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QUASI CONTINUOUS SELECTIONS OF
UPPER BAIRE CONTINUOUS MAPPINGS

Milan Matejdes

Abstract. The paper deals with the existence problem of selections for a closed valued and
c-upper Baire continuous multifunction F . The main goal is to find a minimal usco multifunction
intersecting F and its selection that is quasi continuous everywhere except at points of a nowhere
dense set. The methods are based on properties of minimal multifunctions and a cluster multi-
function generated by a cluster process with respect to the system of all sets of second category
with the Baire property.

In this paper we will study the existence of a quasi continuous selection for a
closed valued and upper Baire continuous multifunction F . A multifunction F is
upper Baire continuous, if U ∩ F+(V ) contains a set of second category with the
Baire property, whenever U, V are open and U ∩ F+(V ) 6= ∅ (see Definition 2).
If F is upper Baire continuous, then for any open set V the upper inverse image
F+(V ) = {x : F (x) ⊂ V } is of the form (G \ S)∪ T , where G is of second category
and open, S, T are of first category and T is a subset of the closure of G. So, this
type of continuity seems to be very close to the Baire property of mappings. The
upper Baire continuity has the following three nice features:
(1) Any upper Baire continuous multifunction acting from X into a regular space

with a countable basis is lower semi continuous on a residual set [7, Th. 2.1].
(2) A compact valued multifunction F acting from a Baire space into a metric one

has the Baire property (i.e., F+(T ) has the Baire property for any closed set
T ) if and only if F is upper Baire continuous everywhere except for at points
of a set of first category [7, Th. 3.2].

(3) An upper Baire continuous compact valued multifunction acting from X into
a T1-regular space has a quasi continuous selection [1].
Here, (1) deals with one of the most general generic theorems, (2) is a charac-

terization of some global (measure) property by a local (continuity) property and
the last but not least, (3) proved by Cao and Moors [1], deals likely with the most
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general sufficient conditions for the existence of a quasi continuous selection (much
stronger than the first result of this kind proved in [7]). Note that the compact
valuedness in (3) cannot be omitted, as shown by a multifunction F : R → R
defined by letting F (x) = {1/x} for x 6= 0 and F (0) = R. It can be shown that
F is upper semi continuous without any quasi continuous selection, but it has a
selection which is continuous everywhere except for at points of a nowhere dense
set. Hence, a general question arises is: For a closed valued and c-upper Baire
continuous multifunction, is there a reasonable selection/submultifunction? This
is the main goal of the present paper and the answer is given in Theorem 2 and
Corollary 1. Besides, we also solve the dual problem on whether a lower Baire
continuous multifunction has a quasi continuous selection, see Theorem 3.

In the sequel X, Y are topological spaces, N = {1, 2, 3, . . . } and R denotes
the reals with usual topology. By A, A◦ we denote the closure, the interior of A,
respectively. A space Y is σ-compact, if Y =

⋃∞
n=1 Cn, where Cn’ s are compact.

By a multifunction F we understand a subset of cartesian product X × Y and it is
identified with a mapping F : X → Y with the values {y ∈ Y : (x, y) ∈ F} =: F (x)
(it can be empty valued at some points). So, we make no difference between a
mapping F : X → Y and its graph {(x, y) : y ∈ F (x)}. By Dom (F ), we denote
the domain of F , i.e., the set of all arguments x such that F (x) is non-empty. If
Dom (F ) = A (Dom (F ) is a dense set), F is said to be defined on A (densely
defined). Further, F is locally bounded at a point x, if there is an open set H
containing x and a compact set C such that F (H) :=

⋃{F (x) : x ∈ H} ⊂ C and it
is locally bounded on a set A (bounded on A), if it is so at any point of A (F (A) is
a subset of some compact set). For a set C ⊂ Y , F ∩ C denotes the multifunction
defined by letting (F ∩ C)(x) = F (x) ∩ C for all x ∈ X.

A function f is understood as a special case of a multifunction with values
{f(x)}. A function f is a selection of a multifunction F , if f(x) ∈ F (x) for all
x ∈ Dom(f) = Dom (F ). For any set W ⊂ Y the upper and lower inverse images
of W under F are defined by F+(W ) = {x ∈ X : F (x) ⊂ W}, F−(W ) = {x ∈ X :
F (x) ∩W 6= ∅}.

