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STABILITY OF SOME INTEGRAL DOMAINS ON A PULLBACK
Tariq Shah and Sadia Medhat

Abstract. Let I be a nonzero ideal of an integral domain T and let ¢: T — T'/I be the
canonical surjection. If D is an integral domain contained in T/I, then R = ¢~1 (D) arises as a
pullback of type [ in the sense of Houston and Taylor such that R C T is a domains extension.
The stability of atomic domains, domains satisfying ACCP, HFDs, valuation domains, PVDs,
AVDs, APVDs and PAVDs observed on all corners of pullback of type [ under the assumption
that the domain extension R C T satisfies Condition 1 : For each b € T there exist u € U (T) and
a € R such that b = ua.

1. Introduction and preliminaries

Following Cohn [13], an integral domain R is said to be atomic if each nonzero
nonunit element of R is a product of a finite number of irreducible elements (atoms)
of R. The illustrious examples of atomic domains are UFDs and Noetherian do-
mains. An integral domain R satisfies the ascending chain condition on principal
ideals (ACCP) if there does not exist any strict ascending chain of principal ideals
of R. An integral domain R satisfies ACCP if and only if R[{X,}] satisfies ACCP
for any family of indeterminates {X,} (cf. [1, p. 5]). However, the polynomial ex-
tension an atomic domain is not an atomic domain (see [20]). A domain satisfying
ACCP is an atomic domain but the converse does not hold (see [15, 27]).

By [1], an atomic domain R is a bounded factorization domain (BFD) if for
each nonzero nonunit element x of R, there is a positive integer N(x) such that
whenever = x1 - - - &, a product of irreducible elements of R, then n < N(z). The
best known examples of BFDs are Noetherian and Krull domains [1, Proposition
2.2]. Also, in general a BFD satisfies ACCP but the converse is not true (cf. [1,
Example 2.1]).

Following Zaks [26], an atomic domain R is a half-factorial domain (HF D)
if for each nonzero nonunit element x of R, if t = x1---x,, = y1 - -y, With each
x;,9y; irreducible in R, then m = n. Obviously a UFD is an HFD. A Krull domain
R is an HFD if divisor class group CI(R) = 0 or Cl(R) = Zy. An HFD is a BFD
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(see [1]). By [1, Page 11], if R[Y] is an HFD, then certainly R is an HFD. However,
R[Y] need not be an HFD if R is an HFD. For example R = R + XC[X] is an
HFD, but R[Y] is not an HFD, as (X(1 +iY))(X(1 —iY)) = X?%(1 + Y?) are
decompositions into atoms of different lengths (cf. [1, p. 11]).

By [1], an integral domain R is known as an idf-domain if each nonzero nonunit
element of R has at most a finite number of non-associate irreducible divisors. UFDs
are examples of idf-domains. But there are idf-domains which are not even atomic.
Moreover, the Noetherian domain R + XC[X] is an HFD but not an idf-domain
(cf. [1, Example 4.1(a)]).

By [1], an atomic domain R is a finite factorization domain (FFD) if each
nonzero nonunit element of R has a finite number of non-associate divisors. Hence
it has only a finite number of factorizations up to order and associates. Further,
an integral domain R is an FFD if and only if R is an atomic idf-domain (cf. [1,
Theorem 5.1]).

Following Cohn [13], an element z of an integral domain R is said to be primal
if x divides a product aias; a1,as € R, then x can be written as x = x1x2 such
that x; divides a;, i = 1,2. An element whose divisors are primal elements is called
completely primal. An integral domain R is a pre-Schreier if every nonzero element
x of R is primal. An integrally closed pre-Schreier domain is known as Schreier
domain. By [13], any GCD-domain (an integral domain in which every pair of
elements has a greatest common divisor) is a Schreier domain but the converse is
not true.

By [24], an element z of an integral domain R is said to be rigid if whenever
r, s € R and r, s divide x, then s divides r or r divides s. An integral domain R is
said to be a semirigid domain if every nonzero element of R can be expressed as a
product of a finite number of rigid elements.

We recall from [25] that: Let R be an integral domain.

property-+: (N;(a;))(N;(b;)) = Ni j(a;b;) for all a;, b; € R, where i =1,...,m
and j=1,...,n.

property-++: ((a) N (b))((¢) N (d)) = (ac) N (ad) N (be) N (bd), where a, b, c,
d e R*.

An integral domain R is called x-domain (respectively xx-domain) if it satisfies
property -x (respectively property-+x). An integral domain R is said to be a locally
x-domain if for each maximal ideal M, Ry; has property-*.

