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ADDITIONAL CHARACTERIZATIONS OF THE T2

AND WEAKER SEPARATION AXIOMS

Charles Dorsett

Abstract. Within this paper, the weaker separation axioms of T0, T1, R0, T2, and R1 are
further characterized using mathematical induction, closed sets, convergence, and T0-identification
spaces. The results are used to further investigate general topological spaces, to further investigate
constant nets and sequences, and finite nets and sequences in topological spaces.

1. Introduction

In 1978 [2] several weaker separation axioms were further characterized using
convergence and other properties. Later, in 2007 [3], weaker separation axioms
were further characterized by using mathematical induction. The results within
those papers motivated the work within this paper.

Within this paper, all spaces are topological spaces.

2. New characterizations of T0, T1, and R0 spaces.

Within the definition of the T0 separation axiom, two distinct elements are
used. Could the two distinct elements be extended to finitely many distinct ele-
ments in a similar manner? This question was resolved in a positive manner in the
2007 paper [3]. Let S0 be the property of a space where for any n distinct elements
in the space, n ≥ 2, j of the elements can be separated from the remaining elements
by an open set, j < n? Is there a T0 space that is not S0? Below this question and
similar questions for other separation axioms are resolved and the results are used
to further characterize the separation axioms using finitely many distinct elements,
closed sets, and convergence.

For a space, a straightforward proof shows that a constant net or sequence
converges to exactly each element of the closure of the constant. Under what
condition would it converge to only the constant? If the net or sequence is finite,
i.e., the net or sequence takes on only finitely many element values, and convergent,
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under what conditions would the net or sequence eventually be a constant? Within
this paper, these questions are also investigated and resolved using the results
within this paper cited above.

Theorem 2.1. A space (X, T ) is T0 iff for finitely many distinct elements
x1, · · · , xn, n ≥ 2, in X, there exists a closed set C containing all but one of the
elements.

Proof. Suppose (X,T ) is T0. Let x1, · · · , xn, n ≥ 2, be distinct elements of X.
Then there exists an open set O containing only one of the n distinct elements [3]
and C = X \O is closed and contains all but one of the distinct elements.

Conversely, suppose that for distinct elements x1, · · · , xn, n ≥ 2, there exists
a closed set C containing all but one of the distinct elements. Then for distinct
elements x1, · · · , xn, n ≥ 2, there exists an open set that contains only one of the
distinct elements, which implies (X,T ) is T0 [3].

Theorem 2.2. Let (X,T ) be a space. Then (a) (X, T ) is T0 iff (b) for distinct
elements x1, · · · , xn, n ≥ 2, in X, for each j ∈ N , j < n, there exists an open set
containing exactly j of the distinct elements.

Proof. (a) implies (b): By definition, the statement is true for n = 2. Assume
the statement is true for n < k, k > 2.

Let x1, · · · , xk be k distinct elements of X. Let j < k. Consider the case that
j < k − 1. Then x1, · · · , xk−1 are distinct elements of X and there exists an open
set U containing exactly j of the distinct elements. If xk /∈ U , then U is open
and contains exactly j of the distinct elements x1, · · · , xk. Thus, consider the case
that xk ∈ U . Then {xi | xi ∈ U} is a set of j + 1 distinct elements of X, where
j + 1 < k, and there exists an open set V containing exactly j of those distinct
elements. Then U ∩ V is an open set containing exactly j of the distinct elements
x1, · · · , xk.

Consider the case that j = k − 1. From above, there exists an open set U
containing exactly k − 2 of the distinct elements x1, · · · , xk−1. If xk ∈ U , then U
is an open set containing exactly k − 1 of the distinct elements x1, · · · , xk. Thus
consider the case that xk /∈ U . Let m < k such that xm /∈ U . Then xm, xk are
2 distinct elements of X and there exists an open set V containing only one of
xm, xk. Then U ∪V is an open set containing exactly k−1 of the distinct elements
x1, · · · , xk.

Hence, by mathematical induction, the statement is true for each natural num-
ber n.

The proof that (b) implies (a) is immediate letting n = 2.

Theorem 2.3. Let (X,T ) be a space. Then (a) (X, T ) is T0 iff (b) for distinct
elements x1, · · · , xn, n ≥ 2, in X, for each j ∈ N , j < n, there exists a closed set
containing exactly j of the distinct elements.

