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GENERALIZATIONS OF PRIMAL IDEALS
IN COMMUTATIVE RINGS

Ahmad Yousefian Darani

Abstract. Let R be a commutative ring with identity. Let ¢ : J(R) — J(R) U {0} be
a function where J(R) denotes the set of all ideals of R. Let I be an ideal of R. An element
a € R is called ¢-prime to I if ra € I — ¢(I) (with r € R) implies that r € I. We denote by
Sg(I) the set of all elements of R that are not ¢-prime to I. I is called a ¢-primal ideal of R if
the set P := S4(I) U ¢(I) forms an ideal of R. So if we take ¢p(Q) = 0 (resp., ¢o(Q) = 0), a
¢-primal ideal is primal (resp., weakly primal). In this paper we study the properties of several
generalizations of primal ideals of R.

1. Introduction

Throughout, R will be a commutative ring with identity. (However, in most
places the existence of an identity plays no role.) By a proper ideal I of R we mean
an ideal I with I # R. Fuchs [5] introduced a new class of ideals of R: primal
ideals. Later Ebrahimi Atani and the author gave a generalization of primal ideals:
weakly primal ideals. Let I be an ideal of R. An element a € R is called prime
(resp. weakly prime) to I if ra € I (resp. 0 # ra € I) (where r € R) implies that
r € I. Denote by S(I) (resp. w(I)) the set of elements of R that are not prime
(resp. are not weakly prime) to I. A proper ideal I of R is said to be primal if S(I)
forms an ideal of R (so 0 is not necessarily primal); this ideal is always a prime
ideal, called the adjoint prime ideal P of I. In this case we also say that [ is a
P-primal ideal of R [5]. Not that if r € R and a € S(I), then clearly ra € S(I). So
what we require for I being primal is that if @ and b are not prime to I, then their
difference is also not prime to I. Also, a proper ideal I of R is called weakly primal
if the set P = w(I) U {0} forms an ideal; this ideal is always a weakly prime ideal
[4, Proposition 4], where a proper ideal P of R is called weakly prime if whenever
a,b € R with 0 # ab € P, then either « € P or b € P [2]. In this case we also
say that I is a P-weakly primal ideal. If R is not an integral domain, then 0 is a
0-weakly primal ideal of R (by definition), so a weakly primal ideal need not be
primal.
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Bhatwadekar and Sharma [3] recently defined a proper ideal I of an integral
domain R to be almost prime if for a,b € R with ab € I — I?, then either a € I or
b € I. This definition can obviously be made for any commutative ring R. Thus
a weakly prime ideal is almost prime and any proper idempotent ideal is almost
prime. The concept of almost primal ideals in a commutative ring was introduced
and studied in [6]. Let I be an ideal of R, and let n > 2 be an integer. An element
a € R is called almost prime (resp. n-almost prime) to I if ra € I — I? (resp.
ra € I —I™) (with » € R) implies that » € I. Denote by Sa(I) (resp. Sn(I)),
the set of all elements of R that are not almost prime (resp. n-almost prime) to I.
Then I is called almost primal (resp. m-almost primal) if the set P = So(I) U I?
(resp. P = S,(I)UI™) forms an ideal of R. This ideal is an almost prime (resp.
n-almost prime) ideal of R [6, Lemma 4], called the almost (resp. n-almost) prime
adjoint ideal of I. In this case we also say that I is a P-almost (resp. P-n-almost)
primal ideal.

In this paper we give some more generalizations of primal ideals and study the
basic properties of these classes of ideals.

2. Results

Let R be a commutative ring, ¢ : Z(R) — Z(R) U{0} a function and I an ideal
of R. Since I —¢(I) = I—(IN¢(I)), there is no loss of generality in assuming that
I C ¢(I). We henceforth make this assumption throughout this paper.

DEFINITION 2.1. Let R be a commutative ring and ¢ : Z(R) — Z(R) U {0}
a function. Let I be an ideal of R. An element a € R is called ¢-prime to [ if
ra € I —¢(I) (with r € R) implies that r € I.

