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ADDITIONAL CHARACTERIZATIONS OF THE T3
AND WEAKER SEPARATION AXIOMS

Charles Dorsett

Abstract. Within this paper, the weaker separation axioms of Ty, 11, Ro, T2, and R; are
further characterized using mathematical induction, closed sets, convergence, and Tp-identification
spaces. The results are used to further investigate general topological spaces, to further investigate
constant nets and sequences, and finite nets and sequences in topological spaces.

1. Introduction

In 1978 [2] several weaker separation axioms were further characterized using
convergence and other properties. Later, in 2007 [3], weaker separation axioms
were further characterized by using mathematical induction. The results within
those papers motivated the work within this paper.

Within this paper, all spaces are topological spaces.

2. New characterizations of Ty, T, and Ry spaces.

Within the definition of the Ty separation axiom, two distinct elements are
used. Could the two distinct elements be extended to finitely many distinct ele-
ments in a similar manner? This question was resolved in a positive manner in the
2007 paper [3]. Let Sy be the property of a space where for any n distinct elements
in the space, n > 2, j of the elements can be separated from the remaining elements
by an open set, j < n? Is there a Tj space that is not Sy? Below this question and
similar questions for other separation axioms are resolved and the results are used
to further characterize the separation axioms using finitely many distinct elements,
closed sets, and convergence.

For a space, a straightforward proof shows that a constant net or sequence
converges to exactly each element of the closure of the constant. Under what
condition would it converge to only the constant? If the net or sequence is finite,
i.e., the net or sequence takes on only finitely many element values, and convergent,
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under what conditions would the net or sequence eventually be a constant? Within
this paper, these questions are also investigated and resolved using the results
within this paper cited above.

THEOREM 2.1. A space (X,T) is Ty iff for finitely many distinct elements
T1,c 0 ,&p, 1> 2, in X, there exists a closed set C' containing all but one of the
elements.

Proof. Suppose (X,T) is Ty. Let x1,- -+ ,xp, n > 2, be distinct elements of X.
Then there exists an open set O containing only one of the n distinct elements [3]
and C = X \ O is closed and contains all but one of the distinct elements.

Conversely, suppose that for distinct elements x1,--- ,x,, n > 2, there exists
a closed set C containing all but one of the distinct elements. Then for distinct
elements x1, -+ ,x,, n > 2, there exists an open set that contains only one of the

distinct elements, which implies (X,T') is Ty [3]. m

THEOREM 2.2. Let (X, T) be a space. Then (a) (X,T) is Ty iff (b) for distinct
elements x1, -+ ,xp, n > 2, in X, for each j € N, j < n, there exists an open set
containing exactly j of the distinct elements.

Proof. (a) implies (b): By definition, the statement is true for n = 2. Assume
the statement is true for n < k, k > 2.

Let 1, -+, x) be k distinct elements of X. Let j < k. Consider the case that
j < k—1. Then z1,--- ,zp_1 are distinct elements of X and there exists an open
set U containing exactly j of the distinct elements. If xy ¢ U, then U is open
and contains exactly j of the distinct elements x1,--- ,x,. Thus, consider the case
that xx € U. Then {x; | x; € U} is a set of j 4+ 1 distinct elements of X, where
7+ 1 < k, and there exists an open set V containing exactly j of those distinct
elements. Then U NV is an open set containing exactly j of the distinct elements
T, Tge

Consider the case that j = k — 1. From above, there exists an open set U
containing exactly k — 2 of the distinct elements z1, -+ ,zx_1. If x5 € U, then U
is an open set containing exactly k — 1 of the distinct elements x1,--- ,x. Thus
consider the case that z; ¢ U. Let m < k such that x,, ¢ U. Then x,,,x) are
2 distinct elements of X and there exists an open set V containing only one of
Tm,Ti. Then UUYV is an open set containing exactly k — 1 of the distinct elements
T, T

Hence, by mathematical induction, the statement is true for each natural num-
ber n.

The proof that (b) implies (a) is immediate letting n = 2. m

THEOREM 2.3. Let (X, T) be a space. Then (a) (X,T) is Ty iff (b) for distinct
elements x1,- -+ ,xp, n > 2, in X, for each j € N, j < n, there exists a closed set
containing exactly j of the distinct elements.