The proof is straightforward using Theorem 2.2 and is omitted.
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Convergence of nets and sequences are used to define and characterize many
properties in mathematics. Can T0 spaces be characterized using convergence of
nets and/or sequences? For example, what is the relationship between T0 spaces
and spaces where for distinct elements x and y, there exists a constant sequence
converging to only one of x and y? Below this question is answered and similar
questions for other weak separation axioms are investigated.

Theorem 2.4. Let (X, T ) be a space. Then the following are equivalent:
(a) (X, T ) is T0, (b) for distinct elements x and y in X, there exists a constant
sequence in X converging to only one of x and y, (c) for distinct elements x and y
in X, there exists a constant net in X converging to only one of x and y, (d) for
distinct elements x and y in X, there exists a net in X converging to only one of
x and y, and (e) for distinct elements x and y in X, there exists a sequence in X
converging to only one of x and y.

Proof. (a) implies (b): Let x and y be distinct elements in X. Then there
exists an open set O containing only one of x and y, say O contains only x. For
each natural number n, let xn = y. Then {xn}n∈N is a constant sequence in X
converging to y but not x.

Clearly, (b) implies (c) and (c) implies (d).
(d) implies (e): Suppose (X, T ) is not T0. Let x and y be distinct elements in

X such that every open set containing one of x and y contains both x and y. For
each n ∈ N , let xn = x. Then the net {xn}n∈N converges to both x and y, which
is a contradiction. Thus (X, T ) is T0 and, from above, there exists a sequence in
X converging to only one of x and y.

(e) implies (a): Let x and y be distinct elements in X. Then there exists a
sequence in X converging to only one of x and y, which implies there is a net in X
converging to only one of x and y and, by the argument above, (X,T ) is T0.

Theorem 2.5. Let (X,T ) be a space. Then (a) (X, T ) is T1 iff (b) for distinct
elements x and y in X, there exists a closed set containing y and not x.

The proof is straightforward and is omitted.
The results above for T0 spaces raised similar questions for T1 and T2 spaces,

which are resolved below.

Theorem 2.6. Let (X, T ) be a space. Then (a) (X,T ) is T1 iff (b) for
distinct elements x1, · · · , xn, n ≥ 2, in X, for each nonempty, proper subset D
of F = {xi | i = 1, · · · , n}, there exists a closed set C such that C ∩ F = D.

Proof. (a) implies (b): Let x1, · · · , xn, n ≥ 2, be distinct elements in X and
let D be a nonempty, proper subset of F = {xi | i = 1, · · · , n}. Since singleton sets
are closed, D is closed and D ∩ F = D.

The proof of the converse is straightforward using n = 2 and Theorem 2.5 and
is omitted.
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Theorem 2.7. Let (X, T ) be a space. Then (a) (X,T ) is T1 iff (b) for
distinct elements x1, · · · , xn, n ≥ 2, in X, for each nonempty, proper subset D
of F = {xi | i = 1, · · · , n}, there exists an open set O such that O ∩ F = D.

The proof is straightforward using Theorem 2.6 and is omitted.

Theorem 2.8. Let (X, T ) be a space. Then the following are equivalent:
(a) (X,T ) is T1, (b) each constant net in X converges to only the constant, (c) each
constant sequence in X converges only to the constant, (d) for distinct elements x
and y in X, there exists a constant sequence in X converging to y and not to x,
(e) for distinct elements x and y in X, there exists a constant net in X converging
to y and not to x, (f) for distinct elements x and y in X, there exists a net in X
converging to y and not to x, and (g) for distinct elements x and y in X, there
exists a sequence in X converging to y and not to x.

Proof. (a) implies (b): Let x ∈ X. For each n ∈ N , let xn = x. Then {xn}n∈N

is a net in X converges to x. Let y ∈ X, y 6= x. Then there exists an open set O
containing y and not x, which implies {xn}n∈N does not converge to y.

Clearly (b) implies (c), (c) implies (d), (d) implies (e), and (e) implies (f).

(f) implies (g): Let x and y be distinct elements of X. Let {xα}α∈A be a net
in X converging to y and not to x. If every open set containing x contains y, then
{xα}α∈A converges to x, which is a contradiction. Thus there exists an open set
containing x and not y. Hence (X,T ) is T1, which implies (d), which implies (g).

Clearly (g) implies (f) and by the argument above, (X,T ) is T1.

Theorem 2.9. Let (X, T ) be a space. Then the following are equivalent:
(a) (X, T ) is T1, (b) every convergent finite net in X is eventually exactly one of
the net values, (c) every convergent finite net in X is eventually constant, (d) every
convergent finite sequence in X is eventually constant, and (e) every convergent
finite sequence in X is eventually exactly one of the sequence values.