REMARKS 2.2. Let R be a commutative ring, and I a proper ideal of R.
Denote by S,(I) the set of all elements of R that are not ¢-prime to I. Then

(1) Every element of ¢(I) is ¢-prime to 1.

(2) If an element of R is prime to I, then it is ¢-prime to I. So S4(I) C S(I).

(3) The converse of (2) is not necessarily true. For example assume that
@ = ¢p, where ¢o(Q) = 0 for every ideal Q of R. Let R = Z/24Z, and I = 8Z/247Z.
Then, 6 is ¢-prime to I, but it is not prime to I since 12.6 = 0 € I with 12 ¢ I.
Consequently 6 is ¢-prime to I while it is not prime to I.

DEFINITION 2.3. Let R be a commutative ring and ¢ : Z(R) — Z(R) U {0
function. A proper ideal I of R is said to be a ¢-primal ideal of R if Sy(I) U ¢
forms an ideal of R.

}a
(1)

Let R be a commutative ring and ¢ : Z(R) — Z(R) U {0} a function. We
recall from [1] that a proper ideal P of R is called ¢-prime if for every x,y € R,
2y € P — ¢(P) implies x € P or y € P.

PROPOSITION 2.4. If I is a ¢-primal ideal of R, then P = S4(I) U ¢(I) is a
¢-prime ideal of R.
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Proof. Let x,y € R be such that xy € P — ¢(P) and = ¢ P. Then zy € S4(I)
so zy is not ¢-prime to I. Hence rzy € I — ¢(I) for some rr € R — I. There exists
re€ R—Iwithrey € I —¢(I). If © ¢ P, then ry € I — ¢(I) implies that y is not ¢-
prime to I. Soy € Sy(I) = P. Since z is ¢-prime to I, from z(ry) = ray € I—¢(I)
we get ry € I —¢(I). This implies that y is not ¢-prime to I, that is y € S¢(I) C P.
So P is ¢-prime. m

NoOTATION 2.5. Let I be a ¢-primal ideal of R. By Lemma 2.4, P = S,(I) U
¢(I) is a ¢-prime ideal of R. In this case P is called the ¢-prime adjoint ideal
(simply adjoint ideal) of I, and I is called a P-¢-primal ideal of R.

THEOREM 2.6. Let R be a commutative ring with identity. Then every ¢-prime
ideal of R is ¢-primal.

Proof. Assume that P is a ¢-prime ideal of R. It suffices to show that P —¢(P)
consists exactly of elements of R that are not ¢-prime to P. By Lemma 2.7,
P C S4(P)UP. So P— ¢(P) C S4(P). Now assume that a € S4(P). Then
ab € P — ¢(P) for some b € R — P. Since P is ¢-prime we have a € P — ¢(P).
Consequently P = S,(P)U@(P). This implies that P is a P-¢-primal ideal of R. m

LEMMA 2.7. Let R be a commutative ring and I an ideal of R.

(1) If I is proper in R, then I C Sy(I)U ¢(I).

(2) If I is a P-¢-primal ideal of R, then I C P.

Proof. (1) For every a € I —¢(I) we have a.1gp =a € I —¢(I) with 1p € R—1.
This implies that a is not ¢-prime to I, that is a € S4(I).

(2) It follows from (1). m

EXAMPLE 2.8. Lest R be a commutative ring. Define the following functions
®a : I(R) — J(R) U {0} and the corresponding ¢,-primal ideals:

(1) ¢y o) =10 a ¢-primal ideal is primal.

(2) ¢o o(I)=0 a ¢-primal ideal is weakly primal.
(3) ¢2 o(I) = I? a ¢-primal ideal is almost primal.
(4) pp(n>2) o(I)=1I" a ¢-primal ideal is n-almost primal.
(5) ¢u d(I)=(,_, I" a ¢-primal ideal is w-primal.