The proof is straightforward using Theorem 2.2 and is omitted.
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Convergence of nets and sequences are used to define and characterize many
properties in mathematics. Can Ty spaces be characterized using convergence of
nets and/or sequences? For example, what is the relationship between T; spaces
and spaces where for distinct elements x and y, there exists a constant sequence
converging to only one of x and y? Below this question is answered and similar
questions for other weak separation axioms are investigated.

THEOREM 2.4. Let (X,T) be a space. Then the following are equivalent:
(a) (X,T) is Ty, (b) for distinct elements x and y in X, there exists a constant
sequence in X converging to only one of x and vy, (c) for distinct elements x and y
in X, there exists a constant net in X converging to only one of x and vy, (d) for
distinct elements x and y in X, there exists a net in X converging to only one of
x and y, and (e) for distinct elements x and y in X, there exists a sequence in X
converging to only one of x and y.

Proof. (a) implies (b): Let x and y be distinct elements in X. Then there
exists an open set O containing only one of x and y, say O contains only z. For
each natural number n, let z,, = y. Then {z,},en is a constant sequence in X
converging to y but not x.

Clearly, (b) implies (c¢) and (c) implies (d).

(d) implies (e): Suppose (X, T) is not Tp. Let = and y be distinct elements in
X such that every open set containing one of z and y contains both z and y. For
each n € N, let a,, = . Then the net {z,},cn converges to both z and y, which
is a contradiction. Thus (X,T) is Ty and, from above, there exists a sequence in
X converging to only one of  and y.

(e) implies (a): Let x and y be distinct elements in X. Then there exists a
sequence in X converging to only one of z and y, which implies there is a net in X
converging to only one of z and y and, by the argument above, (X,T) is Tp. m

THEOREM 2.5. Let (X, T) be a space. Then (a) (X,T) is Th iff (b) for distinct
elements x and y in X, there exists a closed set containing y and not x.

The proof is straightforward and is omitted.

The results above for Ty spaces raised similar questions for 77 and T5 spaces,
which are resolved below.

THEOREM 2.6. Let (X,T) be a space. Then (a) (X,T) is Ty iff (b) for
distinct elements x1, -+ ,xn, n > 2, in X, for each nonempty, proper subset D
of F={x;|i=1,---,n}, there exists a closed set C such that CNF = D.

Proof. (a) implies (b): Let x1,--- ,x,, n > 2, be distinct elements in X and
let D be a nonempty, proper subset of F' = {x; | i =1,--- ,n}. Since singleton sets
are closed, D is closed and DN F = D.

The proof of the converse is straightforward using n = 2 and Theorem 2.5 and
is omitted. m
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THEOREM 2.7. Let (X,T) be a space. Then (a) (X,T) is T iff (b) for
distinct elements x1, -+ ,xn, n > 2, in X, for each nonempty, proper subset D
of F={x;|i=1,---,n}, there exists an open set O such that ONF = D.

The proof is straightforward using Theorem 2.6 and is omitted.

THEOREM 2.8. Let (X,T) be a space. Then the following are equivalent:
(a) (X, T) is Ty, (b) each constant net in X converges to only the constant, (c) each
constant sequence in X converges only to the constant, (d) for distinct elements x
and y in X, there exists a constant sequence in X converging to y and not to x,
(e) for distinct elements x and y in X, there exists a constant net in X converging
to y and not to x, (f) for distinct elements x and y in X, there exists a net in X
converging to y and not to x, and (g) for distinct elements x and y in X, there
exists a sequence in X converging to y and not to x.

Proof. (a) implies (b): Let € X. For each n € N, let z,, = z. Then {xy, }nen
is a net in X converges to x. Let y € X, y # x. Then there exists an open set O
containing y and not x, which implies {x,, }nen does not converge to y.

Clearly (b) implies (c), (c¢) implies (d), (d) implies (e), and (e) implies (f).