Condition 1. The whole study in [18, 22, 23] is based on a property for a
unitary commutative ring (respectively domain) extension, known as Condition 1.
In [18, 22, 23] the stability (ascent and descent) of UFDs, atomic domains, domains
satisfying ACCP, FFDs, BFDs, HFDs, RBFDs, CK-domains, BVDs, CHFDs,
idf-domains, a particular case of LHFDs, valuation domains, semirigid domains,
PVDs and GCD-domains, Schreier domains, pre-Schreier domains, *-domains, -
domains, locally *-domains has been observed for a domain extension R C T which
satisfy Condition 1. In most of the situations the assumption that works is, the
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conductor ideal R : T = {z € R : T C R}, the largest common ideal of R and T,
is maximal in R.

Condition 1 : “Let R C T be a unitary commutative ring (respectively domain)
extension. For each b € T there exists u € U (T) and a € R such that b = ua.”

The followings are a few examples of unitary (commutative) ring extensions
which satisfy Condition 1.

ExAMPLE 1. [18, Example 1] (a) If T' is a field, then the unnitart ommutative
ring extension R C T satisfies Condition 1.

(b) If T is a fraction ring of the ring R, then the ring extension R C T satisfies
Condition 1. Hence Condition 1 generalizes the concept of localization.

(c) If the ring extensions R C T and T' C W satisfy Condition 1, then so does
the ring extension R C W.

(d) If the ring extension R C T satisfies Condition 1, then the unitary com-
mutative ring extensions R+ XT[X] C T[X]| and R+ XT[[X]] C T[[X]] also satisfy
Condition 1.

The following remark provides examples of domain extensions R C T satisfying
Condition 1, where the conductor ideal R : T is a maximal ideal of R.

REMARK 1. (i) Let F C K be any field extension, the domain extension
F + XK[X] C K[X] (respectively F + XK[[X]] C K[[X]]) satisfies Condition 1,
where the conductor ideal F + X K[X] : K[X] (respectively F + X K[[X]] : K[[X]])
is maximal ideal in F' 4+ X K[X] (respectively in F' + X K[[X]]).

(ii) Let F' C K be a field extension, where K is a root extension of F' and K (Y")
is the quotient field of K[Y]; then R=F + XKY)[X]| C K+ XKY)[X])]=T
satisfies Condition 1 and R : T = X K(Y)[[X]] is the maximal ideal in R.

There are a number of examples of domain extensions R C T satisfying
Condition 1, where the conductor ideal R : T is not a maximal ideal of R. The
following remark shows a few of those.

REMARK 2. (i) Let V be a valuation domain such that its quotient field K
is the countable union of an increasing family {V;};c; of valuation overrings of V.
Let L be a proper field extension of K with L*/K™* infinite. The it follows by [3,
Example 5.3] that:

(a) The domain extension V; + X L[[X]] C L[[X]] satisfies Condition 1 since
the extension V; C L satisfies Condition 1. But X L[[X]] is not a maximal ideal of
Vi + X L[[X]]. Also note that U(V; + X L[[X]]) # U(L[[X]]).

(b) The domain extension V; + X L[[X]] C K + X L[[X]] satisfies Condition
1, but X L[[X]] is not a maximal ideal in V; + X L[[X]]. Also, U(V; + X L[[X]]) #
U(K + XL[[X]).

(ii) The domain extension R = Z)+XR[[X]] € Q+XR[[X]] = T satisfies
Condition 1, but the conductor ideal R : T is not a maximal ideal in R.

(iii) The domain extension R = Z)+XR[[X]] C R[[X]] =F satisfies Condi-
tion 1, but the conductor ideal R : E is not a maximal ideal in R.
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Pullback. Pullback plays an important role in commutative ring theory as a
great source of providing examples and counter examples. For a most recent survey
article where some classes of commutative rings are characterized as a pullback
see [8].

By [21, p. 51], a unitary (commutative) ring R together with ring homomor-
phisms f: R — A and g : R — B is called a pullback of the pair of homomorphisms
a:A—Cand f:B— Cif

(a) the diagram

R—2- B

s

A— C

comimutes.

(b) (Universal property) If there exits another ring R with a pair of ring
homomorphisms f/ ‘R — A, g/ : R — B such that the diagram

’

R —% . B

f'l lﬁ

A — C

commutes. Then there exists a unique ring homomorphism 6 : R’ — R such that
foO=f andgof=g.

A pullback is said to be weak pullback for which the “Universal property” does
not hold.

Every pair of ring homomorphisms o : B — A and §: C — A has a pullback
(see [21, Exercise 2.46, p. 52]).

In the following we consolidate discussions of [21, p. 51,52 and Exercise 2.47]
as a proposition.

PROPOSITION 1. Let A, B and C be unitary (commutative) rings such that
C CAand f: B — A isan onto ring homomorphism, then L = f~1(C) is a
pullback of ring homomorphisms f and g, that is

L=f1C) —— C

ﬁl lg
B T» A

The pullback L in Proposition 1 is a substructure of B.