(6) ¢1 o(I)=1 a ¢-primal ideal is any ideal.

The next result provides several characterizations of ¢-primal ideals of a com-
mutative ring R.

THEOREM 2.9. Let R be a commutative ring and ¢ : Z(R) — Z(R)U {0} a
function. Let I and P be proper ideals of R. The following are equivalent.

(1) I is P-¢-primal.
(2) For everyx ¢ P—¢(I), (I :g x) =TU(¢(I) :g x); and for every x € P—¢(I),
(I:gx) 2 TU(p(I) :g ).

(3) for everyx ¢ P—¢(I), (I :rx)=1 or (I :gpx)=(p(I):r x); and for every
reP—¢(I),(I:rx) 21 and (I :gr x) 2 (¢(I) :r x).
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Proof. 1 = 2) Assume that I is P-¢-primal. Then P — ¢(I) consists entirely
of elements of R that are not ¢-prime to I. Let © ¢ P — ¢(I). Then z is ¢-
prime to I. Clearly I U (¢(I) :g z) C (I :g z). For every r € (I :g z), if
re € ¢(I), then r € (¢(I) :g x), and if rz ¢ ¢(I), then = ¢-prime to I gives
r € I. Hence r € T U (¢(I) :g x), that is (I :r ) C T U (¢(I) :gr x). Therefore
(I ‘R ,CC) =1U (¢(I) ‘R .7,‘)

Now assume that z € P — ¢(I). Then z is not ¢-prime to I. So there exists
r € R—1I such that ra € I — ¢(I). Hencer € (I :r z) — (I U (¢(I) :g x)).

2= 3) Let v ¢ P— ¢(I). Since (I :g z) is an ideal of R and (I :g z) =
TU(¢(I) :g x), either (¢(I) :g ) CT or I C (p(I):g x). So either (I :gxz) =1 or
(I :rx) = (¢(I) :r ). Moreover, for every x € P—¢(I), (I :r x) 2 TU(¢(I) :g x).
Hence (I :g ) 2 I and (I :g x) 2 (¢(I) :g ).

3 = 1) By (3), P — ¢(I) consists exactly of all elements of R that are not
¢-prime to I. Hence I is P-¢-primal. m

ExAMPLE 2.10. In this example we show that the concepts “primal ideal” and
“¢-primal ideal” are different. In fact we show that neither implies the other. Let
R be a commutative ring and assume that ¢ = ¢9. Then

(1) Let us to denote the set of all zero-divisors of R by Z(R). If R is not an
integral domain such that Z(R) is not an ideal of R (for example the ring Z/6Z),
then the zero ideal of R is a ¢-primal ideal which is not primal. Hence a ¢-primal
ideal need not be primal.

(2) Let R = Z/247Z, and consider the ideal I = 8Z/247Z of R. It is not difficult
to show that I is not a ¢-primal ideal of R. Now set P = 2Z/24Z. Then every
element of P is not prime to I. Assume that a ¢ P. If a.n € I for some i € R, then
8 divides n, that is 7 € I. Hence @ is prime to I. We have shown that S(I) = P,
that is I is P-primal. This example shows that a primal ideal need not be ¢-primal.

According to Example 2.10, a ¢-primal ideal need not necessarily be primal.
In Theorems 2.11 and 2.12 we provide some conditions under which a ¢-primal
ideal is primal.

THEOREM 2.11. Let R be a commutative ring and ¢ : T(R) — Z(R) U {0} a
function. Suppose that I is a P-¢-primal ideal of R with I? ¢ ¢(I). If P is a prime
ideal of R, then I is primal.

