈ S. Then, since ax2, xa ∈ B, we obtain

(x2a)3 = xx(ax2)ax2a = xa(ax2)xx2a ∈ xaS ,

and
(xa)3 = xa(xa)xa = xxa(xa)a ∈ x2aS .

Thus xρx2. Hence ρ is a band congruence on S.
Let x, y ∈ S, then

(xya)2 = x(yax)ya = y(yax)xa = yy(ax)xa = yxa(ax)y ∈ yxaS .

Analogously, (yxa)2 ∈ xyaS. Consequently xyρyx. So ρ is a semilattice congruence
on S, whence S is a semilattice of a-connected semigroups.

Corollary 1. Any externally commutative semigroup S is a semilattice of
a-connected semigroups for every a ∈ S.

Proof. Any element a ∈ S satisfies xay = yax for all x, y ∈ S.
A semigroup S is called a medial semigroup if it is satisfies the permutation

identity xyzt = xzyt.
Example 3. Let a semigroup S be given by the table

1 2 3

1 2 2 2
2 2 2 2
3 3 3 3 .

The semigroup S given by the above table is a medial semigroup and S is not
externally commutative semigroup since 2 · 1 · 3 = 2 6= 3 = 3 · 1 · 2.

Theorem 2. A medial semigroup S is a band of a-connected semigroups for
each a ∈ S.
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Proof. On the medial semigroup S, for arbitrary fixed a ∈ S we define the
relation ρ, given by (4). By Theorem 1 we see that ρ is an equivalence relation.

Let x, y ∈ S be elements such that xρy. Then

(∃n ∈ Z+) (xa)n ∈ yaS, (ya)n ∈ xaS.

If z ∈ S is an arbitrary element, then by mediality

(xza)n+1 = (xa)nzn+1xa ∈ yaSzznxa = yzaSznxa ⊆ yzaS .

Dually, (yza)n+1 ∈ xzaS. Similarly, (zxa)n+1 ∈ zyaS, (zya)n+1 ∈ zxaS. Hence ρ
is a congruence relation on S.

Let x ∈ S be an arbitrary element, then

(x2a)2 = x2ax2a = xax3a ∈ xaS,

(xa)2 = xaxa = x2aa ∈ x2aS,

whence ρ is a band congruence on S. By the definition of ρ, each ρ-class is a-
connected. Thus S is a band of a-connected semigroups.

Definition 3. Let S be a semigroup and a ∈ S, elements x, y ∈ S are simply
a-connected if

xa ∈ yaS, ya ∈ xaS.

Let S be a semigroup and a ∈ S. The semigroup S is said to be simply
a-connected if every two elements are simply a-connected.

For example, a group G is simply a-connected, for every a ∈ G.
Example 4. The semigroup S given by the table

1 2 3

1 2 2 1
2 2 2 2
3 2 2 3 ,

is simply 1-connected and it is not a group. Moreover, S is trivially simply 2-
connected since 2 is a zero on S and S is not simply 3-connected because 1 · 3 · 3 6=
3 · 3 · 1.

The semigroup S in Example 2 is not simply a-connected since, for example,
1 · 1 /∈ 3 · 1 · S, 1 · 2 /∈ 3 · 2 · S, 2 · 3 /∈ 3 · 3 · S.

Remark 2. Let S be an arbitrary semigroup and a ∈ S, then the relation η
defined on S by

xηy ⇐⇒ xa ∈ yaS1, ya ∈ xaS1

is, clearly, a left congruence relation on S. If S is commutative semigroup, then
η is a semilattice congruence and so a commutative semigroup is a semilattice of
simply a-connected semigroups, for every a ∈ S.
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Example 5. Let the semigroup S be given by the table

2 3 4 5 6

2 3 2 2 2 3
3 2 3 3 3 2
4 2 3 3 3 2
5 2 3 3 5 6
6 3 2 2 6 5 .

Since S is a commutative semigroup, it is a-connected for every a ∈ S. If a = 2,
then η = S × S. If a = 5, then η-classes are Sα = {2, 3, 4}, Sβ = {5, 6} and
Y = {α, β} is a semilattice.
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