A multifunction F is usc (upper semi continuous) at x ∈ Dom(F ), if for any
open set V with F (x) ⊂ V there is an open set U containing x such that F (u) ⊂ V
for any u ∈ U . Then F is usc, if it is so at any point x ∈ Dom(F ). A multifunction
F is c-usc (c-upper semi continuous) at x ∈ Dom(F ), if for any open set V with
compact complement such that F (x) ⊂ V there is an open set U containing x such
that F (u) ⊂ V for any u ∈ U . Then F is c-usc, if it is so at any point x ∈ Dom(F ),
see [4], [6], [10]. Finally, F is usco at x, if F (x) is non-empty compact and F is usc
at x.

Any non-empty system E ⊂ 2X \ {∅} is called a cluster system. For some
special cluster systems we will use special notation. For example, O, Br are cluster
systems containing all non-empty open sets, all sets of second category with the
Baire property, respectively and E◦ = 2X \ {∅}.

In the next two definitions, we introduce notions of an E-cluster point and an
upper E-continuity, as basic tools to investigate properties of multifunctions. These
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concepts were firstly studied in [7], later in [9] and for the functions in [3].

Definition 1. A point y ∈ Y is an E-cluster point of F at a point x, if for
any open sets V containing y and U containing x, there is a set E ∈ E such that
E ⊂ U and F (e)∩ V 6= ∅ for any e ∈ E. The set of all E-cluster points of F at x is
denoted by EF (x). The multifunction EF with values EF (x) is called an E-cluster
multifunction of F . We will say that a multifunction F has an E-closed graph, if
EF ⊂ F .

Example 1. The notion of E-closed graphs is more general than that of closed
graphs, because if F has a closed graph, then EF ⊂ F = F (F is the closure of
F in X × Y ). On the other hand, a multifunction G from R to R defined by
letting G(x) = [0, 1] for x rational and G(x) = {0} otherwise has a Br-closed
graph (BrG(x) = {0} for all x), but its graph is not closed. Similarly, the Dirichlet
function has an O-closed graph, since its O-cluster multifunction is empty valued.

Lemma 1. For any net {xt} converging to x and yt ∈ EF (xt), EF (x) contains
all accumulation points of the net {yt}.

Proof. Let y be an accumulation point of {yt}. Then for any open sets V
containing y and U containing x there are frequently given indices t′ such that
xt′ ∈ U and yt′ ∈ V ∩ EF (xt′). Hence there is an E ∈ E such that E ⊂ U and
F (e) ∩ V 6= ∅ for any e ∈ E. This means y ∈ EF (x).

Definition 2. A multifunction F is u-E-continuous at a point x ∈ Dom(F ), if
for any open sets V, U such that F (x) ⊂ V and x ∈ U there is a set E ∈ E such that
E ⊂ U∩Dom(F ) and F (E) ⊂ V . A multifunction F is u-E-continuous, if it is so at
any point of Dom (F ). A u-E-continuous function is simply called E-continuous. A
multifunction F is c-u-E-continuous, if U ∩F+(V ) contains some E ∈ E , whenever
U, V are open, Y \ V is compact and U ∩ F+(V ) 6= ∅. For E = Br and O, we have
upper Baire continuity, upper quasi continuity, (c-upper Baire continuity, c-upper
quasi continuity), respectively.

Remark 1.

(1) By Lemma 1, the multifunction EF has a closed graph, hence it has closed
values. This means that E−F (K) is closed for any compact set K or equivalently,
E+

F (G) is open for any open set G with a compact complement, i.e., EF is c-usc.

(2) If K is compact and E−F (K) is dense in an open set H, then H ⊂ E−F (K).
(3) If Y is σ-compact, then Dom (EF ) is an Fσ-set.
(4) If f is E-continuous at x, then f(x) ∈ Ef (x).
(5) If BrF is a densely defined multifunction or F is upper Baire (c-upper Baire)

continuous on a dense set, then X is a Baire space.
(6) For any multifunction F , EF ⊂ E◦F = F .

Remark 2. The global Baire continuity of a function has a very interesting
feature. If X is Baire and Y is regular, then a function f is Baire continuous on an
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open set G if and only if f is quasi continuous on G, see [9, Th.3]. In mutifunction
setting these notions are different. If F : R→ R is defined by letting F (x) = [0, 1]
for x rational and F (x) = {0} otherwise, then F is upper Baire continuous but not
upper quasi continuous.

Definition 3. ([2], [5]) A multifunction F is minimal at a point x, if F (x) is
non-empty and for any open sets U, V such that U contains x and V ∩ F (x) 6= ∅
there is a non-empty open set G ⊂ U ∩Dom(F ) such that F (G) ⊂ V . The global
definition is given by the local one at any point of Dom (F ). It is evident that any
selection of a minimal multifunction is quasi continuous.