Proof: (a) implies (b): Let {xα}α∈A be a convergent finite net in X. Let
{xi | i = 1, · · · , n} be the distinct net values. Let x ∈ X such that the net
converges to x. If x 6= xi for some i ∈ {1, · · · , n}, then there exists an open set O
such that O contains only x of x, x1, · · · , xn, but the net is not eventually in O,
which is a contradiction. Thus x = xi for some i ∈ {1, · · · , n}.

Clearly (b) implies (c) and (c) implies (d).

(d) implies (e): Suppose (X,T ) is not T1. Let x ∈ X such that Cl({x}) 6= {x}.
Let y ∈ Cl({x} such that y 6= x. For each odd natural number n, let xn = x and
for each even natural number n, let xn = y. Then {xn}n∈N is a finite sequence
converging to y that is not eventually constant, which is a contradiction. Thus
(X,T ) is T1 and (b) is true, which implies (e).

Clearly (e) implies (d) and , by the argument above, (X,T ) is T1.

In 1943 [6] T1 spaces were generalized to R0 spaces.
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Definition 2.1. A space (X,T ) is R0 iff for each closed set C and each x /∈ C,
Cl({x}) ∩ C = φ.

In past studies of R0 spaces, T0-identification spaces have proven to be a useful
tool.

Definition 2.2. Let R be the equivalence relation on the space (X, T ) de-
fined by xRy iff Cl({x}) = Cl({y}). Then the T0-identification space of (X, T )
is (X0, Q(X0)), where X0 is the set of equivalence classes of R and Q(X0) is the
decomposition topology on X0 [7]. For each x ∈ X, let Cx denote the equivalence
class containing x and let PX : (X,T ) → (X0, Q(X0)) be the natural map.

As established below, T0-identification spaces continue to be a useful tool.

Theorem 2.10. Let (X,T ) be a space. Then (a) (X, T ) is R0 iff (b) for
elements x1, · · · , xn, n ≥ 2, in X such that Cl({xi}) = Cl({xj}) iff i = j, for each
nonempty, proper subset D of F = {xi | i = 1, · · · , n}, there exists an open set O
such that O ∩ F = D.

Proof: (a) implies (b): Let x1, · · · , xn, n ≥ 2, be elements of X such that
Cl({xi}) = Cl({xj}) iff i = j and let D be a nonempty proper subset of F = {xi |
i = 1, · · · , n}. Since (X,T ) is R0, then (X0, Q(X0)) is T1 [4]. Since for each i, j ∈
{1, · · · , n}, i 6= j, Cl({xi}) 6= Cl({xj}), Cx1 , · · · , Cxn are distinct elements in X0.
Then D = {Cxi | xi ∈ D} is a nonempty proper subset of F = {Cxi | i = 1, · · · , n}
and there exists O ∈ Q(X0) such that O ∩ F = D. Thus O = P−1

X (O) is open in
X such that O ∩ F = D.

(b) implies (a): Let C be closed in X and let x /∈ C. Let y ∈ C. Then
Cl({x}) 6= Cl({y}) and there exists an open set O such that y ∈ O and x /∈ O.
Hence y /∈ Cl({x}) and Cl({x}) ⊂ X \ C. Thus (X, T ) is R0.

Theorem 2.11. Let (X,T ) be a space. Then (a) (X, T ) is R0 iff (b) for
elements x1, · · · , xn, n ≥ 2, in X such that Cl({xi}) = Cl({xj}) iff i = j, for each
nonempty, proper subset D of F = {xi | i = 1, · · · , n}, there exists a closed set C
such that C ∩ F = D.

The proof is straightforward using Theorem 2.9 and is omitted.
Within the paper [2] it was shown that a space (X, T ) is R0 iff for each x ∈ X,

Cl({x}) is the intersection of all open sets containing x, which can be used to give
the following characterization of T1 spaces.

Corollary 2.1. A space (X, T ) is T1 iff each element of X is the intersection
of all open sets containing the element.

Definition 2.3. Let (X,T ) be a space and let {xα}α∈A be a net in X. Then
lim{xα}α∈A = {y ∈ X | {xα}α∈A converges to y}.

