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ON so-METRIZABLE SPACES

Xun Ge

Abstract. In this paper, we give some new characterizations for so-metrizable spaces, which
answers a question posed by Z. Li and generalize some results on so-metrizable spaces. As some
applications of the above results, some mappings theorems on so-metrizable spaces are obtained.

1. Introduction

so-networks (i.e. sequentially-open networks) were introduced and investigated
by S Lin in [15]. Spaces with a o-locally finite so-network are called so-metrizable
spaces, which lie between metrizable spaces and sn-metrizable spaces. In [16], S.
Lin gave the following characterization for so-metrizable spaces (see [16, Corollary
2.9 and Theorem 3.15]).

THEOREM 1.1. The following are equivalent for a space X :
(1) X is an so-metrizable space.

(2) X is an R-space and contains no closed subspace having Sa or S, as its
sequential coreflection.

Note that there exist the following characterizations for metrizable spaces and
sn-metrizable spaces respectively.

THEOREM 1.2. [21, Corollary 9] The following are equivalent for a space X :
(1) X is a metrizable space.

(2) X has a o-discrete base.

(8) X has a o-hereditarily closure-preserving base.

(4) X is a first countable space with a o-hereditarily closure-preserving k-
network.

THEOREM 1.3. [9, Lemma 2.2] The following are equivalent for a space X :
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(1) X is an sn-metrizable space.
(2) X has a o-discrete sn-network.
(3) X has a o-hereditarily closure-preserving sn-network.

(4) X is an snf-countable space with a o-hereditarily closure-preserving k-
network.

Z. Li posed the following question [13, Question 3.2].

QUESTION 1.4. Whether there exist some characterizations for so-metrizable
spaces, which are similar to Theorem 1.2 or Theorem 1.37

In this paper, we answer the above question affirmatively and give some map-
pings theorems on so-metrizable spaces. Throughout this paper, all spaces are
assumed to be regular T7, and all mappings are continuous and onto. N, w and
w1 denote the set of all natural numbers, the first infinite ordinal and the first
uncountable ordinal respectively. The sequence {z, : n € N} and the sequence
{P, : n € N} of subsets are abbreviated to {z,, } and {P,} respectively. Let P be a
subset of a space X and {x,} be a sequence in X. {z,} converging to x is eventu-
ally in P if {z,, : n > k}U{z} C P for some k € N; it is frequently in P if {z,, } is
eventually in P for some subsequence {z,, } of {x,}. Let P be a collection of sub-
sets of X and z € X. Then (P), denotes the subcollection {P € P : x € P} of P,
(UP and (P denote the union |J{P : P € P} and the intersection ({P : P € P}
respectively.

2. Characterizations

DEFINITION 2.1. [7,11] Let X be a space.

(1) Let z € P C X. P is called a sequential neighborhood of = in X if whenever
{z,} is a sequence converging to x, then {z,} is eventually in P.

(2) Let P C X. P is called a sequentially-open subset in X if P is a sequential
neighborhood of x in X for each x € P. F is called a sequentially-closed subset in
X if X — F is sequentially-open in X.

(3) X is called a sequential space if each sequentially-open subset in X is open
in X.

(4) X is called a k-space, if FF C X is closed in X iff FNC is closed in C for
every compact subset C' in X.

REMARK 2.2. The following are well known.

(1) P is a sequential neighborhood of z in X iff each sequence {z,,} converging
to x is frequently in P.

(2) The intersection of finitely many sequentially-open subsets of = in X is a
sequentially-open subset of z in X.

(3) sequential spaces = k-spaces.

DEFINITION 2.3. [4] Let P a collection of subsets of a space X.
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(1) P is called closure-preserving if P’ = J{P : P € P’} for each P’ C P.

(2) P is called hereditarily closure-preserving if any collection {H(P) : P € P}
is closure-preserving, where every H(P) C P € P.

DEFINITION 2.4. Let P = |J{P, : € X} be a cover of a space X, where
Pr C (P)s-

(1) P is called a network of X [3], if whenever € U with U open in X there
exists P € P, such that x € P C U, where P, is called a network at x in X.

