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FUNCTIONS FROM Lp-SPACES AND TAYLOR MEANS

Prem Chandra, S. S. Thakur and Ratna Singh

Abstract. In this paper, we take up Taylor means to study the degree of approximation of
f ∈ Lp (p > 1) under the Lp-norm and obtain a general theorem which is used to obtain four
more theorems that improve some earlier results obtained by Mohapatra, Holland and Sahney
[J. Approx. Theory 45 (1985), 363–374]. One of our theorems provides the Jackson order as the
degree of approximation for a subspace of Lip(α, p) (0 < α < 1, p > 1) and generalizes a result
due to Chui and Holland [J. Approx. Theory 39 (1983), 24–38].

1. Definitions and notations

Let f ∈ Lp[0, 2π], p > 1, and let sn(f ; x) denote the partial sum of first (n+1)
terms of the Fourier series of f at a point x ∈ [0, 2π]. Throughout the paper all
norms are taken with respect to x and we write

‖f‖p =
{

1
2π

∫ 2π

0

|f(x)|p dx

}1/p

(1 6 p < ∞), (1.1)

‖f‖∞ = ‖f‖c = sup
06x62π

|f(x)|. (1.2)

Suppose that ω(δ; f), ωp(δ; f) and ω
(2)
p (δ; f), respectively, stand for modulus of

continuity, integral modulus of continuity and integral modulus of smoothness of f ,
which are non-negative and non-decreasing (see [8, pp. 42 and 45]). Also see [4, p.
612]. For 0 < α 6 1, we write: (i) f ∈ Lipα if ω(δ; f) = O(δα) and (ii) f ∈ Lip(α, p)
if ωp(δ; f) = O(δα). Throughout the paper, f ∈ Lp (p > 1) is taken to be non-
constant so that (see [8, p. 45])

n−1 = O(1)ωp(n−1; f), as n →∞. (1.3)

The space Lp[0, 2π], where p = ∞, contains the space C2π. The class Lip(α, p) with
p = ∞ will be taken as Lip α.
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Let (ank) be an infinite matrix defined by

(1− r)n+1θn

(1− rθ)n+1
=

∞∑

k=0

ankθk (|rθ| < 1, n = 0, 1, . . . ,∞). (1.4)

Then the Taylor mean of (sn(f, x)) is given by

T r
n(f ;x) =

∞∑

k=0

anksn(f, x), (1.5)

whenever the series on the right-hand side of (1.5) is convergent for each n =
0, 1, 2, . . . (see [6]).

In this paper, we shall use the following notations for 0 < r < 1, 0 < t 6 π
and for real x:

φx(t) =
1
2
{f(x + t) + f(x− t)− 2f(x)}, (1.6)

B =
r

2(1− r)2
, h = (1− r)

√
1 + 8B sin2 1

2 t, (1.7)

1− r exp(it) = h exp(iθ), θ = tan−1
{ r sin t

1− r cos t

}
, (1.8)

L(n, r, t, θ) = {(1− r)/h}n+1 sin{(n + 1
2 )t + (n + 1)θ}, (1.9)

an = π

/ {
(n + 1

2 ) + (n + 1)
r

1− r

}
and bn = aδ

n (0 < δ < 1
2 ), (1.10)

cn = (1− r)π/n and dn =

√
log n

An
(A > 0), (1.11)

Rn =
∫ dn

cn

t−1‖φx(t)− φx(t + cn)‖p exp(−Bnt2) dt. (1.12)

Define In similarly as Rn, with cn and dn replaced by an and bn, respectively. We
also use the inequality

t 6 π sin 1
2 t (0 6 t 6 π). (1.13)

2. Introduction

It is known [8, p. 266] that if f ∈ Lp (p > 1) then the Fourier series of f
converges in Lp-norm. By using Taylor transform of sn(f ; x), a study has been
made to find the rate of its convergence to f in Lp-norm [5, p. 371]. In 1985,
Mohapatra, Holland and Sahney [7] obtained a number of results by using Taylor
transform; some of them are the following.