Pullback of type 0. Houston and Taylor [17] introduce a pullback of type O
as: Let I be a nonzero ideal of an integral domain T, ¢ : T'— T/I = E be the
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natural surjection and D be an integral domain contained in E. Then the integral
domain R = ¢! (D) arises as a pullback of the following diagram

R=¢ ' (D) —— D

l |

T —— T/I=FE
Here it is noticed that in fact R C T and D C E.

J. Boynton [11] introduces the pullback as: Let R C T be any unitary (com-
mutative) ring extension and I = R : T is the nonzero conductor ideal of T into R.
Setting D = R/I and E = T/I, we obtain the natural surjections ny : T — E,
ny : R — D and the inclusions i; : D <— E, is : R — T. These maps yield a
commutative diagram, called a conductor square U], which defines R as a pullback
of ni and il.

R 2 .7

i1
LEMMA 1. [11, Lemma 2.2] For conductor square O, if I = R : T is a regular
ideal, then T is an overring of R.

REMARK 3. (i) Every conductor square O is a pullback of type O.

(ii) If in conductor square O, R C T is a domain extension, then T is always
an overring of R.

LEMMA 2. [17, Lemma 1.1] In a pullback of type O, if each maximal ideal of
R contains I, then each maximal ideal of T contains I.

Recall that in a Prufer domain if every finitely generated fractional ideal is
invertible. Equivalently, an integral domain R is Prufer if Rp is a valuation domain
for each P € Spec(R).

In this study we shall follow the lines of the following results of [17] and [12].

THEOREM 1. [17, Theorem 1.3] In a pullback of type O, let I be a prime
ideal in T and qf (D) = qf (E). Then R is a Prufer domain (respectively a valu-
ation domain) if and only if D and T are Prufer domains (respectively valuation
domains).

COROLLARY 1. [17, Corollary 1.4] Consider a pullback diagram of type O
in which I is a mazimal ideal of T. Then R is a Prufer domain (respectively a
valuation domain) if and only if D and T are Prufer domains (respectively valuation
domains) and E is quotient field of D.

The following is an example of Prufer pullback which is not a valuation domain.
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EXAMPLE 2. Every nonzero prime ideal is a maximal ideal in T = Q[X].
Take I = XQ[X], so T/I = Q. Further Z = {a+1:a€Z} = D C T/I.
Then ¢ : Q[X] — Q[X]/XQ[X] = Q is surjection. Consider R = ¢~! (D) =
o 1{a+T:a€Z})={h(z) € Q[X]:h(0) € Z}. Thisimplies R =Z+XQ[X] C
Q[X] =T. Hence we obtain the following commutative diagram

l l

T —— T/I=F
©
R is a pullback of type O and D C F, whereas ¢f (D) = E and [ is a maximal ideal
in Q [X]. As Z and Q [X] are Prufer domains, so Z+ XQ [X] being Bezout, a Prufer
domain (an example on [17, Corollary 1.4]). Further, also it is an example on [17,
Theorem 1.3] since none of Z + XQ[X],Q[X] and Z is a valuation domain.

2. Relative stability of some domain’s properties
on corners of a pullback

The inclusions L C B, C' C A of Proposition 1 and inclusion R C T (respec-
tively D C E) in the pullback of type O (respectively conductor square [J) are
the main motivation to consider Condition 1. In this new scenario the properties
of the elements of the unitary commutative rings L, B, C, A (respectively integral
domains R,T, D, E) are concern. In [18, 22, 23|, there are inquiries for stability
(ascent and descent) of some atomic and non atomic classes of integral domains for
a domain extension R C T which satisfy Condition 1. The main purpose of this
study is to escort the inquiries of [18, 22, 23] and observe the stability of classes of
atomic and non atomic domains on all corners of the conductor square [J under the
assumption that the domain extension R C T satisfies Condition 1. However be-
sides this we also added a few more results regarding stability (ascent and descent)
of some atomic and non atomic classes of integral domains for a domain extension
R C T in continuation to [18, 22, 23].

2.1. Some indispensable facts. We begin by the following proposition.

PROPOSITION 2. Let R C T be a domain extension such that I is an ideal in
T (hence J =INR is an ideal in R) and f : T — T/I is the canonical surjection.
Then

(1) R= f~Y(R/J) is a pullback of type OJ.
(2) If T is integral over R, then T/I is integral over R/J.

Proof. (1) Since I is a nonzero ideal of T and R/J C T/I. Also T — T/I is
surjection, so the result follows by Proposition 1.