(f) implies (g): Let x and y be distinct elements of X. Let {x,}aca be a net
in X converging to y and not to x. If every open set containing = contains y, then
{Za}aeca converges to x, which is a contradiction. Thus there exists an open set
containing = and not y. Hence (X,T) is T7, which implies (d), which implies (g).

Clearly (g) implies (f) and by the argument above, (X,T) is T7. m

THEOREM 2.9. Let (X,T) be a space. Then the following are equivalent:
(a) (X,T) is Ty, (b) every convergent finite net in X is eventually exactly one of
the net values, (¢) every convergent finite net in X is eventually constant, (d) every
convergent finite sequence in X is eventually constant, and (e) every convergent
finite sequence in X is eventually exactly one of the sequence values.

Proof: (a) implies (b): Let {zs}aca be a convergent finite net in X. Let
{z; | i = 1,--- ,n} be the distinct net values. Let x € X such that the net
converges to z. If  # x; for some i € {1,--- ,n}, then there exists an open set O
such that O contains only x of x,x1,---,x,, but the net is not eventually in O,
which is a contradiction. Thus = = z; for some ¢ € {1,--- ,n}.

Clearly (b) implies (c) and (c) implies (d).

(d) implies (e): Suppose (X,T) is not Ty. Let © € X such that Cli({z}) # {z}.
Let y € Cl({z} such that y # z. For each odd natural number n, let z, = x and
for each even natural number n, let x,, = y. Then {z,},cn is a finite sequence
converging to y that is not eventually constant, which is a contradiction. Thus
(X,T) is Ty and (b) is true, which implies (e).

Clearly (e) implies (d) and , by the argument above, (X,T) is 7. =

In 1943 [6] T} spaces were generalized to Ry spaces.



T> and weaker separation axioms 65

DEFINITION 2.1. A space (X, T) is Ry iff for each closed set C and each = ¢ C,
Cl({z})NnC = ¢.

In past studies of Rq spaces, Tp-identification spaces have proven to be a useful
tool.

DEFINITION 2.2. Let R be the equivalence relation on the space (X,T) de-
fined by xRy iff CI({z}) = Cl({y}). Then the Tp-identification space of (X, T)
is (Xo,Q(X0)), where Xy is the set of equivalence classes of R and Q(Xy) is the
decomposition topology on X [7]. For each z € X, let C, denote the equivalence
class containing x and let Px : (X,T) — (Xo, Q(Xp)) be the natural map.

As established below, Ty-identification spaces continue to be a useful tool.

THEOREM 2.10. Let (X,T) be a space. Then (a) (X,T) is Ry iff (b) for
elements x1,- -+ ,Tpn, n > 2, in X such that Cl({x;}) = Cl({x;}) iff i = j, for each
nonempty, proper subset D of F' = {x; | i =1,--- ,n}, there exists an open set O
such that ONF = D.

Proof: (a) implies (b): Let z1, -+ ,2,, n > 2, be elements of X such that
Cl({z;}) = Cl({x;}) iff i = j and let D be a nonempty proper subset of F' = {x; |
i=1,---,n}. Since (X,T) is Ro, then (Xo, Q(Xy)) is Ty [4]. Since for each i,j €
{1,---,n}, i #j, Cl({x;}) # Cl({z;}), Cy,,- -+ ,Cy, are distinct elements in X.
Then D = {C,, | #; € D} is a nonempty proper subset of F = {C, |i=1,--- ,n}
and there exists O € Q(X,) such that O N F = D. Thus O = P5'(0O) is open in
X such that ONF = D.

(b) implies (a): Let C be closed in X and let ¢ C. Let y € C. Then

Cl({z}) # Cl({y}) and there exists an open set O such that y € O and = ¢ O.
Hence y ¢ Cl({z}) and Cl({z}) Cc X \ C. Thus (X,T) is Ry. m

THEOREM 2.11. Let (X,T) be a space. Then (a) (X,T) is Ry iff (b) for
elements x1,- -+ ,Tpn, n > 2, in X such that Cl({z;}) = Cl({z;}) iff i = j, for each
nonempty, proper subset D of F' = {x; |i=1,---,n}, there exists a closed set C
such that CNF = D.