We will use the next theorem which holds under very general conditions and
generalizes the result from [7, Th. 5.3].

Theorem 1. ([1]) Let Y be T1-regular and F be non-empty compact valued
and upper Baire continuous. Then F has a quasi continuous selection.

Lemma 2. Let Y be Hausdorff, C be a compact set in Y and let F be closed
valued and c-upper Baire continuous. If ∅ 6= X0 \ I ⊂ F−(C), where X0 is non-
empty open and I is of first category, then the multifunction F ∩ C is upper Baire
continuous on X0 \ I.

Proof. Let x0 ∈ X0 \ I and F (x0) ∩ C ⊂ V , x0 ∈ U ⊂ X0 and V , U be
arbitrary open. The set (Y \ V ) ∩ C is compact and its complement V ∪ (Y \ C)
is open containing F (x0). Since F is c-upper Baire continuous, there is an E ∈ Br
such that E ⊂ U ∩Dom(F ) and F (e) ⊂ V ∪ (Y \ C) for any e ∈ E. Then for any
e ∈ (E ∩X0) \ I ∈ Br we have ∅ 6= F (e)∩C ⊂ V ∩C ⊂ V . This means that F ∩C
is u-upper Baire continuous at x0.

Lemma 3. Suppose that the interior of Dom (Brf ) is non-empty, where f is
an arbitrary function. If Y is a regular topological space, then Brf is minimal on
the interior of Dom (Brf ).

Proof. Suppose that Brf is not minimal at some point x ∈ (Dom (Brf ))◦.
Then, there are open sets V , U ⊂ (Dom (Brf ))◦, x ∈ U and a set A ⊂ U which is
dense in U such that Brf (x) ∩ V 6= ∅ and Brf (a) ∩ (Y \ V ) 6= ∅ for any a ∈ A. Let
y ∈ Brf (x) ∩ V . Then there is a set E = (G \ S) ∪ T ∈ Br, where G is open, S, T
are of first category, and E ⊂ U ∩Dom(f) such that f(E) ⊂ V . The set G ∩ U is
non-empty, so there is a point a ∈ A∩G∩U such that Brf (a)∩ (Y \ V ) 6= ∅. Pick
up z ∈ Brf (a)∩ (Y \ V ). Then there is a set E0 ∈ Br, E0 ⊂ G∩U ∩Dom(f) such
that f(E0) ⊂ Y \ V and E0 is of the form E0 = (G0 \ S0) ∪ T0, where G0 is open
and S0, T0 are of first category. Since G ∩ U ∩G0 is of second category, there is a
point e ∈ G∩U ∩G0 \ (S ∪ S0) ⊂ E. It follows that f(e) ∈ V . On the other hand,
e ∈ E0 implies f(e) ∈ Y \ V , which is a contradiction.

Lemma 4. If F is c-upper Baire continuous, then F+(V ) has the Baire prop-
erty for any open set V with a compact complement.
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Proof. If not, there is an open set U such that both sets X0 := F+(V ) and
X \X0 are of second category at any point of U . Let x ∈ X0 ∩ U with F (x) 6= ∅.
By c-upper Baire continuity, there is an E ∈ Br such that E ⊂ U ∩ Dom(F ) and
F (E) ⊂ V . Since E is of second category with the Baire property, E = (G \ I)∪ J
for some open G and I, J of first category such that G ∩ U 6= ∅ (otherwise E =(
(G \ I) ∪ J)

) ∩U =
(
(G \ I) ∩U

) ∪ (
J ∩U

)
= J ∩U is of first category). The set

X \X0 is of second category at any point of U , so
(
(G∩U∩(X \X0)

)\I is of second
category. It follows that there is a point e ∈ (

(G∩U∩(X \X0)
)\I ⊂ E ⊂ Dom(F ).

So F (e) 6⊂ V , contradicting with F (E) ⊂ V .

Theorem 2. Let Y be a T1-regular σ-compact space, G ⊂ X be non-empty
open and let F be closed valued and c-upper Baire continuous on G. Then there
are an open set H ⊂ G and a multifunction F0 defined on G such that G \ H is
nowhere dense, F0(x) ⊂ BrF (x) for any x ∈ H and the following hold
(1) F0 is both minimal usco and locally bounded on H,
(2) F (x) ∩ F0(x) 6= ∅ for any x ∈ H,
(3) there is a selection g of F which is both quasi continuous and locally bounded

on H,
(4) if F has a Br-closed graph, then F0 ⊂ F .