(2) It is [5, Proposition 5.6]. m
REMARK 4. (i) Let I be a prime ideal in 7. Then I is a maximal ideal in T if
and only if J is a maximal ideal in R. Indeed, as R C T and 7 is integral over R,
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so T'/I is integral over R/J. Now by [5, Proposition 5.7] T/I is a field if and only
if R/J is a field.

(i) Let R C T be a domain extension, then ¢~ ! (R) = R+ XT [X] arises as a
pullback of the following diagram (see [19]).

¢ ' (R =R+ XT[X] —— R

l l

T [X] —_ T

(iii) The extension ¢~ (R) = R+ XT[X] C T [X] satisfies Condition 1 if
R C T does.

(iv) By [9], if I is the common ideal of R and T, then T is an overring of R.
Also it follows that R — R/I = D is the canonical surjection.

The following Theorem provides the necessary and sufficient condition for a
vertical inclusion of a pullback of type [ to satisfy Condition 1.

THEOREM 2. In a pullback of type O, let I be a nonzero common ideal for R,
T, and ¢ : T — T/I be the canonical surjection. Then R C T satisfies Condition
1 if and only if D C E satisfies Condition 1.

Proof. Suppose R C T satisfies Condition 1. For s+ 1 € T/I, s € T, s =
tr, where t € U(T) and r € R. This means s +1 = (t + I)(r + I), whereas
t+1ecU(T/I)and r+1 € R/I. Hence D C E satisfies Condition 1.

The converse follows by [18, Proposition 1.2]. m

REMARK 5. (i) In the pullback of type O of Example 2, we see that the
extension Z C Q satisfies Condition 1, so the extension Z + XQ [X] C Q[X] does
and vice versa.

(ii) In a pullback of type O, if I is a maximal ideal in T, then E = T/I is a
field and by [18, Example (ii)] D C E satisfies Condition 1.

The following extends [18, Proposition 1.3] in the perspective of pullback of
type .

PROPOSITION 3. In a pullback of type O, let p=1 (D) = R C T such that I is a
common ideal of R and T. If for each t € T\I, there exists i € I witht+i € U (T).
Then

(1) I is a mazimal ideal in T.
(2) The extension R C T satisfies Condition 1.

Proof. (1) Let 0 # t € T\I, then there exists i € I such that t +i € U (T).
Thust+i+1 €U (T/I), that is p (t +14) € U(T/I). So T/I is a field. Hence I is
a maximal ideal in T'.
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(2)Iftel, thent=1t,as 1€ U(T). Let t € T\I, then there exists i € T
such that t+i € U (T), by (1). So we may write t = (£ + i) (t 4 ) " t and obviously
(t+i)'teR as (t+i) "t=1+7, where je . m

REMARK 6. In a pullback of type U, if R C T satisfies Condition 1, then
(INR)T = I. Indeed, as I is an ideal of T, so (INR)T C IT C I. Conversely
let s € I, then by Condition 1, s = rt, where t € U (T') and r € R. This implies
relNRandsos=rte€ (INR)T.Hence I C (INR)T.

REMARK 7. In a conductor square [, if I = R : T is a maximal in R such
that the extension R C T satisfies Condition 1, then [ is a maximal in 7. Indeed,
let s € T\I, then s = tr, where t € U (T) and r € R. Whereas r ¢ I, because if
r € I, then s = tr € I, which cause a contradiction. Now ¢ (7) is unit in R/I.Thus
©(s) =@ (t)p(r) is unit in T/I. Hence I is a maximal in T

2.2. Atomic generalizations of a UFD. The following extends a part of
[18, Proposition 2.6].

PROPOSITION 4. In a conductor square OJ, let the domain extension R C T
satisfies Condition 1 and I = R : T is a maximal ideal in R. Then R is atomic
(respectively has ACCP, BFD and an HFD) if and only if D and T are atomic
(respectively have ACCP, BFD and an HFD).

Proof. R is atomic (respectively has ACCP, BFD and an HFD) if and only if
T is atomic (respectively has ACCP, BFD and an HFD) follows by [18, Proposition
2.6]. D being a field is an atomic domain, has ACCP, a BFD and an HFD. m

REMARK 8. In Proposition 4 E being a field is atomic, has ACCP, BFD and
an HFD.

2.3. Valuation domain and its generalizations. By [16], an integral
domain R with quotient field K is said to be a pseudo-valuation domain (PV D),
if whenever P is a prime ideal in D and xy € P, where z,y € K, then x € P or
y € P (i.e. in a PVD every prime ideal is strongly prime). Equivalently an integral
domain R with quotient field K is said to be a PVD if for any nonzero element
x € K, either 2 € R or ax~! € R for every non unit @ € R. A valuation domain is
a PVD but the converse is not true, for example the PVD R + XC[[X]], which is

not a valuation domain.