Proof. Assume that a € P. Then cither a € ¢(I) or a € S4(I). If the
former case holds, then a € ¢(I) C I C S(I), and if the latter case holds, then
a € Sy(I) C S(I) by Remark 2.2. So in any case a is not prime to I. Now assume
that b € R is not prime to I. Sorb € I for somer € R—1. If rb ¢ ¢(I), then b is not
¢-prime to I, so b € P. Thus assume that rb € ¢(I). First suppose that bI ¢ ¢(I).
Then, there exists rg € I such that brg ¢ ¢(I). Then b(r+1r¢) = br+brg € I —¢(1)
with r + r9 € R — I, implies that b is not ¢-prime to I, that is b € P. Now we
may assume that bl C ¢(I). If rI ¢ ¢(I), then rc ¢ ¢(I) for some ¢ € I. In this
case b+ c)r =br+cr eI —¢(I) withr € R—1I, that is b € P. So we can assume
that rI C ¢(I). Since I? ¢ ¢(I), there are ag,by € I with agby ¢ ¢(I). Then
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(b+ao)(r+bo) € I —¢(I) with r+by € R— I implies that b+ag € P. On the other
hand ag € I C P by Lemma 2.7. So that b € P. We have already shown that P is
exactly the set of all elements of R that are not prime to I. Hence I is P-primal. m

A commutative ring is called decomposable if there exist nontrivial commuta-
tive rings R; and Ry such that R = R; X Ry. A ring R that is not decomposable
is called indecomposable. An ideal I of R = Ry X Ry will have the form Iy x Iy
where I; and I are ideals of Ry and Ry, respectively. It is a well-known, and easily
proved, result that I is prime if and only if I = P; X Ry or I = Ry X P, where P; is
a prime ideal of R;. It has also proved in [4, Lemma 13] that if I is a primal ideal
of Ry and Iy is a primal ideal of R, then I; X Ry and R; X I5 are primal ideals of
R. In the following Theorem we provide some conditions under which a ¢-primal
ideal of a decomposable ring is primal.

THEOREM 2.12. Let Ry and Rs be commutative Tings and R = R; X Rs.
Let ¢; : J(R;) — J(R;) U{0} (i = 1,2) be functions with 1;(R;) # R;, and set
@ =11 X . Assume that P is an ideal of R with ¢(P) # P. If I is a P-¢-primal
ideal of R, then either I = ¢(I) or I is primal.

Proof. Suppose that I is a P-¢-primal ideal of R. We may assume that
I =1, xIyand I # ¢(I). By Proposition 2.4, P is a ¢-prime ideal of R. Therefore,
by [1, Theorem 16], we have the following cases:

Case 1. P = Py x P, where P; is a proper ideal of R with v;(P;) = P;. In this
case we have ¢(P) = 11 (P1) X 92(P2) = P; X P, = P which is a contradiction.

Case 2. P = P, X Ry where P is a t¢1-prime ideal of R;y. Since 12(R2) # Ra,
P, is a prime ideal of Ry and hence P is a prime ideal of R. We show that Iy = R».
Since I # ¢(I), there exists (a,b) € I — ¢(I). Then we have (a,1)(1,b) = (a,b) €
I—¢(I). If (a,1) ¢ I, then (1,b) is not ¢-prime to I. Hence (1,b) € P = P; X Ry
and so 1 € P; a contradiction. Thus (a,1) € I and so 1 € I, that is I = Ra.
Now we prove that I is a P;-primal ideal of R;. Pick an element a; € P;. Then
(al,O) € PP xRy = P = S¢(I) U (b([) If (al,O) S ¢(I> = wl(Il) X ’(/JQ(RQ),
than ay € ¥1(I;) C I; € S(I;). Hence ay is not prime to I;. So assume that
(a1,0) € Sp(I). In this case (a1,0)(r1,7r2) € I — ¢(I) for some (r1,72) € R— 1. So
ayr1 € Iy — 1 (I1) with 1 € Ry — I implies that aq is not ¢;-prime to I;. Hence
a1 is not prime to I; by Remark 2.2. Conversely, assume that by is not prime to I.
Then bycy € I; for some ¢; € Ry — I1. In this case since 1 € Ry — 2(Rz2), we have
(bl, 1)(01, 1) = (blcl, 1) €l x Ry — (Il X d)Q(Rg) CcI-— gb([) with (61,1) eR—-1.
Hence (b1,1) is not ¢-prime to I. Therefore (b1,1) € P = P; x Ry and hence
b1 € P;. We have already shown that P; consists exactly of those elements of Rq
that are not prime to I;. Hence I; is a P; primal ideal of Ry. Now [ is a P-primal
ideal of R by [4, Lemma 13].

