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ON so-METRIZABLE SPACES
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Abstract. In this paper, we give some new characterizations for so-metrizable spaces, which
answers a question posed by Z. Li and generalize some results on so-metrizable spaces. As some
applications of the above results, some mappings theorems on so-metrizable spaces are obtained.

1. Introduction

so-networks (i.e. sequentially-open networks) were introduced and investigated
by S Lin in [15]. Spaces with a σ-locally finite so-network are called so-metrizable
spaces, which lie between metrizable spaces and sn-metrizable spaces. In [16], S.
Lin gave the following characterization for so-metrizable spaces (see [16, Corollary
2.9 and Theorem 3.15]).

Theorem 1.1. The following are equivalent for a space X:
(1) X is an so-metrizable space.
(2) X is an ℵ-space and contains no closed subspace having S2 or Sω as its

sequential coreflection.

Note that there exist the following characterizations for metrizable spaces and
sn-metrizable spaces respectively.

Theorem 1.2. [21, Corollary 9] The following are equivalent for a space X:
(1) X is a metrizable space.
(2) X has a σ-discrete base.
(3) X has a σ-hereditarily closure-preserving base.
(4) X is a first countable space with a σ-hereditarily closure-preserving k-

network.

Theorem 1.3. [9, Lemma 2.2] The following are equivalent for a space X:

AMS Subject Classification: 54C10, 54D50, 54E35, 54E99.
Keywords and phrases: so-network,; sof -countable; so-metrizable space.
This project is supported by NSFC (No.10971185 and 10671173)

209



210 Xun Ge

(1) X is an sn-metrizable space.
(2) X has a σ-discrete sn-network.
(3) X has a σ-hereditarily closure-preserving sn-network.
(4) X is an snf -countable space with a σ-hereditarily closure-preserving k-

network.

Z. Li posed the following question [13, Question 3.2].
Question 1.4. Whether there exist some characterizations for so-metrizable

spaces, which are similar to Theorem 1.2 or Theorem 1.3?
In this paper, we answer the above question affirmatively and give some map-

pings theorems on so-metrizable spaces. Throughout this paper, all spaces are
assumed to be regular T1, and all mappings are continuous and onto. N, ω and
ω1 denote the set of all natural numbers, the first infinite ordinal and the first
uncountable ordinal respectively. The sequence {xn : n ∈ N} and the sequence
{Pn : n ∈ N} of subsets are abbreviated to {xn} and {Pn} respectively. Let P be a
subset of a space X and {xn} be a sequence in X. {xn} converging to x is eventu-
ally in P if {xn : n > k}∪ {x} ⊂ P for some k ∈ N; it is frequently in P if {xnk

} is
eventually in P for some subsequence {xnk

} of {xn}. Let P be a collection of sub-
sets of X and x ∈ X. Then (P)x denotes the subcollection {P ∈ P : x ∈ P} of P,⋃P and

⋂P denote the union
⋃{P : P ∈ P} and the intersection

⋂{P : P ∈ P}
respectively.

2. Characterizations

Definition 2.1. [7,11] Let X be a space.
(1) Let x ∈ P ⊂ X. P is called a sequential neighborhood of x in X if whenever

{xn} is a sequence converging to x, then {xn} is eventually in P .
(2) Let P ⊂ X. P is called a sequentially-open subset in X if P is a sequential

neighborhood of x in X for each x ∈ P . F is called a sequentially-closed subset in
X if X − F is sequentially-open in X.

(3) X is called a sequential space if each sequentially-open subset in X is open
in X.

(4) X is called a k-space, if F ⊂ X is closed in X iff F ∩ C is closed in C for
every compact subset C in X.

Remark 2.2. The following are well known.
(1) P is a sequential neighborhood of x in X iff each sequence {xn} converging

to x is frequently in P .
(2) The intersection of finitely many sequentially-open subsets of x in X is a

sequentially-open subset of x in X.
(3) sequential spaces =⇒ k-spaces.

Definition 2.3. [4] Let P a collection of subsets of a space X.
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(1) P is called closure-preserving if
⋃P ′ =

⋃{P : P ∈ P ′} for each P ′ ⊂ P.
(2) P is called hereditarily closure-preserving if any collection {H(P ) : P ∈ P}

is closure-preserving, where every H(P ) ⊂ P ∈ P.

Definition 2.4. Let P =
⋃{Px : x ∈ X} be a cover of a space X, where

Px ⊂ (P)x.
(1) P is called a network of X [3], if whenever x ∈ U with U open in X there

exists P ∈ Px such that x ∈ P ⊂ U , where Px is called a network at x in X.
(2) P is called a cs-network of X [19], if for every convergent sequence S

converging to a point x ∈ U with U open in X, S is eventually in P ⊂ U for some
P ∈ P.