By [2] an integral domain R is said to be an almost valuation domain (AVD)
if for every nonzero x € K, there exists an integer n > 1 (depending on z) with
" € R or x~™ € R. Equivalently the domain R is said to be an AVD if for each
pair a, b € R, there is a positive integer n = n(a, b) such that a™ | b™ or b™ | a™. A
valuation domain is an AVD but converse is not true. For example if F is a finite
field, then R = F + X2F[[X]] is a non valuation AVD (cf. [7, Example 3.8]).

By [6], an integral domain R is said to be an almost pseudo valuation domain
(APVD) if and only if R is quasilocal with maximal ideal M such that for every
nonzero element x € K, either 2™ € M for some integer n > 1 or az~t € M for
every nonunit ¢ € R. Equivalently a prime ideal P of R is a strongly primary ideal,
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if xy € P, where x,y € K implies that either " € P for some integer n > 1 or
y € P. If each prime ideal of R is strongly primary ideal, then R is an APVD.
For example R = Q + X*Q [[X]] is an APVD (cf. [6, Example 3.9]) which is not a
PVD.

By [7] a prime ideal P of an integral domain R is said to be a pseudo-strongly
prime ideal if, whenever z, y € K and zyP C P, then there is an integer m > 1
such that either ™ € R or y™ P C P. If each prime ideal in an integral domain R
is a pseudo-strongly prime ideal, then R is called a pseudo-almost valuation domain
(PAVD). Equivalently an integral domain R is a PAVD if and only if for every
nonzero element x € K, there is a positive integer n > 1 such that either 2™ € R
or ax~"™ € R for every nonunit a € R. For example if F' is a finite field, and
H = F[[X]], then R = F + FX? + X*F[[X]] is a PAVD (cf. [7, Example 3.8]).

In general
quasilocal
)
AV D = PAVD
1) 1)

VD = PVD = APVD
but none of the above implications is reversible.

We readjust [18, Lemma 1.7] as follows.

LEMMA 3. [18, Lemma 1.7] In a pullback of type O, let I be the common ideal
in R andT. Then R = ¢~ ' (p(R)), where p : T — T/I is the canonical surjection.

Proof. Clearly R C ¢~ ! (¢ (R)). Conversely, let z € ¢! (¢ (R)), so ¢ (z) €
¢ (R) and therefore ¢ () = ¢ (r) for some r € R. This means ¢ —r € I and
therefore z € R. Hence p~! (¢ (R)) C R. m

Following Zafrullah [24], an element x of an integral domain R is said to be
rigid if whenever r, s € R and r and s divides x, then s divides r or r divides s.
The domain R is said to be semirigid domain if every nonzero element of R can be
expressed as a product of a finite number of rigid elements.

The following is an improved form of [18, Theorem 2.10].

THEOREM 3. In a conductor square O, let R C T satisfies Condition 1 and
I = R : T is the mazimal ideal in R. If R is a semirigid-domain, then T is a
semirigid-domain.

Proof. Suppose R is a semirigid-domain. Let z € T, so either z € I or x € T\I.
The case € I is trivial. If x € T\I, then by Condition 1, v = ru, where r € R,
w € U(T). But R is semirigid-domain, so r = rire---r, is a product of rigid
elements in R and therefore by [18, Theorem 2.8(b)] z = (ury)rz..ry, is the product
of rigid elements in 7. Hence T is a semirigid-domain. m

In the rest of the discussion we assume that [ = R : T is a prime ideal.

For the sake of a quick reference we state the following lemma.
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LEMMA 4. [14, Lemma 4.5(i)] Let R be a PVD and P is its prime ideal. Then
R/P is a PVD.

THEOREM 4. Let R C T be the domain extension which satisfies Condition 1.
If R is a PVD, then T is a PVD.

Proof. Let a,b € T such that x = ¢ € ¢ f(T) with b # 0. So a = ajaz, b = by b,
where a1, b1 € R and ag, by € U(T'). This implies z; = Z—i € qf(R), where by # 0.
Since R is a PVD, therefore either z; = 3+ € R or ray!

nonzero nonunit in R. If x1 € Rand zo = 32 € U(T), thenz € T If re7' € R and

zo = 32 € U(T) (hence 't = % € U(T)), then ra=! € T, whereas r ¢ U(T). m

REMARK 9. In the proof of Theorem 4 if r € U(T'), then T must be a valuation
domain.

= r(% € R, where r is

REMARK 10. The converse of Theorem 4 does not hold. For example in the
domain extension Z + XQ[[X]] € Q[[X]] which satisfies Condition 1, Q[[X]] is a
DVR and hence a PVD, but Z + XQ[[X]] is not a PVD.

In the following we extend [17, Theorem 1.3] for PVDs with the addition of
Condition 1.