Theorem 2.12 Let (X, T ) be a space. Then the following are equivalent:
(a) (X, T ) is R0, (b) for each constant net {xα}α∈A in X, lim{xα}α∈A = Cx, where
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x = xα, α ∈ A, (c) for each constant sequence {xn}n∈N in X, lim{xn}n∈N = Cx,
where x = xn, n ∈ N , (d) for elements x and y in X such that Cl({x}) 6= Cl({y}),
there exists a constant sequence converging to y and not to x, (e) for x and y in
X such that Cl({x}) 6= Cl({y}), there exists a constant net in X converging to y
and not to x, (f) for elements x and y in X such that Cl({x}) 6= Cl({y}), there
exists a net in X converging to y and not to x, (g) for elements x and y in X such
that Cl({x}) 6= Cl({y}), there exists a sequence in X converging to y and not to x,
(h) for each convergent finite net {xα}α∈A in X such that for the distinct net values
x1, · · · , xn, Cl({xi}) = Cl({xj}) iff i = j, the net is eventually exactly one of the
net values, (i) for each convergent finite net {xα}α∈A in X such that for the distinct
net values x1, · · · , xn, Cl({xi}) = Cl({xj}) iff i = j, the net is eventually constant,
(j) for each convergent finite sequence in X with distinct sequence values x1, · · · , xn

such that Cl({xi}) = Cl({xj}) iff i = j, the sequence is eventually constant, and
(k) for each convergent finite sequence in X with sequence values x1, · · · , xn such
that Cl({xi}) = Cl({xj}) iff i = j, the sequence is eventually exactly one of the
sequence values.

Proof. (a) implies (b): Let {xα}α∈A be a constant net in X with x = xα, α ∈ A.
Then {Cxα}α∈A is a constant net in X0 with Cx = Cxα , α ∈ A. Since (X, T ) is R0,
(X0, Q(X0)) is T1 and {Cxα}α∈A converges only to Cx. If y ∈ lim{xα}α∈A, then
{Cxα}α∈A converges to Cy in X0 and y ∈ Cy = Cx. If z ∈ Cx, then Cl({z}) =
Cl({x}) and every open set containing z contains x, which implies z ∈ lim{xα}α∈A.
Thus lim{xα}α∈A = Cx.

Clearly (b) implies (c).
(c) implies (d): Let x and y be elements in X such that Cl({x}) 6= Cl({y}).

Then Cx 6= Cy. For each n ∈ N , let yn = y. Then L = lim{yn}n∈N = Cy. Thus
y ∈ L and x /∈ L.

Clearly (d) implies (e) and (e) implies (f).
(f) implies (g): Suppose (X, T ) is not R0. Let C be a closed set and y /∈ C such

that D = Cl({y}) ∩ C 6= φ. Let x ∈ D. Then Cl({x}) 6= Cl({y}) and there exists
a net {yα}α∈A in X converging to y and not to x, but every open set containing
x contains y, which implies {yα}α∈A converges to x and is a contradiction. Thus
(X,T ) is R0 and by (d) above, (g) is satisfied.

(g) implies (h): Clearly (g) implies (f) and, by the argument above, (X, T ) is
R0. Then (X0, Q(X0)) is T1. Let {xα}α∈A be a convergent finite net in X such
that for the distinct net values x1, · · · , xn, Cl({xi}) = Cl({xj}) iff i = j. Then
Cx1 , · · · , Cxn are the distinct elements in X0 of the net {Cxα}α∈A and is eventually
Cxi for some i ∈ {1, · · · , n}. Thus the net in X is eventually xi.

Clearly (h) implies (i) and (i) implies (j).
(j) implies (k): Let {xn}n∈N be a convergent finite sequence in X with distinct

elements xn1 , · · · , xnp such that Cl({xni}) = Cl({xnj}) iff i = j. Let x ∈ X such
that the sequence is eventually x. Then x ∈ Cl({xni}) for some i ∈ {1, · · · , p},for
suppose not. Then the sequence is eventually in X \ ∪p

i=1Cl({xni}), which is a
contradiction. Let i ∈ {1, · · · , p} such that x ∈ Cl({xni}). Then the sequence
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{xi}i∈N is eventually in X \∪j 6=iCl({xnj
), which implies the sequence is eventually

xni
.

(k) implies (a): Suppose (X,T ) is not R0. Let C be closed in X and let x /∈ C
such that Cl({x} ∩C 6= φ. Let y ∈ C ∩Cl({x}). For each odd natural number, let
xi = x and for each even number, let xi = y. Then {xi}i∈N is finite and converges
to y, but is not eventually x or y, which is a contradiction. Hence, (X,T ) is R0.

The results above will be combined with the fact that a space (X, T ) is R0 iff
Cx = Cl({x}) for each x ∈ X [4] to obtain the next characterization of R0 spaces.