(3) P is called a k-network of X [19], if for every compact subset K ⊂ U with
U open in X, there exists a finite F ⊂ P such that K ⊂ ⋃F ⊂ U .

Definition 2.5. Let P =
⋃{Px : x ∈ X} be a cover of a space X. Assume

that P satisfies the following (a) and (b) for each x ∈ X.
(a) Px is a network at x in X.
(b) If P1, P2 ∈ Px, then there exists P ∈ Px such that P ⊂ P1 ∩ P2.
(1) P is called an sn-network of X [16,19], if every element of Px is a sequential

neighborhood of x for each x ∈ X, where Px is called an sn-network at x.
(2) P is called an so-network of X [15,16], if every element of Px is a

sequentially-open subset, where Px is called an so-network at x.

Definition 2.6. [16] Let X be a space. X is an sof -countable (resp. snf -
countable) space if for each x ∈ X, there exists an so-network (resp. sn-network)
Px at x in X such that Px is countable.

Definition 2.7. Let X be a space.
(1) X is an so-metrizable space [13] if X has a σ-locally finite so-network.
(2) X is an sn-metrizable space [9] if X has a σ-locally finite sn-network.
(3) X is an ℵ-space [11] if X has a σ-locally finite k-network.

Remark 2.8. For a space, base =⇒ so-network =⇒ sn-network =⇒ cs-
network. An so-network for a sequential space is a base. So the following hold:

(1) First-countable =⇒ sof -countable =⇒ snf -countable.
(2) First-countable ⇐⇒ sequential and sof -countable.
(3) metrizable spaces =⇒ so-metrizable spaces =⇒ sn-metrizable spaces =⇒

ℵ spaces.
(4) metrizable spaces ⇐⇒ k- and so-metrizable spaces.
The following example shows that “sequential” in Remarks 2.8(2) can not be

relaxed to “k”.
Example 2.9. There exists a k-, sof -countable space X such that is not

first-countable.
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Proof. Let X be the Stone-Čech compactification βN of N. Then X is com-
pact, and so it is a k-space. Since each convergent sequence in βN is trivial,
P = {{x} : x ∈ X} is an so-network of X, so X is sof -countable. It is known that
X is not first countable.

Definition 2.10. Let S = {1/n : n ∈ N} ∪ {0} be a space with the usual
topology induced from R. For each α < ω1, let Sα be a copy of S. Then Sω1 denotes
the quotient space obtained from the topological sum ⊕α<ω1Sα by mapping all the
nonisolated points into one point [12].

Lemma 2.11. Let P be a hereditarily closure-preserving collection of sequen-
tially-open subsets of a space X. Then

⋂P is a sequentially-open subset of X.

Proof. Let x ∈ ⋂P, and let {xn} be a sequence converging to x. By Remark
2.2(1), we only need to prove that {xn} is frequently in

⋂P. If xn = x for infinitely
many n ∈ N, then {xn} is frequently in

⋂P. If xn 6= x for all but finitely many
n ∈ N, we may assume xn 6= x for all n ∈ N, then P is finite. Indeed, suppose
P is infinite. Then there exists an infinite subcollection {Pk : k ∈ N} of P, where
Pk 6= Pl if k 6= l. Since {xn} converges to x and Pk is sequentially-open for each
k ∈ N, we can construct a subsequence {xnk

} of {xn} such that xnk
∈ Pk for each

k ∈ N. Note that P is hereditarily closure-preserving and {xnk
} converges to x.

So x ∈ {xnk
: k ∈ N} = {xnk

: k ∈ N}. This is a contradiction. So P is finite. By
Remark 2.2(2),

⋂P is sequentially-open.

Lemma 2.12. Let X be a space and x ∈ X. If there exists a σ-hereditarily
closure-preserving network at x in X such that its every element is a sequentially-
open subset in X, then there exists a countable and decreasing so-network at x
in X.

Proof. Let P ′ =
⋃{Pn : n ∈ N} is a network at x in X, where Pn is hereditarily

closure-preserving for each n ∈ N and every element of P ′ is a sequentially-open
subset in X. We may assume each Pn ⊂ Pn+1. For each n ∈ N, put Pn =

⋂Pn,
then Pn+1 ⊂ Pn as Pn ⊂ Pn+1. Put P = {Pn : n ∈ N}, then P is countable and
decreasing.

Claim 1. P is a network at x in X.