Case 3. P = Ry x P, where P, is a ys-prime ideal of R. A similar argument
as in the Case 2 shows that [ is P-primal. m

Let J be an ideal of R and ¢ : J(R) — J(R) U {0} a function. As in [1] we
define ¢y : Z(R/J) — Z(R/J) U {0} by ¢s(I/J) = (¢(I) + J)/J for every ideal
€ 3(R) with J C I (and é,(I/J) = B if ¢(I) = 0).
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THEOREM 2.13. Let R be a commutative ring and ¢ : Z(R) — Z(R) U {0} a
function. Let I and J be ideals of R with J C ¢(I). Then I is a ¢-primal ideal of
R if and only if I/J is a ¢ s-primal ideal of R/J.

Proof. Assume that I is a P-¢-primal ideal of R. Suppose that a + J is
an element of R/J that is not ¢j-prime to I/J. There exists b € R — I with
(a+JJ)b+J)el/J—¢s(I/J). In this case ab € I — ¢(I) with b € R — I implies
that a is not ¢-prime to I. Hence a € S4(I) C P, and so a+J € P/J. Now assume
that c+J € P/J. Then c€ P = S,(I)U¢(I). If c € ¢(I), then c+ J € ¢p;(I/J).
So assume that ¢ € S(I), that is ¢ is not ¢-prime to I. Then c¢d € I — ¢(I) for
some d € R — I. Consequently, (c+ J)(d+J) e I/J— (o(I)/J)=1/J —¢s(I/J)
with d + J € R/J — I/J. This implies that ¢ 4+ J is not ¢ -prime to I/J; so
c+J € S4,(I/J). We have already shown that P/J = Sy, (I/J) U ¢;(I/J).
Therefore I/J is ¢ -primal.

Conversely, suppose that I/J is ¢ j-primal in R/J with the adjoint ideal P/J.
For every a € P — ¢(I), we have a+J € P/J — ¢ (I/J). So a+ J is not ¢ -prime
toI/J. So (a+J)(b+J) e I/J—¢;(I/J) for some b+.J € R/J—1/J. In this case
be R—1 and ab € I — ¢(I) implies that a is not ¢-prime to I. Conversely, assume
that ¢ € R is not ¢-prime to I. In this case c¢d € I — ¢(I) for some d € R—I. Then
(c+)d+J)el/]J—¢s(1)J) withd+ J ¢ I/J, that is ¢ + J is not ¢ -prime
to I/J. Hence c+J € P/J — ¢;(I/J), and hence ¢ € P — ¢(I). It follows that
P = S4(I) U ¢(I) which implies that I is P-¢-primal in R. m

Until further notice, let T be a multiplicatively closed subset of the commuta-
tive ring R and let f : R — Ry denote the natural ring homomorphism given by
r+— r/1. If J is an ideal of Ry, define JN R = f~1(J). Let ¢ : J(R) — J(R) U {0}
be a function and define ¢7 : Z(Rr) — Z(Rr) U{0} by ¢r(J) = (¢(J N R))r (and
or(J) =0if ¢(J N R) = 0) for every ideal J of Rp. Note that ¢ (J) C J. In the
remainder of this paper we study the relations between the set of ¢-primal ideals
of R and ¢p-primal ideals of Ry.

LEMMA 2.14. Let R be a commutative ring and ¢ : J(R) — J(R) U {0} a
function. Let T be a multiplicatively closed subset of R and let I be a P-¢-primal
ideal of R with PNT = 0. Let A € It —(¢(I))r. Then every representation A = a/s
of X as a formal fraction (with a € R and s € T' ) must have its numerator in I.
Moreover if (¢(I))r # Ir, then I = Ir N R.