THEOREM 5. In a conductor square O, let the domain extension R C T satisfy
Condition 1 such that I = R : T is contained in the maximal ideal M of R and
qf(D) =qf(E). Then T and D are PVDs if and only if R is a PVD.

Proof. Assume that T and D are PVDs. It is known that: M is a maximal
ideal of R if and only if M/I is a maximal ideal of D. Let z € qf(R) = ¢f(T);
then either x € T or tz=! € T, where t € T\U(T).

If ©+ € T\R, we have * = z1x9, where ;1 € R and a2 € U(T). So
v(x1) € D, p(x2) € U(E). Since D is a PVD, therefore by [16, Theorem
1.5(3)], @ (x2) " M/I C M/I, that is ¢ (z2) " (m + 1) € M/I,(m +1) € M/I.
This implies 3 'm € M, ¢(m) = (m + I) € M/I for some m € M. So
1oy teytm = myma~! = axz=' € M, where ym = a € R\U(R), which shows
that M is strongly prime.

If tz=! € T\R, then tz=! = ru, where r € R and u € U(T). So ¢(r) € D,
¢ (u) € U(E). Since D is a PVD, therefore by [16, Theorem 1.5(3)] ¢ (u) ™" M/I =
© (u‘l) M/I C M/I if and only if u='M C M. This implies u='m = rr~tu=tm =
rm (ru)_l =r (t:zfl)fl =rit~lz € M, where m, 1y = rm € M. This implies M
is a strongly prime ideal, as t "1z € ¢f(R) and hence R is a PVD.

Conversely, by Theorem 4 T is a PVD whenever R is a PVD. By [14, Lemma
4.5(1)], if Ris a PVD, then D = R/Iisa PVD. m

The following examples are through the D 4+ M construction as elaborated in
[10, Theorem 2.1].

REMARK 11. [4, Example 3.12] (i) In Theorem 4 there is no need to assume
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that ¢f(D) = qf(E). For instance in the conductor square [J
R=R+XCH#)[[X]] —— R=D

| !

T = C(t)+XC)[[X]] —— C(t) = E

I =R:T = XC@®)[X]] and R C T satisfies Condition 1. Indeed, let f =
f1+ X f2(X) € T. In this pullback qf (D) # qf(E) but R, T and D are HFDs.

(ii) Let K be the field. The following is a conductor square .
R=K+XKY)[X]] — K

l l

T=KY)X] —— K(¥)

Whereas I = R : T = XK(Y)[[X]] is a maximal ideal in R and R C T satisfies
Condition 1. R is a PVD but T and K are DVRs. However ¢f (D) # qf (E).

THEOREM 6. Let R C T be the domain extension which satisfies Condition 1.
If R is an AVD, then T is an AVD.

Proof. Let x = § € qf (T), a,b € T. We may consider a = ajaz,b = b1by,
where a1,01 € R and as, by € U (T). Of course §+ € ¢f (R) and R is an AVD, so
either (§1)" € Ror ({1)™" € R, where n > 1 be an integer. Similarly u = 32 €
U (T) implies either (*u)" =z € Tor (Pu) "=z " €T.m

REMARK 12. [4, Example 3.12] Let F be a finite field, and H = F (X) be the
quotient field of F [X]. R=F +Y3H [[Y]] is not an AVD but V = H + Y3H [[Y]]

is an AVD (cf. [7. Example 2.20]). Obviously R C V satisfies Condition 1.

PROPOSITION 5. Let R be an AVD and P is a prime ideal of R. Then R/P
is an AVD.

Proof. R is a quasilocal domain if and only if for any a, b € R either a | " or
b | a™ for some n > 1, by [7, Proposition 2.7]. Now forx =a+P,y=b+P € R/P,
suppose that x { y™ for some integers n > 1. This implies that a t ™ for some
n > 1. Therefore b | a™ for some integers n > 1. This implies y | ™ for some
integers n > 1. Thus R/P is quasilocal as well as AB-domain, by [2. Theorem
4.10]. Hence by [2, Theorem 5.6] R/P is an AVD. m

THEOREM 7. In a conductor square O, let the domain extension R C T
satisfies Condition 1 such that I = R : T is the conductor ideal and qf (D) = qf(E).
Then T and D are AVDs if and only if R is an AVD.

Proof. Assume that T and D are AVDs. Let a € qf(R) = qf (T), then either
a”ora " eT.

(i) Counsider a™ € T, so by Condition 1, we have a = ajaq, where a; € R
and a2 € U(T). Then a1 = ¢(a1) € D and a2 = p(uz) € U(E). Since D is an
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AVD, therefore d; € D or a, " € D, where p is a positive integer. This implies
ah = ¢~ '(a5) € R and hence a¥a} = a™ € R.