Let x ∈ U with U open in X. Since P ′ is a so-network, there exists P ∈ Pn

for some n ∈ N such that x ∈ P ⊂ U . Thus x ∈ Pn ⊂ P ⊂ U . This proves that P
is a network at x in X.

Claim 2. If Pi, Pj ∈ P, then Pk ⊂ Pi ∩ Pj for some Pk ∈ P.

It is clear because P is countable and decreasing.

Claim 3. Pn is a sequentially-open subset for each n ∈ N.

It holds from Lemma 2.11.

By the above three claims, P is a countable and decreasing so-network at x
in X.
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Corollary 2.13. Let a space X have a σ-hereditarily closure-preserving so-
network. Then X is an sof-countable space.

Lemma 2.14. sof -countable space contains no copy of Sω1 .

Proof. Note that Sω1 is a sequential space, but it is not first-countable. By
Remark 2.8(2), Sω1 is not sof -countable. Obviously, sof -countable spaces are
hereditary to all subspaces. So sof -countable space contains no copy of Sω1 .

Lemma 2.15. Let X be an sof -countable space with a σ-hereditarily closure-
preserving k-network. Then X has a σ-discrete so-network.

Proof. Since X is sof -countable, X contains no copy of Sω1 from Lemma
2.14. Note that a space is an ℵ-space iff it has a σ-hereditarily closure-preserving
k-network, and contains no copy of Sω1 [12, Theorem 2.6]. So X is an ℵ-space.
By [6, Theorem 4], X has a σ-discrete cs-network B. For each x ∈ X, let P ′x be a
countable so-network at x in X. By Remark 2.2(2), we can assume that each P ′x
is decreasing. For each x ∈ X, put Bx = {B ∈ B : P ⊂ B for some P ∈ P ′x}. By
a similar way as in the proof of [18, Lemma 7(3)], Bx is a network at x in X. For
each B ∈ Bx, choose PB ∈ P ′x such that PB ⊂ B. Put Px = {PB : B ∈ Bx}, and
put P =

⋃
x∈X Px. It suffices to prove the following three claims.

Claim 1. P is σ-discrete: It holds because
⋃

x∈X Bx is σ-discrete.

Claim 2. Every element of P is sequentially-open: It is clear.

Claim 3. For each x ∈ X, Px is a network at x in X: Let x ∈ U with U open
in X. Since Bx is a network at x in X, x ∈ B ⊂ U for some B ∈ Bx. By the
construction of Px, there exists PB ∈ Px such that x ∈ PB ⊂ B ⊂ U . So Px is a
network at x in X.

Now we give the main theorem in this section, which answers Question 1.4
affirmatively.

Theorem 2.16. The following are equivalent for a space X:

(1) X has a σ-discrete so-network.

(2) X is an so-metrizable space.

(3) X has a σ-hereditarily closure-preserving so-network.

(4) X is an sof -countable space with a σ-hereditarily closure-preserving k-
network.

Proof. (1) =⇒ (2) =⇒ (3): Obvious.

(3) =⇒ (4): By Corollary 2.13, X is sof -countable. Note that every σ-
hereditarily closure-preserving so-network of a space is a k-network [20, Proposition
1.2(2)]. So X has a σ-hereditarily closure-preserving k-network.

(4) =⇒ (1): It holds by Lemma 2.15.
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3. Invariance and inverse invariance under mappings.

Definition 3.1. Let f : X −→ Y be a mapping.
(1) f is called a closed (resp. an open) mapping [5] if f(B) is closed (resp.

open) in Y for every closed (resp. open) subset B in X.
(2) f is called an sn-open mapping [10] if there exists an sn-network P =

{Py : y ∈ Y } of Y such that for each y ∈ Y and each x ∈ f−1(y), whenever U is a
neighborhood of x, then P ⊂ f(U) for some P ∈ Py.

(3) f is called a perfect mapping [5] if f is closed and f−1(y) is a compact
subset of X for each y ∈ Y .

Remark 3.2. (1) open mappings =⇒ sn-open mappings.
(2) It is easy to obtain a simple characterization for sn-open mappings: A

mapping f : X −→ Y is sn-open iff f(B) is a sequentially-open subset in Y for
every open subset B in X. (So more precisely, sn-open mappings should be called
sequentially-open mappings).

Definition 3.3. A space X is said to have a Gδ-diagonal [11] if {(x, x) : x ∈
X} is a Gδ-set in X ×X.

Definition 3.4. Let X be a space. Put σ = {P ⊂ X : P is sequentially open
in X}, and endow X with the topology σ. The space (X,σ) is called sequential
coreflection of X [16], and denoted by σX.