Proof. Assume that A = a/s € It — (¢(I))r. Then a/s = b/t for some
belandt e T. In this case uta = usb € I for some v € T. If uta € ¢(I),
then a/s = (uta)/(uts) € (¢(I))r a contradiction. So we have uta € I — ¢(I). If
a ¢ I, then ut is not ¢-prime to I; so ut € PNT which contradicts the hypothesis.
Therefore a € I.

For the last part, it is clear that I C I+ N R. Now pick an element a € IT N R.
Then sa € I for some s € T. If sa ¢ ¢(I) and a ¢ I, then s is not ¢-prime to I, so
s € PNT a contradiction. So @ must be in I. If sa € ¢(I), then a/1 = (sa)/s €
(¢(I))r, and so a € (¢(I))r N R. Therefore Ir N R = I U ((¢(I))r N R). Hence
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either I "R =1 or It N R = (¢(I))r N R. But the latter case does not hold, for
otherwise It = (¢(I))r which is a contradiction. m

Let R be a commutative ring and M an R-module. An element a € R is called
a zero-divisor on M if am = 0 for some rm = 0. We denote by Zr(M) the set of
all zero-divisors of R on M.

THEOREM 2.15. Let R be a commutative ring and ¢ : IJ(R) — TJ(R) U {0} a
function. Suppose that T is a multiplicatively closed subset of R and I a P-¢-primal
ideal of R with PNT =0, TN Zr(R/P(I)) =0 and (¢(I))r C ¢r(Ir). Then Ir
is a ¢p-primal ideal of Ry with the adjoint ideal Pr.

Proof. Suppose that a/s € Pr — ¢p(Ir). Since (¢(I))r C ¢r(Ir) we have
a ¢ ¢(I). Hence, by Theorem 2.6 and 2.14, a € P — ¢(I). Thus a is not ¢-prime to
I;s0ab € I—¢(I) for some b € R—1I. If (ab)/s € ¢r(Ir), then (ab)/s = ¢/t for some
c€ ¢(IrNR) and t € T. One can shows that ¢ € ¢(I) and so utab = usc € ¢(I)
shows that ut € T N Zr(R/$(I)) a contradiction. So (ab)/s ¢ ¢r(Ir). In this
case, by Lemma 2.14, b/1 ¢ I7 and (a/s)(b/1) = (ab)/s € It — ¢ (I7) implies that
a/s is not ¢p-prime to Ip. Conversely assume that a/s € Ry is not ¢p-prime to
Ip. Then a/s ¢ ¢r(Ir) and (a/s)(b/t) € It — ¢r(Ir) for some b/t € Ry — Ir.
Since (¢(I))r C ¢r(Ir) we have (ab)/(st) € Ir — (¢(I))r. Then, by Lemma 2.14,
ab € T — ¢(I) and b € R — I implies that a is not ¢-prime to I. So a € P and
hence a/s € Pr — ¢r(Ir). Consequently Pr = Sy, (It) U ¢r(Ir) shows that Iy is
a Pp-¢p-primal ideal of Rp. m

ACKNOWLEDGEMENT. The author thanks the referees for their valuable com-
ments.

REFERENCES

[1] D.D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008),
686—-696.

[2] D.D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), 831-840.

[3] S.M. Bhatwadekar, P.K. Sharma, Unique factorization and birth of almost primes, Comm.
Algebra 33 (2005), 43-49.

[4] S. Ebrahimi Atani, A. Yousefian Darani, On weakly primal ideals(I), Demonstratio Math. 40
(2007), 23-32.

[5] L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.

[6] A. Yousefian Darani, Almost primal ideals in commutative rings, Chiang Mai J. Sci. to appear.

(received 09.08.2010; in revised form 18.11.2010; available online 20.12.2010)

Department of Mathematics, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

E-mail: yousefian@uma.ac.ir, youseffian@gmail.com