Now if G," € D, then a,? = ¢~ '(ay") € R. We claim a;? ¢ R, if not, then
a;” € R, and we may have a; a,” = a7 € R C T, a contradiction to the fact
that =" ¢ T. Thus a="" ¢ R and a, ¢ D.

(ii) Now if a=™ € T, then by Condition 1, we have a~™ = ajas, where a; € R
and a; € U(T).This means a1 = ¢(a1) € D and a2 = ¢(az) € U(E). As D
is an AVD, so a, € D or 4, € D, where p is a positive integer.This implies
ab = ¢~ '(ay) € R. This implies afal = a™" € R. If 4, € D, then a;” =
¢ 1 (ay") € R. We claim that a;” ¢ R; if not then a;?a;” = a™ € R C T, which
contradict to the fact that a” ¢ T. Thus a"” ¢ R and a, ¢ D.

Conversely, by Theorem 6, T is an AVD whenever R is an AVD. Hence it
followed by Proposition 5 that D is an AVD. m

THEOREM 8. Let the domain extension R C T satisfies Condition 1 such that
I=R:T is contained in the maximal ideal M of R. If R is an APVD, then T is
an APVD.

Proof. Let x = ¢ € qf(T), where a,b € T. By Condition 1 a = ajag,b = b1ba,
where a1,b1 € R and ag, by € U (T'). This implies §- € ¢f(R). Since R is an APVD
with maximal ideal M, then either ($*)" € M for n > 1, or T(Z—ll)_l € M, where
r € R\U(R) and say u = 3> € U(T). Let N be the maximal ideal of T" such that

NN R = M. Therefore either (3*u)" € N or r(‘g—iu)_l € N, where r €e T\U(T). m

REMARK 13. In the proof of Theorem 8 if » € U(T), then T must be a
valuation domain.

EXAMPLE 3. [4, Example 3.12] Let F be a finite field and H = F (X)) is the
quotient field of F[X]. R = F + Y2H][Y]] is not an APVD but 7 = F + FY +
Y2H[[Y]] is an APVD. Whereas R C T does not satisfy Condition 1.

By [6], let S be a subset of an integral domain R with quotient field K, then
E(S)={x e K:a™ ¢ S for every integer n > 1}.

PROPOSITION 6. An integral domain R is an APVD if and only if for every
x € E(R) such that ar=! € R for every nonunit a € R.

Proof. Suppose that R is an APVD. Then R is a quasilocal by [6, Proposition
3.2]. Let M be the maximal ideal of R and = € E(R). Then by [6, Lemma 2.3]
1M C M CR. Conversely, assume that for every € F(R) such that ax~ ' €R
for every nonunit a € R. Let a, b be nonzero nonunit elements of R. Suppose
that a 1 b in R for every n > 1. Then z = b/a € E(R). Hence, by hypothesis
cr~! € R for every nonunit ¢ of R. In particular a?/b = az~! € R. Then b | a? in
R. Thus by [7, Proposition 2.7], the prime ideals of R are linearly ordered. Hence
R is quasilocal. Thus, by hypothesis, az~! € R for every a € M. Since M is the
only maximal ideal of R and x € F(R), we conclude that az=! € M for every
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a € M. By [6, Lemma 2.3]BH, M is a strongly prime ideal of R. Hence R is an
APVD, by [6, Theorem 3.4(2)|BH. m

In the following we restate Proposition 6.

PROPOSITION 7. An integral domain R is an APVD if and only if for every
a, b € R either a™ | b™ in R for somen > 1 orb| ca in R for every nonunit ¢ of R.

PROPOSITION 8. Let R be an APVD and P is a prime ideal of R. Then R/P
is an APVD.

Proof. Let R be an APVD and P is a prime ideal of R. Set D = R/P and let
2,y € D. Then x =a+ P and y = b+ P for some a, b € R. Suppose that 2™ t y"
in D for every positive integer n > 1. Then, a™ { b™ in R for every positive integer
n > 1. Thus by Proposition 7, b | ca in R for every nonunit ¢ of R.Thus y | zx for
every nonunit z of D. Hence by Proposition 7, D is an APVD. m

THEOREM 9. In a conductor square [, let the domain extension R C T
satisfy Condition 1 such that I = R : T contained in the mazimal ideal M of R
and qf (D) = qf(E). Then T and D are APVDs if and only if R is an APVD.

Proof. Assume that T and D are APVDs. As I C M, so M/I = (M) is
maximal ideal of D. For z € E(R), we have the following possibilities:

(i) If x € T\R, then x = xz1x9, where 21 € R, 25 € U(T). So &1 € D, 35 €
U(E). By [6, Lemma 2.3]BH (22)~'M/I C M/I. This implies (z2) "M C M, this
means z1(71) " H(z2) "tm = 21 (z122) "tm = ra—! € M, where xym =r € R\U(R),
me M.

