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¢-RECURRENT TRANS-SASAKIAN MANIFOLDS
H. G. Nagaraja

Abstract. In this paper we present some results for ¢ recurrent trans-Sasakian manifolds.
We find conditions for such manifolds to be of constant curvature. Finally we give an example of
a 3-dimensional ¢- recurrent trans-Sasakian manifold.

1. Introduction

A class of almost contact metric manifolds known as trans-Sasakian manifolds
was introduced by J. A. Oubina [6] in 1985. This class contains a-Sasakian, (-
Kenmotsu and co-symplectic manifolds. An almost contact metric structure on a
manifold M is called a trans-Sasakian structure if the product manifold M x R
belongs to the class Wy, a class of Hermitian manifolds which are closely related
to a locally conformal Kahler manifolds. Trans-Sasakian manifolds were studied
extensively by J. C. Marrero [5], M. M. Tripathi [8], U. C. De [2, 3, 4] and others.
M. M. Tripathi [8] proved that trans-Sasakian manifolds are always generalized
quasi-Sasakian.

U. C. De et al. [2] generalized the notion of local ¢-symmetry and introduced
the notion of ¢-recurrent Sasakian manifolds. In the present paper we study ¢-
recurrent trans-Sasakian manifolds. In Section 3, we prove that a conformally flat
¢-recurrent trans-Sasakian manifold is a manifold of constant curvature. In the
same section trans-Sasakian manifolds with n-parallel Ricci-tensor are considered
and we prove that the scalar curvature of such a manifold is a constant. In Section
4, it is proved that a ¢-recurrent conformally flat trans-Sasakian manifold is 7-
Einstein. Finally we construct an example of a 3-dimensional ¢-recurrent trans-
Sasakian manifold. This verifies the results proved in Section 3.

2. Preliminaries

Let M be a (2n+1)-dimensional almost contact metric manifold with an almost
contact metric structure (¢, &,n,g), where ¢, £, n are tensor fields on M of types
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(1,1), (1,0), (0,1) respectively and g is the Riemannian metric on M such that
(a) ¢* =—I+n®¢ (b)) =1, () ¢(¢)=0, (d)nop=0 (2.1)

The Riemanian metric g on M satisfies the condition
9(¢X,0Y) = g(X,Y) = n(X)n(Y) (2.2)

VX,Y € TM. An almost contact metric structure (¢,£,n, g) in M is called a trans-
Sasakian structure [1] if the product manifold (M x R, J,G) belongs to the class
Wy, where J is the complex structure on (M x R) defined by

JXAND) = (6= X (X)) (2.4

for all vector fields X on M and smooth functions A on (M x R) and G is the
product metric on (M x R). This may be expressed by the following condition [1]

(Vxo)(Y) = a(g(X,Y)E —n(Y)X) + B(9(¢X,Y)E —n(Y)eX),  (2.5)

where o and 8 are smooth functions on M.

From (2.5), we have
(Vx§) = —a(¢X) + B(X —n(X)E) (2.6)
(Vxn)(Y) = —ag(¢X,Y) + B(¢X, ¢Y). (2.7)

In a (2n + 1)-dimensional trans-Sasakian manifold, from (2.5), (2.6), (2.7), we can
derive [3]

R(X,Y)¢ = (a® = B*)(n(Y)X —n(X)Y) + 208(n(Y)pX — n(X)pY)

— (Xa)oY + (Ya)oX — (XP)¢*Y + (Y )o*X (2.8)
S(X,€) = (2n(a® = §) — €0(X) — (20— D(XB) — (6X)a.  (29)
Further we have
203 + a = 0. (2.10)
In a conformally flat manifold the curvature tensor R satisfies
R(X,Y,2,W) = 5 L [S(Y, 2)g(X, W) + 9(¥, 2)S(X, W) - 5(X, Z)g(¥ W)
— (X 2)S(, W) = 5 oY, 2)g (X W) = (X, 2)g(Y, W) (2.11)
From (2.8) we have
Suppose a and 3 are constants. Then from (2.9), (2.11), (2.12), we obtain
S(X.Y) = (5 — (a® — B2))g(6X,0Y) — 2n(a® — Bp(X)n(Y).  (2.13)

2n
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Applying (2.13) in (2.11), we get

(e — 200~ ) (9(Y, 2)X — g(X, 2)Y)

+ (% +(2n+ 1)) (@ = B{(g(Y, Z)n(X)€ - 9(X, Z)n(Y)§)
+ (Y )n(2)X = n(X)n(2)Y)}. (2.14)

R(X,Y)Z =

From (2.10), for constants o and 3, we have

PrOPOSITION 2.1. A trans-Sasakian manifold with o and (8 are constants is
either B-Sasakian or a-Kenmotsu or co-symplectic.