The proof is straightforward using Theorem 2.9 and is omitted.

Within the paper [2] it was shown that a space (X, T) is Ry iff for each z € X,
Cl({z}) is the intersection of all open sets containing z, which can be used to give
the following characterization of T; spaces.

COROLLARY 2.1. A space (X, T) is Ty iff each element of X is the intersection
of all open sets containing the element.

DEFINITION 2.3. Let (X,T) be a space and let {z4}aca be anet in X. Then
lim{za}aca = {y € X | {xa}aca converges to y}.

THEOREM 2.12 Let (X,T) be a space. Then the following are equivalent:
(a) (X, T) is Ry, (b) for each constant net {xa taca in X, lim{zq}aca = Cx, where
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T =2Zo, @ €A, (c) for each constant sequence {x,}nen in X, lim{z,tnen = Cy,
where x = x,, n € N, (d) for elements x and y in X such that Cl({z}) # Cl({y}),
there exists a constant sequence converging to y and not to x, (e) for x and y in
X such that Cl({z}) # Cl({y}), there ezists a constant net in X converging to y
and not to x, (f) for elements x and y in X such that Cl({z}) # Cl({y}), there
exists a net in X converging to y and not to x, (g) for elements x and y in X such
that Cl({x}) # Cl({y}), there exists a sequence in X converging to y and not to x,
(h) for each convergent finite net {xq }aca in X such that for the distinct net values
z1, -, Tn, Cl{z;}) = Cl({z;}) iff i = j, the net is eventually exactly one of the
net values, (i) for each convergent finite net {xq}aca in X such that for the distinct
net values 1, -+, x,, Cl({x;}) = Cl({x;}) iff i = j, the net is eventually constant,
(j) for each convergent finite sequence in X with distinct sequence values x1,- - , Xy
such that Cl({x;}) = Cl({z;}) iff i = j, the sequence is eventually constant, and
(k) for each convergent finite sequence in X with sequence values xy,--- , T, such
that Cl({z;}) = Cl({z;}) iff i = j, the sequence is eventually exactly one of the
sequence values.

Proof. (a) implies (b): Let {4 }oca be a constant net in X with x = z,, o € A.
Then {Cy_ }aca is a constant net in Xy with Cy, = C,,_, o € A. Since (X, T) is R,
(X0, Q(Xp)) is Ty and {C,_ }aca converges only to C,. If y € lim{x,}aca, then
{Cs, }aeca converges to Cy in Xg and y € Cy = Cp. If z € Cy, then CI({z}) =
Cl({z}) and every open set containing z contains x, which implies z € lim{zs }aca.
Thus lim{za}aca = Cy.

Clearly (b) implies (c).

(c) implies (d): Let x and y be elements in X such that Cl({z}) # Cl({y}).
Then C, # C,. For each n € N, let y, = y. Then L = lim{y, }nen = Cy. Thus
y€e€Land x ¢ L.

Clearly (d) implies (e) and (e) implies (f).

(f) implies (g): Suppose (X,T') is not Ry. Let C be a closed set and y ¢ C' such
that D = Cl({y}) N C # ¢. Let « € D. Then Cl({z}) # Cl({y}) and there exists
a net {yataca in X converging to y and not to x, but every open set containing
x contains y, which implies {y, }aca converges to x and is a contradiction. Thus
(X,T) is Ry and by (d) above, (g) is satisfied.

(g) implies (h): Clearly (g) implies (f) and, by the argument above, (X,T) is
Ry. Then (Xo,Q(Xo)) is T1. Let {zs}aca be a convergent finite net in X such
that for the distinct net values z1,--- ,z,, Cl({z;}) = Cl({z;}) iff i = j. Then
Cyy, -+, Cy, are the distinct elements in X of the net {Cy_ }aca and is eventually
Cy, for some i € {1,--- ,n}. Thus the net in X is eventually x;.

Clearly (h) implies (i) and (i) implies (j).