Theorem 2.13. Let (X, T ) be a space. Then the following are equivalent:
(a) (X,T ) is R0, (b) for each convergent finite net {xα}α∈A with distinct net values
x1, · · · , xn, the net is eventually in Cxi

for some i ∈ {1, · · · , n}, and (c) for each
convergent finite sequence {xn}n∈N with distinct sequence values xn1 , · · · , xnp , the
sequence is eventually in Cxni

for some i ∈ {1, · · · , p}.

Proof. (a) implies (b): Let {xα}α∈A be a convergent finite net in X with
distinct net values x1, · · · , xn. Let {ni | i = 1, · · · , p} ⊂ {1, · · · , n} such that
∪n

i=1Cl({xi}) = ∪p
j=1Cl({xnj

}) and Cl({xni
}) = Cl({xnj

} iff i = j. Then
{Cxα}α∈A is a finite net in the T1 space (X0, Q(X0)) with distinct net values
Cxni

= Cl({xni}), i = 1, · · · , p}. Let x ∈ X such that the net in X converges
to x. Let i ∈ {1, · · · , p} such that x ∈ Cl({xni}). Let O ∈ Q(X0) such that
Cxni

∈ O. Then x ∈ P−1
X (O) = O ∈ T and x is eventually in O, which implies

Cx = Cxni
∈ O. Thus {Cxα}α∈A converges to Cxni

and, by the arguments above,
is eventually Cxni

. Hence {xα}α∈A is eventually in Cxni
.

Clearly (b) implies (c).

(c) implies (a): Suppose (X, T ) is not R0. Let C be closed in X and let x /∈ C
such that C ∩ Cl({x}) 6= φ. Let y ∈ C ∩ Cl({x}) such that y 6= x. Then Cx 6= Cy.
For each odd natural number, let xn = x and for each even natural number n, let
xn = y. Then the sequence {xn}n∈N is finite and converges to y, but the sequence
is not eventually in Cx or Cy, which is a contradiction. Thus (X,T ) is R0.

Theorem 2.14. Let (X,T ) be a space and let x1, · · · , xn, n ≥ 2, be elements
of X such that Cl({xi}) = Cl({xj}) iff i = j. Then for each j ∈ N , j < n, there
exists an open set containing exactly j of the elements x1, · · · , xn.

Proof. Let j ∈ N , j < n. Since Cl({xl}) = Cl({xk}) iff l = k, Cx1 , · · · , Cxn

are distinct elements of the T0 space (X0, Q(X0)) [7] and there exists an open set
O in X0 containing exactly j of the distinct elements Cx1 , · · · , Cxn . Then P−1

X (O)
is open in X and contains exactly j of the elements x1, · · · , xn.

In a similar manner, the results for T0 spaces given in Theorem 2.4 can be
extended to all spaces.
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3. New characterizations of T2 and R1 spaces.

In 1961 [1] T2 spaces were generalized to R1 spaces.

Definition 3.1. A space (X,T ) is R1 iff for x and y in X such that
Cl({x}) 6= Cl({y}), there exist disjoint open sets U and V such that Cl({x}) ⊂ U
and Cl({y}) ⊂ V .

Below a characterization of R1 spaces is used to further characterize T2 spaces.

Theorem 3.1. Let (X,T ) be a space. Then (a) (X, T ) is T2 iff (b) for distinct
elements x1 and x2 in X, there exist closed sets C1 and C2 such that Ci contains
only xi of x1 and x2, i = 1, 2, and X = C1 ∪ C2.

Proof. (a) implies (b): Let x1 and x2 be distinct elements of X. Then
Cl({xi}) = {xi}, i = 1, 2. Since (X,T ) is T2, (X, T ) is R1 and there exist closed sets
Ci, i = 1, 2, such that Ci contains only xi of x1 and x2, i = 1, 2, and X = C1∪C2 [2].

(b) implies (a): Let x1 and x2 be distinct elements of X. Let Ci, i = 1, 2,
be closed sets containing only xi of x1 and x2 such that X = C1 ∪ C2. Then
x1 ∈ O1 = X \ C2 ∈ T , x2 ∈ O2 = X \ C1 ∈ T , and O1 ∩ O2 = φ. Thus (X, T ) is
T2.

Theorem 3.2. Let (X,T ) be a space. Then (a) (X, T ) is T2 iff (b) for distinct
elements x1, · · · , xn, n ≥ 2, there exist closed sets Ci, i = 1, · · · , n, containing only
xi of x1, · · · , xn with X =

⋃n
i=1 Ci.