Definition 3.5. (1) Let L0 = {an : n ∈ N} be a sequence converging to ∞,
where ∞ 6∈ L0. For each n ∈ N, let Ln be a sequence converging to bn, where
bn 6∈ Ln. Put T0 = L0 ∪ {∞} and Tn = Ln ∪ {bn} for each n ∈ N. Let M be
the topological sum of {Tn : n ≥ 0}. Then S2 denotes the quotient space obtained
from the topological sum M by identifying an with bn for each n ∈ N [1].

(2) Let S = {1/n : n ∈ N} ∪ {0} be a space with the usual topology induced
from R. For each α < ω, let Sα be a copy of S. Then Sω denotes the quotient
space obtained from the topological sum ⊕α<ωSα by mapping all the nonisolated
points into one point [2].

It is easy to see that a closed image of a so-metrizable space need not be
so-metrizable. Now we give a sufficient and necessary condition such that closed
images of so-metrizable spaces are so-metrizable spaces.

Lemma 3.6. Let f : X −→ Y be a closed mapping, and let X have a σ-
hereditarily closure-preserving k-network. Then Y is so-metrizable iff Y is sof -
countable.

Proof. Necessity is obvious. We only need to prove sufficiency. Let Y be sof -
countable. Note that closed mappings preserve σ-hereditarily closure-preserving
k-networks. So Y has a σ-hereditarily closure-preserving k-network. By theorem
2.16, Y is so-metrizable.
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We immediately obtain the following result by the above lemma.

Theorem 3.7. A closed image of an so-metrizable space is so-metrizable iff
it is sof-countable.

Perfect mappings preserve metrizable spaces. However, we do not know even
whether finite-to-one, closed mappings preserve so-metrizable spaces. As an appli-
cations to Theorem 3.7, we give some partial answers to this question.

Lemma 3.8. Let f : X −→ Y be an sn-open, closed mapping and each point in
X be a Gδ-set. If P is a sequentially-open subset in X, then f(P ) is a sequentially-
open subset in Y .

Proof. Let P be a sequentially-open subset in X and y ∈ f(P ). Let {yk} be
a sequence converging to y. It suffices to prove that {yk} is frequently in f(P ).
Without loss of generality, we assume that yi 6= yj for all i 6= j and yk 6= y for all
k. Pick x ∈ P such that f(x) = y, then {x} is a Gδ-set in X. Let {Wn : n ∈ N}
be a sequence of open neighborhoods of x such that Wn+1 ⊆ Wn for each n ∈ N
and

⋂
n∈N Wn = {x}. For each n ∈ N, f(Wn) is a sequentially-open subset of Y

by Remark 3.2(2). So {yk} is eventually in f(Wn). Thus there exists kn ∈ N such
that ykn ∈ f(Wn). Pick xn ∈ Wn

⋂
f−1(ykn). By this method, we construct a

sequence {xn} such that xn ∈ Wn and f(xn) = ykn for each n ∈ N. Here, we can
assume that {f(xn)} = {ykn} is a subsequence of {yk}. Now we prove that {xn}
converges to x.

If {xn} does not converge to x, then there exists a neighborhood U of x such
that {xn} is not eventually in U . So there exists a subsequence {xni} such that
xni 6∈ U for each i ∈ N. Put L = {xni : i ∈ N}, then L is an infinite subset of
X and x is not a cluster point of L. On the other hand, f(L) = f(L) since f is
closed. Thus y ∈ f(L) and y 6∈ f(L), so L has a cluster point z 6= x. Because
{x} =

⋂
n∈N Wn =

⋂
n∈N Wn, z ∈ X −Wn for some n ∈ N. Note that X −Wn is

a neighborhood and only contains finitely many points of L. This contradicts that
z is a cluster point of L. Thus we prove that {xn} converges to x.

Since P is a sequentially-open subset in X and x ∈ P , {xn} is eventually in P ,
and so {f(xn)} = {ykn} is eventually in f(P ). This shows that {yn} is frequently
in f(P ).

Theorem 3.9. Let f : X −→ Y be an sn-open, closed mapping. If X is
so-metrizable, then Y is so-metrizable.