(j) implies (k): Let {z, }nen be a convergent finite sequence in X with distinct
elements xy,,- -+, oy, such that Cl({z,,}) = Cl({z,,}) iff i = j. Let x € X such
that the sequence is eventually . Then x € Cl({zy,}) for some i € {1,--- ,p},for
suppose not. Then the sequence is eventually in X \ UY_,Cl({x,,}), which is a
contradiction. Let ¢ € {1,---,p} such that x € Cl({z,,}). Then the sequence
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{zi}ien is eventually in X \ Ujx;Cl({zy,), which implies the sequence is eventually
T,y -

i

(k) implies (a): Suppose (X, T') is not Ry. Let C be closed in X and let « ¢ C
such that Cl({z} NC # ¢. Let y € CNCIl({z}). For each odd natural number, let
x; = ¢ and for each even number, let x; = y. Then {z; };cn is finite and converges
to y, but is not eventually = or y, which is a contradiction. Hence, (X,T) is Ry. m

The results above will be combined with the fact that a space (X, T) is Ry iff
C, = Cl({z}) for each x € X [4] to obtain the next characterization of Ry spaces.

THEOREM 2.13. Let (X,T) be a space. Then the following are equivalent:
(a) (X, T) is Ry, (b) for each convergent finite net {xq }aca with distinct net values

X1, ,Tn, the net is eventually in Cy, for somei € {1,--- ,n}, and (c) for each
convergent finite sequence {x, fnen with distinct sequence values Ty, ,- - , %y, , the
sequence is eventually in Cy,,  for some i € {1,---,p}.

Proof. (a) implies (b): Let {Za}aca be a convergent finite net in X with
distinct net values x1,---,x,. Let {n; | i = 1,--- ,p} C {1,---,n} such that
UL, Cl({z}) = Ui Cl({zn,}) and Cl({zp,}) = Cl({w,,} iff i = j. Then
{Cys. }aca 1s a finite net in the T space (Xo,Q(Xp)) with distinct net values
Cy, = Cl({xp,}), i = 1,--- ,p}. Let x € X such that the net in X converges
to z. Let ¢ € {1,---,p} such that z € Cl({z,,}). Let O € Q(Xo) such that
Cy, € O. Then x € P3'(0) = O € T and z is eventually in O, which implies
Cp = Cy, € 0. Thus {C;, }aca converges to Cy,, and, by the arguments above,
is eventually C;, . Hence {4 }aca is eventually in Cy,, .

Clearly (b) implies (c).

(c) implies (a): Suppose (X, T) is not Ry. Let C be closed in X and let « ¢ C
such that C' N Cl({z}) # ¢. Let y € C N Cl({z}) such that y # x. Then C, # C,.
For each odd natural number, let x,, = x and for each even natural number n, let
2, = y. Then the sequence {x,, }nen is finite and converges to y, but the sequence
is not eventually in C, or C,, which is a contradiction. Thus (X,T') is Ry. =

THEOREM 2.14. Let (X,T) be a space and let xq, -+ ,x,, n > 2, be elements
of X such that Cl({z;}) = Cl({z;}) iff i = j. Then for each j € N, j < n, there
exists an open set containing exactly j of the elements x1, -+ ,x,.

Proof. Let j € N, j <n. Since Cl({z;}) = Cl({zx}) it i =k, Cyyy--- ,Cy,
are distinct elements of the Ty space (Xo,Q(Xo)) [7] and there exists an open set
O in X, containing exactly j of the distinct elements Cy,,--- ,Cy, . Then Pgl((’))
is open in X and contains exactly j of the elements z1,--- ,z,.®

In a similar manner, the results for Ty spaces given in Theorem 2.4 can be
extended to all spaces.
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3. New characterizations of T, and R; spaces.
In 1961 [1] T, spaces were generalized to Ry spaces.

DEFINITION 3.1. A space (X,T) is R; iff for x and y in X such that
Cl({z}) # Cl({y}), there exist disjoint open sets U and V such that Cl({z}) C U
and Cl({y}) C V.

Below a characterization of R; spaces is used to further characterize T spaces.

THEOREM 3.1. Let (X, T) be a space. Then (a) (X,T) is Ty iff (b) for distinct
elements x1 and xo in X, there exist closed sets C7 and Co such that C; contains
only x; of x1 and x2, 1 =1,2, and X = C1 U 5.