Proof. (a) implies (b): By Theorem 3.1, the statement is true for n = 2.
Assume the statement is true for n = k, k ≥ 2. Let x1, · · · , xk, xk+1 be distinct
elements of X. Let Ki, i = 1, · · · , k, be closed sets containing only xi of x1, · · · , xk

with X =
⋃k

i=1 Ki. Let Nk+1 = {l ∈ {1, · · · , k} | xk+1 ∈ Kl} 6= φ. Then for
each l ∈ Nk+1, xl and xk+1 are distinct elements in the T2 space (Kl, TKl

). For
each l ∈ Nk+1, let Ml and Pl be closed sets in Kl such that Ml contains only xl

of xl and xk+1, Pl contains only xk+1 of xl and xk+1, and Kl = Ml ∪ Pl. For
each i ∈ {1, · · · , k}, i /∈ Nk+1, let Ci = Ki, for each i ∈ Nk+1, let Ci = Mi, and
let Ck+1 =

⋃
i∈Nk+1

Pi. Then Ci is a closed set containing only xi of x1, · · · , xk+1,

i = 1, · · · , k+1, and X =
⋃k+1

1=1 Ci. Thus, by mathematical induction, the statement
is true for each natural number n.

The proof that (b) implies (a) is straightforward using n = 2 and Theorem 3.1
and is omitted.

Theorem 3.3. Let (X,T ) be a space. Then (a) (X, T ) is T2 iff (b) for distinct
elements x1, · · · , xn, n ≥ 2, for each decomposition D = {Di | i = 1, · · · , j}, j ≥ 2,
of {1, · · · , n}, there exist closed sets Cl, l = 1, · · · , j, such that {xi | i ∈ Dl} ⊂ Cl,
l = 1, · · · , j, and X =

⋃j
l=1 Cl.

Proof. (a) implies (b): Let x1, · · · , xn, n ≥ 2, be distinct elements of X. Let
Ki, i = 1, · · · , n, be closed sets containing only xi of x1, · · · , xn with X =

⋃n
i=1 Ki.
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Let D = {Di | i = 1, · · · , j} be a decomposition of {1, · · · , n}, j ≥ 2. For each
l ∈ {1, · · · , j}, let Dl =

⋃
i∈Dl

Ki. Then Dl, l = 1, · · · , j, are closed sets satisfying
the required properties.

The proof of (b) implies (a) is straightforward using n = 2 and D = {{1}, {2}}
and is omitted.

Theorem 3.4. Let (X,T ) be a space. Then (a) (X, T ) is T2 iff (b) for distinct
elements x1, · · · , xn, n ≥ 2, for each decomposition D = {Di | i = 1, · · · , j},
j ≥ 2, of {1, · · · , n}, there exist disjoint open sets Ol, l = 1, · · · , j, such that
{xi | i ∈ Dl} ⊂ Ol, l = 1, · · · , j.

Proof. (a) implies (b): Let x1, · · · , xn, n ≥ 2, be distinct elements of X. Then
there exist disjoint open sets Ui, i = 1, · · · , n, containing only xi of x1, · · · , xn[ ].
Let D = {Di | i = 1, · · · , j} be a decomposition of {1, · · · , n}, j ≥ 2. For each
l ∈ {1, · · · , j}, let Ol =

⋃
i∈Dl

Ui. Then the open sets Ol, l = 1, · · · , j, are disjoint
open sets satisfying the required properties.

The proof of (b) implies (a) is straightforward using n = 2 and D = {{1}, {2}}
and is omitted.

Theorem 3.5. Let (X,T ) be a space. Then (a) (X,T ) is T2 iff (b) for each
x ∈ X, {x} =

⋂
x∈O∈T Cl(O).

The straightforward proof is omitted.

Theorem 3.6. Let (X,T ) be a space. Then (a) (X, T ) is T2 iff (b) for distinct
elements x and y in X, for nets {xα}α∈A and {yβ}β∈B in X converging to x and
y respectively, there exists an α0 ∈ A and a β0 ∈ B such that {xα | α ≥ α0}∩ {xβ |
β ≥ β0} = φ.

Proof. The proof that (a) implies (b) is straightforward and is omitted.
(b) implies (a): Suppose (X,T ) is not T2. Let x and y be distinct elements of

X such that every open set containing x intersects every open set containing y. Let
A = {U ∩V | x ∈ U ∈ T and y ∈ V ∈ T}. Define ≥ on A by A ≥ B iff A ⊂ B. For
each A ∈ A, let xA ∈ A and let yA = xA. Then {xA}A∈A and {yA}A∈A are nets in
X that converge to x and y respectively, but do not satisfy the required property.
Hence (X, T ) is T2.