(2) P is called a cs-network of X [19], if for every convergent sequence S
converging to a point x € U with U open in X, S is eventually in P C U for some
PeP.

(3) P is called a k-network of X [19], if for every compact subset K C U with
U open in X, there exists a finite F C P such that K C |JF C U.

DEFINITION 2.5. Let P = [J{P, : * € X} be a cover of a space X. Assume
that P satisfies the following (a) and (b) for each z € X.

(a) Py is a network at x in X.
(b) If Py, P, € P,, then there exists P € P, such that P C P; N Ps.

(1) P is called an sn-network of X [16,19], if every element of P, is a sequential
neighborhood of x for each z € X, where P, is called an sn-network at x.

(2) P is called an so-network of X [15,16], if every element of P, is a
sequentially-open subset, where P, is called an so-network at x.

DEFINITION 2.6. [16] Let X be a space. X is an sof-countable (resp. snf-
countable) space if for each z € X, there exists an so-network (resp. sn-network)
P, at z in X such that P, is countable.

DEFINITION 2.7. Let X be a space.

(1) X is an so-metrizable space [13] if X has a o-locally finite so-network.
(2) X is an sn-metrizable space [9] if X has a o-locally finite sn-network.
(3) X is an N-space [11] if X has a o-locally finite k-network.

REMARK 2.8. For a space, base = so-network —> sn-network — cs-
network. An so-network for a sequential space is a base. So the following hold:

(1) First-countable = sof-countable = sn f-countable.
(2) First-countable <= sequential and sof-countable.

(3) metrizable spaces = so-metrizable spaces = sn-metrizable spaces —>
N spaces.

(4) metrizable spaces <= k- and so-metrizable spaces.

The following example shows that “sequential” in Remarks 2.8(2) can not be
relaxed to “k”.

EXAMPLE 2.9. There exists a k-, sof-countable space X such that is not
first-countable.
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Proof. Let X be the Stone-Cech compactification SN of N. Then X is com-
pact, and so it is a k-space. Since each convergent sequence in SN is trivial,
P ={{z}:x € X} is an so-network of X, so X is sof-countable. It is known that
X is not first countable. m

DEFINITION 2.10. Let S = {1/n : n € N} U {0} be a space with the usual
topology induced from R. For each a < wy, let S, be a copy of S. Then S, denotes
the quotient space obtained from the topological sum ®,«., S, by mapping all the
nonisolated points into one point [12].

LEMMA 2.11. Let P be a hereditarily closure-preserving collection of sequen-
tially-open subsets of a space X. Then (P is a sequentially-open subset of X.

Proof. Let z € (P, and let {z,} be a sequence converging to . By Remark
2.2(1), we only need to prove that {x,} is frequently in (\P. If z,, = x for infinitely
many n € N, then {z,} is frequently in (P. If z,, # z for all but finitely many
n € N, we may assume z,, # x for all n € N, then P is finite. Indeed, suppose
P is infinite. Then there exists an infinite subcollection {Py, : k € N} of P, where
P, # P it k # 1. Since {x,} converges to x and Pj is sequentially-open for each
k € N, we can construct a subsequence {z,, } of {z,} such that z,, € P for each
k € N. Note that P is hereditarily closure-preserving and {x,, } converges to z.
So x € {zy, : k€ N} = {z,, : k € N}. This is a contradiction. So P is finite. By
Remark 2.2(2), (P is sequentially-open. m

LEMMA 2.12. Let X be a space and x € X. If there exists a o-hereditarily
closure-preserving network at x in X such that its every element is a sequentially-
open subset in X, then there exists a countable and decreasing so-network at x
n X.

Proof. Let P’ = J{Py, : n € N} is a network at = in X, where P, is hereditarily
closure-preserving for each n € N and every element of P’ is a sequentially-open
subset in X. We may assume each P, C P,,11. For each n € N, put P, = (| Py,
then P,y1 C P, as Pp, C Ppi1. Put P = {P, : n € N}, then P is countable and
decreasing.

Claim 1. P is a network at z in X.

Let € U with U open in X. Since P’ is a so-network, there exists P € P,
for some n € N such that x € P C U. Thus z € P,, C P C U. This proves that P
is a network at  in X.