Proof. Let Y =
⋃

k∈N Ck, and each Ck be compact. Assumption of c-upper
Baire continuity guarantees that any non-empty open subset of G is of second
category (see Remark 1 (5)), i.e., G is a Baire space. Since G ⊂ ⋃

k∈N F−(Ck)
and F−(Ck) = X \ F+(Y \ Ck) has the Baire property (by Lemma 4), there is a
sequence {Hkn}n∈N (possibly finite) of non-empty open pairwise disjoint subsets
of G such that I := G \ ⋃

n∈NHkn is of first category and Hkn \ I ⊂ F−(Ckn).
Put H :=

⋃
n∈NHkn . Then the set G \ H is of first category. Since G is a Baire

space, G \H is also nowhere dense. By Lemma 2, F ∩ Ckn is compact valued and
u-Br-continuous on Hkn \ I. By Theorem 1, there is a selection fn of F ∩ Ckn ,
which is defined and quasi continuous on Hkn \ I (in the relative topology). So fn

is Br-continuous at any point of Hkn \ I. By Remark 1 (4), fn(x) ∈ Brfn(x) for
any x ∈ Hkn \ I.

Define f : H \ I → Y by letting

f(x) = fn(x) for x ∈ Hkn \ I. (∗)
Since fn ⊂ f ⊂ F ,

fn ⊂ Brfn ⊂ Brf ⊂ BrF . (∗∗)
Put F0 := Brf on the domain of Brf and F0 := F otherwise.

(1) Since fn is bounded by Ckn and Hkn \ I is dense in Hkn , Brfn is non-
empty, compact valued (by Remark 1 (2)) and bounded by Ckn on Hkn . Since Brfn

is bounded with a closed graph, Brfn is usco and bounded on Hkn . It is clear that
Brfn(x) = Brf (x) for any x ∈ Hkn , see (∗). By Lemma 3, Brfn is minimal on Hkn .
Hence, F0 is both usco minimal and locally bounded on H.



74 M. Matejdes

(2) We will show that Brf (x) ∩ F (x) 6= ∅ for any x ∈ H. If not, there is some
a0 ∈ H such that Brf (a0) ∩ F (a0) = ∅. By regularity of Y and compactness of
Brf (a0), there are two disjoint open sets V2 ⊃ Brf (a0) and V1 ⊃ F (a0). Since Brf

is locally bounded, there are an open set U ⊂ H containing a0 and a compact set
C such that Brf (U) ⊂ C. Brf is usco at a0, hence there is an open set W1 ⊂ U

containing a0 such that Brf (W1) ⊂ V2. So, Brf (W1) ⊂ V2 ∩C. Since F is c-upper
Baire continuous at a0 and F (a0)∩V2∩C = ∅, there is E := (G0 \S)∪T ∈ Br such
that G0 is open, S, T are of first category, E ⊂ W1∩Dom(F ) and F (E) ⊂ Y \(V2∩
C). Since G0 \S ⊂ H =

⋃
n∈NHkn , there is an m ∈ N such that G0∩Hkm 6= ∅. By

(∗) and (∗∗), for e ∈ G0∩Hkm
\ (I ∪S) we have f(e) ∈ F (e)∩Brf (e), contradicting

with F (E) ⊂ Y \ (V2 ∩ C) and Brf (E) ⊂ V2 ∩ C.
(3) Define a selection g of F by letting g(x) ∈ Brf (x) ∩ F (x) if x ∈ H and

g(x) ∈ F (x) otherwise. It is clear that g is a selection of F which is quasi continuous
on H, by Lemma 3. Since Brf is locally bounded on H, so is g.

(4) By definition of F0, (∗∗) and Remark 1 (6) we have

F0 ⊂ Brf ∪ F ⊂ BrF ∪ F ⊂ F = F.

It is worth to formulate Theorem 2 for Dom (F ) = X. Moreover, by [4], there
is a c-usc multifunction F which is not usc at any point (on the other hand, if F
if c-lsc, then F is lsc everywhere except for at points of a nowhere dense set, see
[4]). By the next corollary, F has a submultifunction, which is both minimal usco
and locally bounded everywhere except for at points of a nowhere dense set ((4)
follows also from [4]).

Corollary 1. Let Y be a T1-regular σ-compact space and let F and f be
defined on X. Then
(1) if F is closed valued and c-upper Baire continuous, then F has a selection

g which is both quasi continuous and locally bounded on an open dense set.
Moreover, if Y is metric, then g is continuous everywhere except for at points
of a set of first category, by [8].