Theorem 3.7. Let (X, T ) be a space. Then (a) (X, T ) is R1, (b) for elements
x, y ∈ X such that Cl({x}) 6= Cl({y}), there exist disjoint sets U and V such that
x ∈ U and y ∈ V , and (c) for elements x1, · · · , xn, n ≥ 2, such that Cl({xi}) =
Cl({xj}) iff i = j, there exist closed sets Ci, i = 1, · · · , n, containing only xi of
x1, · · · , xn with X =

⋃n
i=1 Ci.

Proof. Clearly (a) implies (b).
(b) implies (c): Let O ∈ T . Let a ∈ O. If b /∈ O, Cl({a}) 6= Cl({b}) and

there exist disjoint open sets A and B such that a ∈ A and b ∈ B, which implies
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Cl({a}) ⊂ O. Let x, y ∈ X such that Cl({x}) 6= Cl({y}). Let U and V be disjoint
open sets such that x ∈ U and y ∈ V . Then, by the argument above, Cl({x}) ⊂ U
and Cl({y}) ⊂ V . Hence (X,T ) is R1. Let x1, · · · , xn, n ≥ 2, be elements of X such
that Cl({xi}) = Cl({xj}) iff i = j. Then Cxi

, i = 1, · · · , n, are distinct elements
of X0. Since (X,T ) is R1, (X0, Q(X0)) is T2 [5] and there exist closed sets Ci,
i = 1, · · · , n, in X0 containing only Cxi

of Cx1 , · · · , Cxn
with X0 =

⋃n
i=1 Ci. Then

Ci = P−1
X (Ci), i = 1, · · · , n, are closed sets in X containing only xi of x1, · · · , xn

with X =
⋃n

i=1 Ci.
(c) implies (a): Let x1, x2 ∈ X such that Cl({x1}) 6= Cl({x2}). Let C1, C2 be

closed sets such that x1 ∈ C1, x2 ∈ C2, and X = C1 ∪ C2. Then x1 ∈ U = X \ C2

and x2 ∈ V = X \C1, where U and V are disjoint open sets. Thus, by the argument
above, (X, T ) is R1.

Theorem 3.8. Let (X, T ) be a space. Then the following are equivalent: (a)
(X,T ) is R1 iff (b) for elements x1, · · · , xn, n ≥ 2, such that Cl({xi}) = Cl({xj})
iff i = j, for each decomposition D = {Di | i = 1, · · · , j}, j ≥ 2, there exist closed
sets Cl, l = 1, · · · , j, such that {xi | i ∈ Dl} ⊂ Cl, l = 1, · · · , j, and X =

⋃j
l=1 Cl.

Proof. (a) implies (b): Let x1, · · · , xn be elements of X, n ≥ 2, such that
Cl({xi}) = Cl({xj}) iff i = j. Let D = {Di | i = 1, · · · , j}, j ≥ 2, be a decomposi-
tion of {1, · · · , n}. Since (X, T ) is R1, (X0, Q(X0)) is T2. Then Cxi , i = 1, · · · , n,
are distinct elements of X0. Let Cl, l = 1, · · · , j, be closed sets in X0 such that
{Cxi | i ∈ Dl} ⊂ Cl, l = 1, · · · , j, and X0 =

⋃j
l=1 Cl. Then Cl = P−1

X (Cl),
l = 1, · · · , j, are closed sets in X such {xi | i ∈ Dl} ⊂ Cl, l = 1, · · · , j, and
X =

⋃j
l=1 Cl.

(b) implies (a): Let x1, · · · , xn, n ≥ 2, be elements of X such that Cl({xi}) =
Cl({xj}) iff i = j. Let D = {{i} | i = 1, · · · , n}. Let Ci, i = 1, · · · , n, be closed
sets such that {xi} ⊂ Ci and X =

⋃n
i=1 Ci. Thus, by theorem 3.7, (X, T ) is R1.

Theorem 3.9. Let (X,T ) be a space. Then (a) (X, T ) is R1 iff (b) for
elements x1, · · · , xn, n ≥ 2, such that Cl({xi}) = Cl({xj}) iff i = j, for each
decomposition D = {Di | i = 1, · · · , j}, j ≥ 2, of {1, · · · , n}, there exist disjoint
open sets Ol, l = 1, · · · , j, such that {xi | i ∈ Dl} ⊂ Ol, l = 1, · · · , j.