Proof. (a) implies (b): Let x; and x5 be distinct elements of X. Then
Cl({z;}) = {=;},1=1,2. Since (X,T) is Tz, (X, T) is R; and there exist closed sets
Cy, i = 1,2, such that C; contains only z; of z1 and x5, i = 1,2, and X = C1UC5 [2].

(b) implies (a): Let x; and x5 be distinct elements of X. Let C;, i = 1,2,
be closed sets containing only z; of x; and zs such that X = C; U 3. Then
21 €01 =X\Co €T, 29 € 0, =X\C; €T, and Oy N Oy = ¢. Thus (X, T) is
TQ. ]

THEOREM 3.2. Let (X, T) be a space. Then (a) (X,T) is To iff (b) for distinct
elements 1, - ,x,, n > 2, there exist closed sets C;, i =1,--- ,n, containing only
z; of x1,- &, with X =J; C;.

Proof. (a) implies (b): By Theorem 3.1, the statement is true for n = 2.
Assume the statement is true for n = k, k > 2. Let x1,--- , 2k, xp+1 be distinct
elements of X. Let K;,i=1,---,k, be closed sets containing only x; of x1, -+, zg
with X = UI_, Ki. Let Nyyy = {l € {1,--- ,k} | 2311 € K;} # ¢. Then for
each | € Njit1, o1 and zp4; are distinct elements in the Th space (K, Tk,). For
each | € Nyy1, let M; and P; be closed sets in K; such that M; contains only a;
of z; and xy41, P, contains only zpy; of z; and xy41, and K; = M; U P,. For
each i € {1,--- ,k}, i ¢ Npq1, let C; = K, for each i € Ni4q, let C; = M;, and
let Cry1 = UieNHl P;. Then Cj is a closed set containing only x; of 1, -+ , Zg41,
i=1,--- k+1,and X = Ulfg C;. Thus, by mathematical induction, the statement
is true for each natural number n.

The proof that (b) implies (a) is straightforward using n = 2 and Theorem 3.1
and is omitted. m

THEOREM 3.3. Let (X, T) be a space. Then (a) (X,T) is Ty iff (b) for distinct
elements x1,- -+ , &y, n > 2, for each decomposition D ={D; |i=1,---,j},J > 2,
of {1,--- ,n}, there exist closed sets Cy, 1 =1,---,j, such that {x; | i € D;} C C,
l=1,---,j, and X =J]_, Ci.

Proof. (a) implies (b): Let x1,--- ,z,, n > 2, be distinct elements of X. Let
K;,1=1,--- ,n, be closed sets containing only x; of z1,--- ,z, with X = U?Zl K;.
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Let D ={D; |i=1,---,j} be a decomposition of {1,---,n}, j > 2. For each
Le{l,---,j}, let Dy =U;cp, Ki- Then Dy, I =1,---,j, are closed sets satisfying
the required properties.

The proof of (b) implies (a) is straightforward using n = 2 and D = {{1}, {2}}
and is omitted. m

THEOREM 3.4. Let (X, T) be a space. Then (a) (X, T) is Ts iff (b) for distinct
elements 1, ,xn, n > 2, for each decomposition D = {D; | i = 1,--- ,j},
j > 2, of {1,---,n}, there exist disjoint open sets O;, | = 1,---,j, such that
{:L‘i‘iEDl} cO,l=1,--- 3 J-

Proof. (a) implies (b): Let 1, -+ ,2n, n > 2, be distinct elements of X. Then
there exist disjoint open sets U;, i = 1,- - ,n, containing only z; of x1,--- ,x,[ ].
Let D ={D; |i=1,---,j} be a decomposition of {1,---,n}, j > 2. For each
Le{l, -7}, let Or =U;cp, Ui- Then the open sets Oy, I =1,---, j, are disjoint
open sets satisfying the required properties.

The proof of (b) implies (a) is straightforward using n = 2 and D = {{1}, {2}}
and is omitted. m

THEOREM 3.5. Let (X,T) be a space. Then (a) (X,T) is Ty iff (b) for each
re X, {z} =,ecoer CUO).