(2) if f is c-Baire continuous, then f is quasi continuous on an open dense set,
(3) if X is Baire and F is closed valued and c-usc, then F has a submultifunction,

which is both minimal usco and locally bounded on an open dense set,
(4) if f is c-continuous, then f is continuous on an open dense set.

Proof. It is sufficient to prove (3). Suppose that F is c-usc. The multifunction
F0 in Theorem 2 is minimal usco and locally bounded on a dense open set H,
hence for any x ∈ H there is an open set U0 containing x such that F0(U0) ⊂ C,
where C is compact. We will show that F0(x) ⊂ F (x). If not, there are a point
y ∈ F0(x) \ F (x) and two disjoint open sets V ⊃ F (x) and W containing y (we
use regularity of Y and closed values of F and F0). The set C ∩W is non-empty,
compact and disjoint from F (x). Since F is c-usc, there is an open set U containing
x such that U ⊂ U0 and F (U) ⊂ Y \ (C ∩ W ). Since F0 is minimal, there is a
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non-empty open set H0 ⊂ U such that F0(H0) ⊂ W . Hence F0(H0) ⊂ C ∩W . So
F and F0 have disjoint values on H0, contradicting with Theorem 2 (2).

In Theorem 2, c-upper Baire continuity guarantees that X is Baire. Theo-
rem 2 also holds for c-upper quasi continuous, provided X is Baire. Without this
assumption it is not valid.

Example 2. Define a function f : Q+ → Q+ (Q+ is the set of all positive
rational numbers with the usual topology) by letting f(x) = {n}, where x = n/m
is a rational number in the standard form. Then f is c-quasi continuous, but it is
not quasi continuous at any point (comparing this with Theorem 2 (3)).

At the end of the paper we will give an application of our results to the existence
of selections of lower Baire continuous multifunctions. A multifunction F is lower
Baire continuous at a point x ∈ Dom (F ), if for any open sets V, U , such that
F (x) ∩ V 6= ∅ and x ∈ U there is a set E ∈ Br such that E ⊂ U ∩ Dom(F ) and
F (e) ∩ V 6= ∅ for any e ∈ E. A multifunction F is lower Baire continuous, if it
is so at any point of Dom (F ). Equivalently, F is lower Baire continuous at x if
∅ 6= F (x) ⊂ BrF (x). In contrast to Theorem 2, a quasi continuous selection on an
open dense set need not exist, as shown in the next example.

Example 3. Define a multifunction F : R→ R by letting F (x) = {n}, where
x = n/m is a rational number in the standard form and F (x) = R otherwise. Then
F is lower Baire quasi continuous, but any of its selections is not quasi continuous.

The main idea is to find a quasi continuous selection f of BrF with a metric
range.

Theorem 3. Let Y be a σ-compact metric space and F be a closed valued
densely defined lower Baire continuous multifunction. Then there is an open dense
set H and a function f : H → Y such that f is quasi continuous, continuous on a
residual set A and f(a) ∈ F (a) for any a ∈ A.

Proof. Again, Dom (F ) is a residual set. Since F is lower Baire continuous
and F ⊂ BrF , BrF is non-empty valued on a residual set. By Remark 1 (3), BrF is
defined on an Fσ-set. Since X is Baire, BrF is defined at least on a dense open set G.
By Remark 1 (1), BrF is c-usc and so is c-upper Baire continuous on G. It follows
from Theorem 2 that BrF has a selection f , which is quasi continuous on an open
dense set H ⊂ G and G \H is a nowhere dense set. Put Bn = {x ∈ H ∩Dom (F ) :
d(f(x), F (x)) < 1/n}. We will show that H\Bn is a set of first category. Let x ∈ H,
V , U be open sets containing f(x) and x respectively such that the diameter of V is
less than 1

2n . By quasi continuity of f , there is a non-empty open set H0 ⊂ U such
that f(H0) ⊂ V . Let h ∈ H0. Since f(h) ∈ BrF (h), there is a set E ∈ Br such that
E ⊂ H0 and F (e)∩V 6= ∅ for any e ∈ E. Hence E ⊂ Bn, and H \Bn is a set of first
category. It follows that B := ∩∞n=1Bn = {x ∈ H ∩ Dom(F ) : d(f(x), F (x)) = 0}
is residual in H. It is clear that f(b) ∈ F (b) for any b ∈ B. Since Y is metric, f is
continuous on a residual set C, by [8]. Finally, the proof is completed by putting
A = B ∩ C.
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