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INTEGRAL AND COMPUTATIONAL REPRESENTATION OF
SUMMATION WHICH EXTENDS A RAMANUJAN’S SUM

Tibor K. Pogany, Arjun K. Rathie and Shoukat Ali

Abstract. A generalized sum, which contains Ramanujan’s summation formula recorded in
Hardy’s article [G.H. Hardy, A chapter from Ramanujan’s notebook, Proc. Camb. Phil. Soc. 21
(1923), 492-503] as a special case, has been represented in the form of Mellin-Barnes type contour
integral. A computational representation formula is derived for this summation in terms of the
unified Hurwitz-Lerch Zeta function.

1. Introduction

The generalized hypergeometric function with p numerator and ¢ denominator
parameters is defined [6] as the power series
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where (a),, denotes the Pochhammer or schifted factorial symbol defined in terms
of the familiar Gamma function

_I‘(a—i—n):{l (n=0,a#0);

(a)n = T(a) ala+1)---(a+n—-1) (neN, aecC). (2)

When p < ¢ the series (1) converges for all finite values of z and defines an entire
function. If one or more of the top parameters a; is a nonpositive integer, the
series terminates and the generalized hypergeometric function is a polynomial in z.
If p = ¢ + 1, series converges in the open unit disc |z| < 1, while on the unit circle
the generalized hypergeometric series is absolutely convergent if

n
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One of the Ramanujan’s curious summation recorded by Hardy [1, p. 495] is given

by
2
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Ten years ago Park and Seo [5, Eq. (1.1)] proved that summation (4) can be
expressed via the generalized hypergeometric function 4F3 as
2
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Their rather long proving procedure includes the use of higher order generalized
hypergeometric series. However, we remark that to show (5) it is enough to apply
formula [3]
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where R{a — 2b — 2¢} > —1, specifying a = 1,b = ¢ = 1 — z for some z such, that
R{z} > 1/2.

The main goal of this short note is to derive a closed expression for a general
summation formula i)%pfq(a; z) in the form of a Mellin-Barnes type contour integral
which contains fR;(z) as a special case, see (6); second, to give a computational
representation for series R’ (a; x), and a new formula achieved via (4).

2. Extension of R (x)

Let us denote Q7 the set of positive rationals, while Ny stands for the set of
non-negative integers and Ny = {2,3,---}. Consider the sum

s . _OO S[(x—l)(m—n)]p
9£{ZfMJ(O"x) o Z(n—l—a) [(x +1)--- (x—|—n)]‘1
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Obviously Ri(z) = 2R,'5(1/2; z).

aeQJrapaqueNQ' (6)

THEOREM 1. For all
l+s+p—gq
p+gq

the following integral representation holds true

max {0, } <R{z} <1
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where v € (0,1 — R{x}).
Proof. Tt is obvious that
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therefore

- In)*[(1 = 2)n]? [(=1)"]"
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Reading the last expression in the spirit of the definition (1) of generalized hyper-
geometric function ,F, we clearly conclude that

s p
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Because the argument of this special function is unimodal, we have to test the
convergence of this series. However, the condition (3) givesus A=¢—s—p—1+
(p+ q)R{z} > 0 if p = ¢, which is fulfilled by assumption of the Theorem.

Now, consider the following Mellin-Barnes type contour integral viz.
~y+ioco
(1 + 2) / NEOT(L— T (a+1- (1 -z —¢)
2irTP(1 — x) Is(a— &1 +x — &) (—2)%¢
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d¢;

here the integration path is of Bromwich-Wagner type, that is, it consists from
a straight line orthogonal to the real axis at v € (0, 1- %{x}), which starts at
v — ico, and terminates at the point v + ico. The simple poles of the integrand
7(11) = —n + 1,n € N have been separated by the integration path £ from other
poles (because ’s definition). Calculating the residues of the function I'(§) at the

values §7(L1) we easily find that
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Thus, we deduce
Ry (o) =T((-1)P).
This finishes the proof of Theorem 1. m
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COROLLARY 1. For all z, R{z} € (1/2,1) we have

y+i

1 /wF(é)F(l —Or(3/2—OT2(1 -z —€)
T(1/2 =2 (1 + 2 — §)(-1)8

i
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where v € (0,1/2).
Proof. Recalling equality R®1(z) = 29R,'5(1/2; ), by Theorem 1 and (7) we get
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Since My (z) = 22(2z — 1)~/2 by (4), obvious further transformations lead to the
asserted formula (9). m

%1 (x) =

de.

3. Computational representation for R (c;x)

Next, we give a computational representation of extended Ramanujan’s sum
R, (a;z). First we introduce the so-called unified Hurwitz-Lerch Zeta function, a
new special function defined recently by Srivastava et al. [4]. Thus, for parameters
p,q € No; A\j € C, p, € C\ Zy ;05,06 >0, j =1,p, k =1,q, the unified Hurwitz-
Lerch Zeta function with p+ ¢ both upper and lower, and two auxiliary parameters,
reads as follows

(I)(PVO') = (I)(Ph"'»Pp#Tla“',Uq) — S §:1(Aj)npj Z
A (Zrw,a) =@ (2w, a) = § : I
n=0 11j=1

= (Mj)mrj (n+a)wn! ’
(10)
the auxiliary parameters w € C,®{a} > 0; the empty product is taken to be unity
(if any). The series (10) converges
1. for all z € C\ {0} if @ > —1;
2. in the open disc |z| < V' if Q = —1;
3. on the circle |z] = V/, for Q = -1, R{E} > 1/2,

where
q p q p _
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THEOREM 2. Let the situation be the same as in the previous theorem. Then
we have
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where H,, denotes the nth harmonic number, v stands for the Euler-Mascheroni
constant and (a), :==a,--- ,a.
——

v

Proof. Tt is easy to see that integral J(z) can be rewritten into equivalent form
~y+ioco
(1 + ) / NP1 = O —a — &) —&)°
2irTP(1 — z) Fi(l+x—¢) - (—2)¢
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de.

J(2) =

Now, if we calculate the residues of the function I'(1 — &) at the simple poles {,(12) =

n+1,n € Ny and the residues of I'?(1 — x — &) at the poles f,(f’) =1l—-xz+4+n,n €Ny
of order p, then it yields exactly the asserted formula (12). Indeed, we have
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n=0
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First, it is well known that
Res 11— ¢ = ED

On the other hand employing the power series representation formula [2]
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we clearly conclude
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here 9(-) denotes the digamma function, i.e. (z) = I'(2)/T(z). Hence J(z)
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Transforming in (14) the negative summation index Gamma-function terms into
positive index Pochhammer symbols with the aid of the familiar formula
I'(a —n) (=) _
—n = == E C Z 3 E N )
(a) F(a) (1 . a)n a \ 0: 1 0

we arrive at
3(z2) = pL9(1 4 ) (—1)" 152271 SN (1 — 2),[(1 — 22),]9(H,, — =) [(—1)PFTattz]n
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n=0
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Setting z = (—1)P in (15) routine calculations lead to asserted expression (12). m

(15)

Finally, specifying p = ¢ = 2,s = 1 in Theorem 2 we clearly conclude the
following formula, far from being obvious by itself.

COROLLARY 2. For all z, R{z} € (1/2,1) it holds true

o0

H, 1,1
D (=@l =20 (1= —actm) s =@ Y (- 1 -11/2)

n=0

02(22)T(1 — 2)(—1)37+! (11,1511 a?
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