Proof. (a) implies (b): Let x1, · · · , xn, n ≥ 2, be elements of X such that
Cl({xi}) = Cl({xj}) iff i = j. Let D = {Dl | l = 1, · · · , j}, j ≥ 2, be a decompo-
sition of {1, · · · , n}. Since (X, T ) is R1, (X0, Q(X0)) is T2. Then Cx1 , · · · , Cxn are
distinct elements of X0. Let Ol, l = 1, · · · , j, be disjoint open sets in X0 such that
{Cxi | i ∈ Dl} ⊂ Ol, l = 1, · · · , j. Then Ol = P−1

X (Ol) are disjoint open sets in X
such that {xi | i ∈ Dl} ⊂ Ol, l = 1, · · · , j.

(b) implies (a): Let x1, x2 ∈ X such that Cl({x1}) 6= Cl({x2}) and let D =
{{1}, {2}}. Then there exist disjoint open sets O1 and O2 such that {x1} ⊂ O1

and {x2} ⊂ O2 and, by Theorem 3.7, (X, T ) is R1.

Theorem 3.10. Let (X,T ) be a space. Then (a) (X, T ) is R1 iff (b) for each
x ∈ X, Cl({x}) =

⋂
x∈O∈T Cl(O).
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Proof. (a) implies (b): Let x ∈ X. Let O ∈ T such that x ∈ O. By the
proof in Theorem 3.7 (b) implies (c), Cl({x}) ⊂ O. Thus Cl({x}) ⊂ ⋂

x∈O∈T O ⊂⋂
x∈O∈T Cl(O). Let y ∈ ⋂

x∈O∈T Cl(O). Then y ∈ Cl({x}), for suppose not. Then
Cl({x}) 6= Cl({y}). Let U and V be disjoint open sets such that Cl({x}) ⊂ U
and Cl({y}) ⊂ V . Then y ∈ ⋂

x∈O∈T Cl(O) ⊂ Cl(U) ⊂ (X \ V ), which is a
contradiction. Thus

⋂
x∈O∈T ⊂ Cl({x}) and Cl({x}) =

⋂
x∈O∈T Cl(O).

(b) implies (a): Let x, y ∈ X such that Cl({x}) 6= Cl({y}). Then x /∈ Cl({y})
or y /∈ Cl({x}), say y /∈ Cl({x}). Let O ∈ T such that x ∈ O and y /∈ Cl(O).
Then O an X \Cl(O) are disjoint open sets containing x and y respectively and by
Theorem 3.7. (X,T ) is R1.

Theorem 3.11. Let (X,T ) be a space. Then (a) (X, T ) is R1 iff (b) for
elements x and y in X such that Cl({x}) 6= Cl({y}), for nets {xα}α∈A and {yβ}β∈B

in X converging to x and y respectively, there exists an α0 ∈ A and a β0 ∈ B such
that {xα | α ≥ α0} ∩ {yβ | β ≥ β0} = φ.

Proof (a) implies (b): Let x, y ∈ X such that Cl({x}) 6= Cl({y}). Let {xα}α∈A

and {yβ}β∈B be nets in X converging to x and y respectively. Let U and V be
disjoint open sets such x ∈ U and y ∈ V . Let α0 ∈ A and β0 ∈ B such that
{xα | α ≥ α0} ⊂ U and {yβ | β ≥ β0} ⊂ V . Thus (b) is satisfied.

(b) implies (a): Let Cx and Cy be distinct elements of X0. Let {Cxα}α∈A and
{Cyβ

}β∈B be nets in X0 converging to Cx and Cy respectively. Then {xα}α∈A is
a net in X. Let O ∈ T such that x ∈ O. Then Cx ∈ PX(O) ∈ Q(X0) and the net
{Cα}α∈A is eventually in PX(O). Hence {xα}α∈A is eventually in P−1

X (PX(O)) =
O. Thus {xα}α∈A converges to x. Similarly, {yβ}β∈B converges to y. Since Cx 6=
Cy, Cl({x}) 6= Cl({y}). Let α0 ∈ A and β0 ∈ B such that {xα | α ≥ α0} ∩ {yβ |
β ≥ β0} = φ. Then {Cxα | α ≥ α0} ∩ {Cyβ

| β ≥ β0} = φ. Thus (X0, Q(X0)) is T2

and (X, T ) is R1.
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