Proof. Let X be so-metrizable. By theorem 3.7, we need to prove that Y is
sof -countable, Let P be a σ-hereditarily closure-preserving so-network of X. Put
F = {f(P ) : P ∈ P}, then F is σ-hereditarily closure-preserving because closed
mappings preserve σ-hereditarily closure-preserving collections. Let y ∈ Y , put
Fy = {f(P ) : P ∈ P, x ∈ f−1(y)

⋂
P}, then Fy ⊂ F is σ-hereditarily closure-

preserving. Since X is so-metrizable, each point in X is a Gδ-set. By Lemma 3.8,
every element of Fy is a sequentially-open subset in Y . It suffices to prove that
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Fy is a network at y in Y from Lemma 2.12. Let y ∈ U with U open in Y . Pick
x ∈ f−1(y), then x ∈ f−1(U). Since P is a network of X, there exists P ∈ P such
that x ∈ P ⊂ f−1(U). Thus y ∈ f(P ) ⊂ U and f(P ) ∈ Fy. This proves that Fy is
a network at y in Y .

Corollary 3.10. Let f : X −→ Y be an open, closed mapping. If X is
so-metrizable, then Y is so-metrizable.

A perfect inverse image of a metrizable space is metrizable iff it has a Gδ-
diagonal [11, Corollary 3.8]. Naturally, one can ask whether “metrizable” in this
result can be replaced by “so-metrizable”. The answer to this question is affirma-
tive.

Lemma 3.11. Let f : X −→ Y be a closed mapping, where X has a Gδ-
diagonal. If B is a sequentially-closed subset of X, then f(B) is a sequentially-
closed subset of Y .

Proof. Let B be a sequentially-closed subset of X. If f(B) is not a sequentially-
closed subset in Y , there exists y 6∈ f(B) and a sequence {yn} in f(B) such that
{yn} converges to y. We can assume that yn 6= ym if n 6= m. Put K = {yn : n ∈ N}
and pick xn ∈ f−1(yn) ∩ B for each n ∈ N, then {xn} is a sequence in f−1(K).
By [18, Lemma 2(b)], there exists a subsequence {xnk

} of {xn} converging to some
x ∈ X. Note that x ∈ f−1(y) and y 6∈ f(B), so x ∈ X − B. Since X − B
is sequentially-open in X, {xnk

} is eventually in X − B. This contradicts that
xn 6∈ X −B for each n ∈ N.

Lemma 3.12. If X is an ℵ-space that contains no closed subspace having an
ℵ-, non-metrizable space as its sequential coreflection, then X is so-metrizable.

Proof. Let X be an ℵ-space that contains no closed subspace having an ℵ-, non-
metrizable space as its sequential coreflection. S2 and Sω are ℵ-, non-metrizable
spaces [17, Example 1.8.6 and Example 1.8.7], so X contains no closed subspace
having S2 or Sω as its sequential coreflections. By Theorem 1.1, X is so-metrizable.

Theorem 3.13. Let f : X −→ Y be a perfect mapping and Y be so-metrizable.
Then X is so-metrizable iff X has a Gδ-diagonal.

Proof. Necessity is obvious. We only need to prove sufficiency.
Let X have a Gδ-diagonal. By Remark 2.8(3) and [14, Theorem 3.4], X is an

ℵ-space. By Lemma 3.12, it suffices to prove that X contains no closed subspace
having an ℵ-, non-metrizable space as its sequential coreflection. If not, then there
exists a closed subspace S of X such that σS is homeomorphic to an ℵ-, non-
metrizable spac T . Put g : σS −→ σf(S), where g = f |σS is the restriction of f on
σS.

(a) g is a closed mapping: Let F is a closed subset of σS. Then F is a
sequentially-closed subset of S. It is clear that S has a Gδ-diagonal and f |S :
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S −→ f(S) is a closed mapping. By Lemma 3.11, f |S(F ) is a sequentially-closed
subset of f(S), so g(S) = f |S(S) is a closed subset of σf(S).

(b) g is a compact mapping: Let y ∈ σf(S). Then f−1(y) is a compact
subset of X. Note that f−1(y) has a Gδ-diagonal. So f−1(y) is compact metrizable
from [17, Theorem 1.4.10]. Thus the topology on f−1(y) ∩ S as a subspace of σS
is equivalent to the topology on f−1(y) ∩ S as a subspace of X. Consequently,
g−1(y) = f−1(y) ∩ S is compact.

By the above (a) and (b), g is a perfect mapping. Note that σS = T is an
ℵ-space and perfect mappings preserve ℵ-spaces [14, Theorem 2.2]. So σf(S) is an
ℵ-space. It is easy to see that f(S), as a subspace of Y , is sof -countable. By [16,
Corollary 2.8], σf(S) is first countable. Thus σf(S) is metrizable from Theorem
1.2, so σS is a perfect pre-image of a metrizable space. By [11, Corollary 3.8], σS
is metrizable. This contradicts that σS = T is not metrizable.
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