It is well known that $-Sasakian manifolds are quasi Sasakian and a-Kenmotsu
manifold are C'(—a?) manifolds. Hence we have the following corollary.

COROLLARY 2.1. In a trans-Sasakian manifold M with o and (8 are constants,
one of the following holds.

(i) M is quasi Sasakian (ii) M is a C(—a?) manifold (iii) M is co-symplectic.
3. Conformally flat ¢-recurrent trans-Sasakian manifolds
DEFINITION 3.1 A trans-Sasakian manifold is said to be ¢-recurrent if
»*(VwR)(X,Y)Z = AW)R(X,Y)Z, (3.1)
v X,Y,Z,W € TM.
Differentiating (2.14) covariantly with respect to W, we get

2n1_ I KC”“;ZV : {(9(Y, Z)n(X)¢

—9(X, Z)n(Y)) + (n(Y)n(2)X — n(X)n(2)Y )}]+[(Ln +3(a” - %)

{9, 2)(Vwn)(X)§ = n(X)(Vwe)) — 9(X, 2)(Vwn)(Y)E = n(Y)(VwE))
+ (Vwn)(Y)n(Z) +n(Y)(Vwn)(Z) = (Vwn)(X)n(Z) = n(X)(Vwn)(Z

(VwR)(X,Y)Z =

(9(¥, 2)X—g(X, 2)¥ )1 T3

)}
(32)
We may assume that all vector fields X,Y, Z, W are orthogonal to £. Then (3.2)
takes the form

1 [(dr(W)
2n —1 2n
r
+(5, + 3(a® = B){9(Y. Z2)(Vwn)(X) — g(X, Z)(Vwn)(Y)}€].  (3.3)

(VwR)(X,Y)Z =

)9V, 2)X — g(X, 2)Y)

Applying ¢? to both sides of (3.3), we get

1 [dr(W)
2n—1" 2n

AW)R(X,Y)Z = (9(Y, 2)X = g(X, Z2)Y)]
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i.e.

1 [dr(W)
2n(2n — 1) A(W)
Putting W = e; in the above equation, where {e;} is an orthonormal basis of the

tangent space at any point of the manifold and taking summation over i, 1 <7 <
2n + 1, we obtain

R(X,Y)Z = (9(Y, 2)X — g(X, Z2)Y)].

RX,Y)Z =Myg(Y,2)X — g(X,2)Y),

where A = (%) is a scalar. Since A is non zero, A will be a constant.

Therefore M is of constant curvature A\. Thus we can state that

THEOREM 3.1. A conformally flat ¢-recurrent trans-Sasakian manifold of di-
mension greater than 3 is a manifold of constant curvature provided o and (3 are
constants.

Since three dimensional Riemannian manifolds are conformally flat, we have

COROLLARY 3.1. A three dimensional ¢-recurrent trans-Sasakian manifold is
a manifold of constant curvature.

Now from Proposition 2.1 and the above corollary, we have

COROLLARY 3.2. A three dimensional ¢-recurrent 3-Sasakian manifold ( or a-
Kenmotsu manifold or co-symplectic manifold) is a manifold of constant curvature.

By virtue of (2.1)(a) and (3.1), we have
—(VwR)(X,Y)Z +n((VwR)(X,Y)Z)§ = AW)R(X,Y)Z
from which we get
_g((VWR)(X7 Y)Z7 U) + n((vWR)(X’ Y)Z)T](U) = A(W)R(X7 Y, Z, U)' (34)
Putting X = U = ¢; and summing over i = 1,...,2n+ 1, we get
—(Vw9)(Y, 2) + 2o n((Vw R)(ei,Y) Z)n(ei) = A(W)S(Y, Z). (3.5)
The second term of (3.5) by putting Z = £ takes the form g((Vw R)(e;, Y)&,&)g(ei, ).
Consider
9(VwR)(ei, Y)E,§) = g(Vw R(ei, Y)E, ) — g(R(Vwei, Y)E, €)
— 9(R(ei, VwY)§, §) — g(R(e;, Y)VwE, §)  (3.6)
at Pe M.
Using (2.8), (2.1)(d) and g(X, &) = n(X), we obtain
9(R(es, VwY)E,€) = g((a® = B (n(VwY)ei — nles)(VwY))
+2a8(n(VwY)ge; —n(e)o(VwY)) + (VwY)a)de;—
(e;a)p(VwY) — (e:8)d*(VwY) + (VwYB)d?e; = 0. (3.7)
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By virtue of g(R(e;,Y)&, &) = g(R(§,€)e;, Y) =0 and (3.7), (3.6) reduce to
Since (Vxg) = 0, we have g((VwR)(e;, Y)E, &) + g(R(e;, Y)E, Vw€) = 0, which
implies