Claim 2. If P;, P; € P, then P, C P; N P; for some P, € P.

It is clear because P is countable and decreasing.

Claim 3. P, is a sequentially-open subset for each n € N.

It holds from Lemma 2.11.

By the above three claims, P is a countable and decreasing so-network at =
inX.m



On so-metrizable spaces 213

COROLLARY 2.13. Let a space X have a o-hereditarily closure-preserving so-
network. Then X is an sof-countable space.

LEMMA 2.14. sof-countable space contains no copy of S, .

Proof. Note that S, is a sequential space, but it is not first-countable. By
Remark 2.8(2), S,, is not sof-countable. Obviously, sof-countable spaces are
hereditary to all subspaces. So sof-countable space contains no copy of S,,. =

LEMMA 2.15. Let X be an sof-countable space with a o-hereditarily closure-
preserving k-network. Then X has a o-discrete so-network.

Proof. Since X is sof-countable, X contains no copy of S,, from Lemma
2.14. Note that a space is an N-space iff it has a o-hereditarily closure-preserving
k-network, and contains no copy of S,, [12, Theorem 2.6]. So X is an R-space.
By [6, Theorem 4], X has a o-discrete cs-network B. For each = € X, let P, be a
countable so-network at  in X. By Remark 2.2(2), we can assume that each P,
is decreasing. For each x € X, put B, ={B € B: P C B for some P € P,}. By
a similar way as in the proof of [18, Lemma 7(3)], B, is a network at « in X. For
each B € B, choose P € P, such that P C B. Put P, = {Pp : B € B,}, and
put P = U,cx Pz It suffices to prove the following three claims.

Claim 1. P is o-discrete: It holds because |J, ¢ x Bz is o-discrete.
Claim 2. Every element of P is sequentially-open: It is clear.

Claim 3. For each xz € X, P, is a network at z in X: Let x € U with U open
in X. Since B, is a network at z in X, x € B C U for some B € B,. By the
construction of P,, there exists Pg € P, such that x € Pg ¢ B C U. So P, is a
network at x in X. m

Now we give the main theorem in this section, which answers Question 1.4
affirmatively.

THEOREM 2.16. The following are equivalent for a space X :
(1) X has a o-discrete so-network.

(2) X is an so-metrizable space.

(8) X has a o-hereditarily closure-preserving so-network.

(4) X is an sof-countable space with a o-hereditarily closure-preserving k-
network.

Proof. (1) = (2) = (3): Obvious.

(3) = (4): By Corollary 2.13, X is sof-countable. Note that every o-
hereditarily closure-preserving so-network of a space is a k-network [20, Proposition
1.2(2)]. So X has a o-hereditarily closure-preserving k-network.

(4) = (1): It holds by Lemma 2.15. m
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3. Invariance and inverse invariance under mappings.

DEFINITION 3.1. Let f: X — Y be a mapping.

(1) f is called a closed (resp. an open) mapping [5] if f(B) is closed (resp.
open) in Y for every closed (resp. open) subset B in X.

(2) f is called an sn-open mapping [10] if there exists an sn-network P =

{P,:y €Y} of Y such that for each y € Y and each z € f~!(y), whenever U is a
neighborhood of z, then P C f(U) for some P € P,.

(3) f is called a perfect mapping [5] if f is closed and f~!(y) is a compact
subset of X for each y € Y.

REMARK 3.2. (1) open mappings = sn-open mappings.

(2) It is easy to obtain a simple characterization for sn-open mappings: A
mapping f : X — Y is sn-open iff f(B) is a sequentially-open subset in Y for
every open subset B in X. (So more precisely, sn-open mappings should be called
sequentially-open mappings).

DEFINITION 3.3. A space X is said to have a Gs-diagonal [11] if {(z,x) : x €
X}isaGssetin X x X.

DEFINITION 3.4. Let X be a space. Put 0 = {P C X : P is sequentially open
in X}, and endow X with the topology o. The space (X, o) is called sequential
coreflection of X [16], and denoted by o X.