(i) If « € qf(T)\T, then either 2™ € N or tz=! € N, t € T\U(T), where N
is maximal in T. (a) If 2™ € N and N N R = M, the maximal ideal in R. Using
Condition 1, ™ = ru, where r € R and u € U(T). This implies ¢(r) € D and
¢ (u) € U(E). Either ¢ (u)" € M/I or do (u)™* € M/I,t> 0 and d € D\U(D).

If p(u) € M/I, so p(r) o) =p@ru)' =¢ ") =¢@™) e M/I. This
implies 2" € M, a contradiction. Now, if dyp (u)_1 € M/I, then there exists
m € M such that d = ¢ (m). This implies ¢ (m) o (u)”" € M/I. This means
mu~t =rr~imut = my(ru)~! = mpz™ € M, where my = rm € M.

(b) Finally; if tz=! € N. We have tz=! = ru, r € R and v € U(T). This
implies ¢ () € D and ¢ (u) € U (E). Then by [6, Lemma 2.3] ¢ (u)"" M/I =
%) (u_l) M/I C MJ/I, this implies u=!M C M, and v'm = rr~lu=tm =
riru)™tm = ri(ru)™! = ri(ta=1)"! € M, where m,ri(= rm) € M. Thus M
becomes strongly primary. Hence R is an APVD.

Conversely by Theorem 8, T is an APVD whenever R is an APVD.

By Proposition 8, D is an APVD. m

EXAMPLE 4. [4, Example 3.12] Let F C K be a field extension, where K is
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the root extension of F. The pullback
R=F+XKY)[X]] —— F

l l

T=K+XKY)][X] — K

is of type O, whereas I = R : T = XK(Y)[[X]] and R C T satisfies Condition 1.
R is an APVD if and only if T is a PVD. Whereas ¢f (D) = F # K = qf(F).

We state the following proposition from [7] for the sake of completeness.

PROPOSITION 9. [7, Proposition 2.14] Let R be a PAVD and P be a prime
ideal of R. Then R/P is a PAVD.

THEOREM 10. Let R C T be a domain extension which satisfies Condition 1.
If R is PAVD, then T is PAVD.

Proof. Let x = ¢ € qf (T') ,a,b € T. By Condition 1 a = ajaz,b = biby, where
a1,b1 € R, as,by € U (T). This implies % € qf (R) and so either (Z—i)" € R or

r($)~" € R, where n > 0, r € R\U(R), u = $ € U(T). Hence either (§Lu)" € T

or t(3tu)”" € T, where t = rq, where t,q € T\U(T'). m
EXAMPLE 5. In domain extension C[[X?, X5] C C[[X?, X?]], C[[X?, X3]] is a
PAVD but C[[X?, X°]] is not a PAVD. So descent does not hold.

THEOREM 11. In a conductor square L1, let the domain extension R C T
satisfy Condition 1 such that I = R : T contained in the mazimal ideal M of R
and qf (D) = qf(E). Then T and D are PAVDs if and only if R is a PAVD.

Proof. Assume that T and D are PAVDs. As I C M, so M/I = ¢(M) is a
maximal ideal of D. For 2 € E(R), we have the following possibilities:

(i) If # € T\R, then = x1x9, where 1 € R, x5 € U(T). This implies &; =
o(x1) € D, &3 = p(x2) € U(E). Then by [7, Lemma 2.1] (£2) " M/I C M/I, and
hence =1 ((22)"™M/I) C M. This implies z;"m = x7z; "z;"m = mz~" € M,
where m, m; € M. Thus M is a pseudo-strongly prime ideal.

(i) fz € Q(T)\T, then 2™ € T or ta~" € T, for t € T\U(T') and n > 0. (a)
If 2™ € T, then " = x1x9; where x; € R and x5 € U(T). This implies p(x1) € D
and ¢(z2) € U(E). By [7, Lemma 2.1] ¢(xo)"¥M/I C M/I, for an integer k > 0
and hence z;*M C M. This implies zy*r = z¥a %z Fr = rz=*" ¢ M, for
r,ry = x¥r € M. Hence M is a pseudo-strongly prime ideal.

(b) Finally, if tz=" € T, then tx~™ = ru, where r € R and u € U(T). This
implies ¢ (r) € D and ¢ (u) € U(E). By [7, Lemma 2.1] ¢ (u) " M/I C M/I, for
an integer k > 0 and hence w~*M C M. This implies u™*m = rFr—Fu=Fm =
my(tx=")~% € M, where m, m;(= r*m) € M. Thus M is a pseudo-strongly prime
ideal. Hence R is a PAVD.

Conversely by Theorem 10, T is a PAVD whenever R is a PAVD. By [7,
Proposition 2.14], if R is a PAVD, then D = R/I is a PAVD. m
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