9(VwR)(e;,Y)§, &) = —g(R(ei, Y)E, VwE) — g(R(e;, Y)VwE, ). (3.9)
Using (2.6) and by the skew symmetry of R, we get

g((vWR> (eiv Y)f, 5) =

= g(R(e;, Y)E —a(@W)+B(W —n(W)E)) +g(R(ei, Y) —a(eW)+BW —n(W)§), £)
= g(R(=a(eW)+B(W—n(W)E,§)Y, €i), ) +g(R(S, —a(oW)+B(W—n(W)E))Y, e;).

Multiplying the above equation by n(e;) = g(&,e;) and summing over i = 1,...,
2n + 1, we get

Yn((VwR)(ei, Y)Z)g(ei, &) =
= > {9(R(—a(¢W) + B(W —n(W)E, €)Y, €:))g(ei, §)+
9(R(& —a(oW) + BW —n(W)E))Y, ei)g(es &)} =
= {g(R(=a(eW) + B(W —n(W)E, €)Y, €))
+ g(R(§, —a(pW) + B(W —n(W)E))Y, €)} = 0.

Replacing Z by ¢ in (3.5) and using (2.9) we get
—(VwS8)(X, &) = AW){2n(a® — *)n(X)} (3.10)
provided v and 3 are constants. Now from
(VxS)(Y,§) = VxS(Y,§) — S(VxY,§) — S(Y,Vx§).

Using (2.6) and (2.9), for constant o and 3, we have

(VxS)(Y,€) = 2n(a® = B [(Vxn)(Y) + Bn(X)n(Y)] + S(Y, a9 X — BX). (3.11)
From (3.11), (2.3) and (2.7), we obtain

(VxS)(Y,€) = 2n(a® = B2)[Bg(X,Y) — ag(X,¢Y)] + S(Y,a9X — BX). (3.12)
From (3.10) and (3.12), we have

—AX){2n(a®=)n(Y)} = 2n(a®—5)[B9(X, V) —ag(X, oY) +S(Y, 04¢X—(5X)>o
3.13
Replacing Y by ¢Y in (3.13) and using (2.2), we obtain

2n(a® — 5)[Bg(X, 8Y) + ag(X,Y) — an(X)n(Y)] + aS(¢Y, ¢X) — BS(¢Y,X) =0

—aS(6Y,¢X) + BS(¢Y, X) = 2n(a® — %)[Bg(X, ¢Y) + ag(¢X, ¢Y)].  (3.14)
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Interchanging Y and X in (3.14) and by using the skew symmetry of ¢, we obtain
—aS(¢X,¢Y) = 2na(a® - §7)(g(¢X, 9Y)). (3.15)

By skew symmetry of ¢ and using (2.9), we obtain S(¢X, ¢Y) = —S(¢?X,Y) =
S(X,Y) —2n(a® — %)n(X)n(Y). Substituting this in (3.15), we get

S(X,Y) =ag(X,Y) + bn(X)n(Y), (3.16)
where a = 2n(a? — 3?), i.e. M is n-Einstein. Thus we have

THEOREM 3.2 A ¢-recurrent conformally flat trans-Sasakian manifold is n-
Einstein provided o and 3 are constants.

COROLLARY 3.3 A 3-dimensional ¢-recurrent trans-Sasakian manifold is n-
Einstein provided o and (3 are constants.