DEFINITION 3.5. (1) Let Lo = {a, : n € N} be a sequence converging to oo,
where co ¢ Ly. For each n € N, let L, be a sequence converging to b,, where
bp & L. Put Ty = Ly U {oc} and T,, = L, U {b,} for each n € N. Let M be
the topological sum of {7}, : n > 0}. Then S2 denotes the quotient space obtained
from the topological sum M by identifying a,, with b,, for each n € N [1].

(2) Let S ={1/n:n € N} U{0} be a space with the usual topology induced
from R. For each a < w, let S, be a copy of S. Then S, denotes the quotient
space obtained from the topological sum @,«, S5, by mapping all the nonisolated
points into one point [2].

It is easy to see that a closed image of a so-metrizable space need not be
so-metrizable. Now we give a sufficient and necessary condition such that closed
images of so-metrizable spaces are so-metrizable spaces.

LEMMA 3.6. Let f : X — Y be a closed mapping, and let X have a o-
hereditarily closure-preserving k-network. Then Y is so-metrizable iff Y is sof-
countable.

Proof. Necessity is obvious. We only need to prove sufficiency. Let Y be sof-
countable. Note that closed mappings preserve o-hereditarily closure-preserving
k-networks. So Y has a o-hereditarily closure-preserving k-network. By theorem
2.16, Y is so-metrizable. m
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We immediately obtain the following result by the above lemma.

THEOREM 3.7. A closed image of an so-metrizable space is so-metrizable iff
it 1s sof-countable.

Perfect mappings preserve metrizable spaces. However, we do not know even
whether finite-to-one, closed mappings preserve so-metrizable spaces. As an appli-
cations to Theorem 3.7, we give some partial answers to this question.

LEMMA 3.8. Let f : X — Y be an sn-open, closed mapping and each point in
X be a Gs-set. If P is a sequentially-open subset in X, then f(P) is a sequentially-
open subset in'Y .

Proof. Let P be a sequentially-open subset in X and y € f(P). Let {yx} be
a sequence converging to y. It suffices to prove that {y} is frequently in f(P).
Without loss of generality, we assume that y; # y; for all ¢ # j and y;, # y for all
k. Pick x € P such that f(z) =y, then {z} is a Gs-set in X. Let {W,, : n € N}
be a sequence of open neighborhoods of x such that W, ; C W, for each n € N
and ),y Wn = {z}. For each n € N, f(W,,) is a sequentially-open subset of Y’
by Remark 3.2(2). So {y;} is eventually in f(W,,). Thus there exists k,, € N such
that yg, € f(W,). Pick z,, € W, () f *(yx,). By this method, we construct a
sequence {z,} such that z,, € W, and f(z,) = yk, for each n € N. Here, we can
assume that {f(z,)} = {yx, } is a subsequence of {y;}. Now we prove that {z,}
converges to x.

If {z,} does not converge to x, then there exists a neighborhood U of x such
that {x,} is not eventually in U. So there exists a subsequence {z,,} such that
Zn, ¢ U for each i € N. Put L = {z,, : ¢ € N}, then L is an infinite subset of
X and x is not a cluster point of L. On the other hand, f(L) = f(L) since f is
closed. Thus y € f(L) and y ¢ f(L), so L has a cluster point z # x. Because
{2} = Nhen Wa = Nyen Was 2 € X — W, for some n € N. Note that X — W, is
a neighborhood and only contains finitely many points of L. This contradicts that
z is a cluster point of L. Thus we prove that {z,} converges to x.

Since P is a sequentially-open subset in X and « € P, {z,} is eventually in P,
and so {f(zn)} = {yk,} is eventually in f(P). This shows that {y,} is frequently
in f(P). m

THEOREM 3.9. Let f : X — Y be an sn-open, closed mapping. If X is
so-metrizable, then Y is so-metrizable.