The straightforward proof is omitted.

THEOREM 3.6. Let (X, T) be a space. Then (a) (X,T) is Ty iff (b) for distinct
elements x and y in X, for nets {xo}taca and {ys}sep in X converging to x and
y respectively, there exists an ag € A and a By € B such that {x | @ > ap} N{zg |
Bz Bo}=¢.

Proof. The proof that (a) implies (b) is straightforward and is omitted.

(b) implies (a): Suppose (X,T) is not T5. Let x and y be distinct elements of
X such that every open set containing x intersects every open set containing y. Let
A={UNV |zeUeTandy eV € T}. Define >on Aby A> Biff AC B. For
each A€ A /let x4 € Aand let y4 = x4. Then {xa}aca and {ya}aca are nets in
X that converge to x and y respectively, but do not satisfy the required property.
Hence (X,T)is Tp. m

THEOREM 3.7. Let (X,T) be a space. Then (a) (X,T) is Ry, (b) for elements
xz,y € X such that Cl({z}) # Cl({y}), there exist disjoint sets U and V such that
x €U andy €V, and (c) for elements x1, - ,x,, n > 2, such that Cl({x;}) =
Cl({z;}) iff i = j, there exist closed sets C;, i = 1,--- ,n, containing only z; of
Ty, xn with X =, C;.

Proof. Clearly (a) implies (b).
(b) implies (c): Let O € T. Let a € O. If b ¢ O, Ci({a}) # CI({b}) and
there exist disjoint open sets A and B such that @ € A and b € B, which implies
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Cl({a}) C O. Let x,y € X such that Ci({z}) # Cl({y}). Let U and V be disjoint
open sets such that x € U and y € V. Then, by the argument above, Cl({z}) C U
and Cl({y}) C V. Hence (X,T) is Ry. Let x1,- - ,x,, n > 2, be elements of X such
that Ci({z;}) = Cl({z;}) iff i = j. Then C,,, ¢ = 1,--- ,n, are distinct elements
of Xy. Since (X,T) is R1, (Xo,Q(Xo)) is T» [5] and there exist closed sets C;,
t=1,---,n,in Xy containing only C,, of Cy,,---,Cy, with Xy = U?:l C;. Then
C; = P)}l(Ci), i=1,---,n, are closed sets in X containing only z; of x1, - ,x,

(c) implies (a): Let z1,22 € X such that Cl({z1}) # Cl({z2}). Let C1,Cs be
closed sets such that 1 € C1, 2 € Cy, and X = C1 UCy. Then z1 € U = X \ Oy
and x5 € V = X\ (4, where U and V are disjoint open sets. Thus, by the argument
above, (X,T)is R;.m

THEOREM 3.8. Let (X,T) be a space. Then the following are equivalent: (a)
(X,T) is Ry iff (b) for elements x1,--- ,xn, n > 2, such that Cl({x;}) = Cl({z;})
iff i = j, for each decomposition D = {D; |i=1,---,5}, j > 2, there exist closed
sets Cp, L=1,--,j, such that {z; | i€ Di} C C, l=1,---,7, and X = J]_, Ci.

Proof. (a) implies (b): Let x1, -+ ,x, be elements of X, n > 2, such that
Cl{z;}) =Cl({z;}) if i=j. Let D={D, |i=1,---,j}, j > 2, be a decomposi-
tion of {1,--- ,n}. Since (X,T) is Ry, (Xo,Q(Xo)) is To. Then Cy,, i =1,--- ,n,
are distinct elements of Xo. Let C;, [ = 1,--- 74, be closed sets in Xy such that
{Coi i€ D} CCyl=1,--.,j and Xo = J_,C. Then C; = P5'(C)),
I =1,---,j, are closed sets in X such {z; | i € D;} € C;, Il = 1,---,4, and
X=Ui,,C.