4. Trans-Sasakian manifolds with n-parallel Ricci tensor

Let us consider a trans-Sasakian manifold M of dimension 2n+1 with n- parallel
Ricci tensor. Replacing Y by ¢Y and Z by ¢Z in (2.13), we obtain

S(6X,6Y) = (5- — (a® = F)(9(X,Y) = n(X)n(Y). (1.1)

Differentiating (4.1) covariantly with respect to X we obtain

dr(X

(Vx8)(6Y:07) = (") (4(v, 2)X — (¥ )n(2)
r

~ (5= = (@2 = BT xn)(VIn(Z) + () (Vxn)(Z)}). (42

Suppose the Ricci tensor is n-parallel. Then we obtain
dr(X) r 2 2
(T 2) -0V (2)) = [~ (02~ BT xm) (V)(Z)+0(¥ ) (T xn)(Z)}].
(4.3)
Putting Y = Z = ¢, in (4.3), where {e;} is an orthonormal basis and summing over
i=1, ... ,2n+1, we obtain
r

dr(X) = (5= = 2(a® = ) (Vxm)(€). (4.4)

Since n(§) = 1, from (2.5), we have (Vxn)(§) = 0. Thus from (4.4), we obtain
dr(X) =0 or r is a constant. Thus we have

THEOREM 4.1. In a conformally flat trans-Sasakian manifold with n-parallel
Ricci tensor, the scalar curvature is constant provided o and [ are constants.

COROLLARY 4.1. A 3-dimensional trans-Sasakian manifold with n-parallel
Ricci tensor, the scalar curvature is constant provided v and (3 are constants.
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5. Example of ¢-recurrent trans-Sasakian manifolds

Consider three dimensional manifold M = {(z,y,2z) € R®\ 2z # 0}, where
(z,y, 2) are the standard coordinates of R3. The vector fields
r9 _yo __ 9
2oz’ ° T zoy 0 0z

are linearly independent at each point of M. Let g be the Riemannian metric
defined by
gler,e1) = 1,g(e2,e2) = 1,g(e3,e3) = 1,g(e1,e2) = 0,g(e1,e3) = 0,g(ez, e3) = 0.
(5.2)
Let n be the 1-form defined by n(X) = g(X, ) for any vector field X. Let ¢ be the
(1,1) tensor field defined by

d)(el) = €2, ¢(62) = —e€y, ¢(€3) =0. (53)
Then by using the linearity of ¢ and g we have $?X = —X + n(X)¢, with € = e3.
Further g(¢X, ¢Y) = g(X,Y)—n(X)n(Y") for any vector fields X and Y. Hence

for e3 = &, the structure defines an almost contact structure on M. Let V be the
Levi-Civita connection with respect to the metric g, then we have

1 1
[61, 62] = 0, [61, 63] = ;61, [62,63] = ;62. (54)

e = (5.1)

The Riemannian connection V of the metric g is given by
29(VxY,2) = Xg(Y,2) +Yg(Z, X) - Zg(X,Y)
—9(X,[Y, Z]) —g(Y, [X, Z]) + 9(Z,[X,Y]). (5.5)
Using (5.5), we have

1 1
29(Ve,e3,61) = 29(;617 e1) +2g(ez,e1) = 29(261 +e2,e1),

since g(e1,e2) = 0. Thus
1
veleg = ;61 + e2. (56)

Again by (5.5) we get,

1 1
29(Veye3,e2) = 29(;62762) —2g(e1,e2) = 29(262 —e1,€2),

since g(e1,e2) = 0. Therefore we have
1

Ve,e3 = ;62 —e1. (5.7)

Again from (5.5) we have
Veses =0, Ve e = _7161, Ve, e2 =0,
Ve,e1 =0, Ve,e1 =0, Ve,ea = —%62,

Vese1 =0, Ve,ea =0.
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The manifold M satisfies (2.5) with & = —1 and3 = 1. Hence M is a trans-
Sasakian manifold. Using the relations (5.6), (5.7) and (5.8), the non-vanishing
components of the curvature tensor are computed as follows:

1
R(61,€3)63 = 7261, R(63761)63 = —i2€1’
- i (5.9)
Rfea, e3)es = 2 R(es, ez)es = — 3¢

The vectors {ey, es, e3} form a basis of M and so any vector X can be written as
X = aje; + ages + agez where a; € RT,i=1,2,3. From (5.9), we have

2a
(VxR)(e1,e3)es = —73361
and 5
a
(VXR)(eg,eg)eg = —73382.

Applying ¢? to both sides of the above equations and using (5.3), we obtain
H*((VxR)(e1,e3)es) = A(X)R(ey, es3)es

and
#*((VxR)(ez,e3)es) = A(X)R(ea, e3)es,

where A(X) = % is a non vanishing 1-form. This implies that there exists a

¢-recurrent trans-Sasakian manifold of dimension 3.

From the non vanishing curvature components as given in (5.9), we have

R(e1,e3)es = A(g(es, ez)er — gler, e3)es)

and
R(ez,e3)ez = A(g(es, e3)ea — glea, e3)es).

This verifies Corollary 3.2.
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