Proof. Let X be so-metrizable. By theorem 3.7, we need to prove that Y is
sof-countable, Let P be a o-hereditarily closure-preserving so-network of X. Put
F = {f(P): P € P}, then F is o-hereditarily closure-preserving because closed
mappings preserve o-hereditarily closure-preserving collections. Let y € Y, put
Fy =4{f(P): P e P,xe f~Yy) P}, then F, C F is o-hereditarily closure-
preserving. Since X is so-metrizable, each point in X is a Gs-set. By Lemma 3.8,
every element of F, is a sequentially-open subset in Y. It suffices to prove that
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Fy is a network at y in Y from Lemma 2.12. Let y € U with U open in Y. Pick
x € f~Y(y), then x € f~1(U). Since P is a network of X, there exists P € P such
that z € P C f~1(U). Thus y € f(P) C U and f(P) € F,. This proves that F, is
anetwork at yin Y. m

COROLLARY 3.10. Let f : X — Y be an open, closed mapping. If X is
so-metrizable, then Y is so-metrizable.

A perfect inverse image of a metrizable space is metrizable iff it has a Gs-
diagonal [11, Corollary 3.8]. Naturally, one can ask whether “metrizable” in this
result can be replaced by “so-metrizable”. The answer to this question is affirma-
tive.

LeEmMMA 3.11. Let f : X — Y be a closed mapping, where X has a Gg-
diagonal. If B is a sequentially-closed subset of X, then f(B) is a sequentially-
closed subset of Y.

Proof. Let B be a sequentially-closed subset of X. If f(B) is not a sequentially-
closed subset in Y, there exists y ¢ f(B) and a sequence {y,} in f(B) such that
{yn} converges to y. We can assume that y,, # y, if n # m. Put K = {y,, : n € N}
and pick x, € f~!(y,) N B for each n € N, then {x,} is a sequence in f~(K).
By [18, Lemma 2(b)], there exists a subsequence {x,, } of {z,} converging to some
x € X. Note that * € f~!(y) and y € f(B), so z € X — B. Since X — B
is sequentially-open in X, {x,,} is eventually in X — B. This contradicts that
T, &€ X — B foreachn € N. m

LEMMA 3.12. If X is an R-space that contains no closed subspace having an
V-, non-metrizable space as its sequential coreflection, then X is so-metrizable.

Proof. Let X be an R-space that contains no closed subspace having an X-, non-
metrizable space as its sequential coreflection. S5 and S, are N-, non-metrizable
spaces [17, Example 1.8.6 and Example 1.8.7], so X contains no closed subspace
having S5 or S, as its sequential coreflections. By Theorem 1.1, X is so-metrizable.

THEOREM 3.13. Let f : X — Y be a perfect mapping and Y be so-metrizable.
Then X is so-metrizable iff X has a Gs-diagonal.

Proof. Necessity is obvious. We only need to prove sufficiency.

Let X have a Gs-diagonal. By Remark 2.8(3) and [14, Theorem 3.4], X is an
N-space. By Lemma 3.12, it suffices to prove that X contains no closed subspace
having an R-, non-metrizable space as its sequential coreflection. If not, then there
exists a closed subspace S of X such that ¢S is homeomorphic to an N-, non-
metrizable spac T. Put g : 0S — o f(5), where g = f|,s is the restriction of f on
oS.

(a) g is a closed mapping: Let F' is a closed subset of ¢S. Then F is a
sequentially-closed subset of S. It is clear that S has a Gs-diagonal and f|g :
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S — f(S) is a closed mapping. By Lemma 3.11, f|s(F') is a sequentially-closed
subset of f(S), so g(S) = f|s(S) is a closed subset of o f(S).

(b) g is a compact mapping: Let y € of(S). Then f~!(y) is a compact
subset of X. Note that f~!(y) has a Gs-diagonal. So f~1(y) is compact metrizable
from [17, Theorem 1.4.10]. Thus the topology on f~1(y) N S as a subspace of oS
is equivalent to the topology on f~!(y) NS as a subspace of X. Consequently,
g () = f~1(y) NS is compact.

By the above (a) and (b), g is a perfect mapping. Note that ¢S = T is an
N-space and perfect mappings preserve R-spaces [14, Theorem 2.2]. So o f(S) is an
N-space. It is easy to see that f(S), as a subspace of Y, is sof-countable. By [16,
Corollary 2.8], o f(S) is first countable. Thus o f(S) is metrizable from Theorem
1.2, so 05 is a perfect pre-image of a metrizable space. By [11, Corollary 3.8], .9
is metrizable. This contradicts that ¢S = T is not metrizable. m
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