(b) implies (a): Let 1, -+ , 2, n > 2, be elements of X such that Cl({x;}) =
Cl({z;}) iff i = j. Let D={{i} |i=1,--- ,n}. Let C;, i = 1,--- ,n, be closed
sets such that {x;} C C; and X = J_; C;. Thus, by theorem 3.7, (X,T) is R;. =

THEOREM 3.9. Let (X,T) be a space. Then (a) (X,T) is Ry iff (b) for
elements x1,--- ,xn, n > 2, such that Cl({z;}) = Cl({z;}) iff i = j, for each
decomposition D = {D; | i = 1,---,35}, 7 > 2, of {1, -+ ,n}, there exist disjoint
open sets Oy, l=1,-- 4, such that {z; |i € Di} C O, l=1,--- 7.

Proof. (a) implies (b): Let x1, -+ ,z,, n > 2, be elements of X such that
Cl{z;}) =Cl({z;}) iff i=5. Let D={D; |l =1,---,4}, j > 2, be a decompo-
sition of {1,--- ,n}. Since (X, T) is R1, (X0, Q(Xp)) is T». Then Cy,,--- ,C,,, are
distinct elements of Xy. Let O, I =1,--- | j, be disjoint open sets in X such that
{Cy, i€ D}y CO,l=1,---,j. Then O; = Py'(0,) are disjoint open sets in X
such that {z; |i€ D;} C O, l=1,--- 7.

(b) implies (a): Let x1,z2 € X such that Cl({z1}) # Cl({z2}) and let D =
{{1},{2}}. Then there exist disjoint open sets O; and Os such that {z1} C O,
and {z2} C O3 and, by Theorem 3.7, (X,T) is R;. m

THEOREM 3.10. Let (X,T) be a space. Then (a) (X,T) is Ry iff (b) for each
re X, Cl({z}) = Nyeoer CLO).
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Proof. (a) implies (b): Let z € X. Let O € T such that € O. By the
proof in Theorem 3.7 (b) implies (c), Cl({z}) C O. Thus Cl({z}) C (Ncoer O C
Nzcoer CUO). Let y € (,coer CUO). Then y € Cl({x}), for suppose not. Then
Cl({z}) # Cl({y}). Let U and V be disjoint open sets such that Ci({z}) C U
and Cl({y}) C V. Then y € (N,coer CUO) C CI(U) C (X \ V), which is a
contradiction. Thus (,cpcr C Cl({x}) and Cl({x}) =, coer CI1(O).

(b) implies (a): Let z,y € X such that Cl({z}) # Cl({y}). Then = ¢ Ci({y})
ory ¢ Cl({z}), say y ¢ Cl({z}). Let O € T such that x € O and y ¢ Cl(O).
Then O an X \ CI(O) are disjoint open sets containing x and y respectively and by
Theorem 3.7. (X,T)is R;. m

THEOREM 3.11. Let (X,T) be a space. Then (a) (X,T) is Ry iff (b) for
elements x andy in X such that Cl({z}) # Cl({y}), for nets {xo }aca and {ys}sen
in X converging to x and y respectively, there exists an oy € A and a By € B such

that {za |0 2 a0} N{ys | B = o} = ¢

Proof (a) implies (b): Let z,y € X such that Cl({z}) # Cl({y}). Let {zn}aca
and {yg}gep be nets in X converging to x and y respectively. Let U and V be
disjoint open sets such z € U and y € V. Let ag € A and [y € B such that
{za|a>ap} CU and {yg | B> Bo} C V. Thus (b) is satisfied.

(b) implies (a): Let Cy, and Cy, be distinct elements of Xy. Let {Cy, }aca and
{Cy;}sep be nets in Xy converging to C, and C,, respectively. Then {4 }aca is
anet in X. Let O € T such that # € O. Then C, € Px(0) € Q(Xy) and the net
{Cu}aea is eventually in Px(0O). Hence {z,}aca is eventually in Py'(Px(0)) =
O. Thus {z4}aca converges to x. Similarly, {ys}gep converges to y. Since C, #
Cy, Cl({z}) # Cl({y}). Let ap € A and fy € B such that {z, | & > ao} N {ys |
ﬁ > ﬁo} = (Z) Then {Cwu | a > Ozo} N {Cyg | ﬁ > ﬁo} = (b Thus (Xo,Q(Xo)) is T2
and (X,T)is R;. m
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