Theorem A. If f ∈ Lp, p > 1, then for 0 < δ < 1
2 ,

‖T r
n(f)− f‖p = O(1)ωp(n−1; f) + O(1)

∫ bn

an

t−1ωp(t; f) dt. (2.1)
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By (1.3), nδ exp(−Kn1−2δ) = O(1)ωp(n−1; f) for 0 < δ < 1
2 , which is used in

(2.1) and will be used in (2.7).
It may be observed that

∫ bn

an

t−1ωp(t; f) dt >
1
2
ωp(an; f) log a−1

n . (2.2)

In [7], the following result was deduced for the subspace Lip(α, p) of the Lp space:

Theorem B. Let f ∈ Lip(α, p), where 0 < α 6 1 and p > 1. Then

‖T r
n(f)− f‖p = O(n−αδ), 0 < δ <

1
2
. (2.3)

One can see that for n > 1, 0 < α 6 1 and 0 < δ < 1
2 ,

n−αδ > n−α/2 > n−α log(n + 1). (2.4)

Further, a subclass of functions from Lp was determined in [7], for which the error
in approximating a function by the Taylor mean of its Fourier series is of Jackson
order. We first state the general result from [7], and then the result for Jackson
order will be given.

Theorem C. Let f ∈ Lp, p > 1 and let the following hold:

ωp(t; f)/tr is non-increasing with t for 0 < r < 1, (2.5)

In = O(1)ωp(n−1; f), (2.6)

where (1 + r)/(3 + r) 6 δ < 1
2 . Then

‖T r
n(f)− f‖p = O(1)ωp(n−1; f). (2.7)

Theorem D. Let f ∈ Lip(α, p), 0 < α < 1, p > 1 and let

In = O(n−α), (2.8)

where (1 + α)/(3 + α) 6 δ < 1
2 . Then

‖T r
n(f)− f‖p = O(n−α). (2.9)

In 2002, one of the authors of the present paper obtained a number of order-
estimates including those of “Jackson order” [1]. This has motivated us to proceed
to obtain a general result and deduce from it some other order-estimates of Jackson
order, as the degree of approximation of f by Br(f ; x) in the Lp-norm. More
precisely, we prove five theorems in this paper. Theorems 2 and 3 provide sharper
estimates than those which were obtained in Theorems A and B, while, in a different
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setting, Theorems 4 and 5 determine different subclasses of functions f ∈ Lp, p > 1
to get known estimates (see the remark after the statement of Theorem 5). We
first prove the following general theorem, which shall be used in the proofs of the
others.

Theorem 1. Let T r
n(f, x) denote the Taylor mean of the Fourier series of

f ∈ Lp, 1 6 p 6 ∞. Then

‖T r
n(f)− f‖p = O(n−1)

∫ π/2

dn

t−1ω(2)
p (t; f) dt

+ O(1)
∫ dn

cn

ω(2)
p (t + cn; f) exp(−Bnt2) dt

+ O(cn)
∫ dn

cn

ω
(2)
p (t + cn; f)
t(t + cn)

dt + O(1)dnω(2)
p (dn; f) + Rn

+ O(1)ω(2)
p (n−1; f) + O(n−1). (2.10)

We deduce the following results from Theorem 1.

Theorem 2. Let f ∈ Lp, 1 6 p 6 ∞ and let

t−1ωp(t; f) be non-increasing with t. (2.11)

Then
‖T r

n(f)− f‖p = O(1)ωp(n−1; f) log(n + 1). (2.12)

For a subclass of f ∈ Lp, 1 6 p 6 ∞, it is clear from (2.2) that Theorem 2
provides sharper estimate than Theorem A. Now for the subspace Lip(α, p), we
give another result which will be deduced from Theorem 1.

Theorem 3. Let f ∈ Lip(α, p), 0 < α 6 1, 1 6 p 6 ∞. Then

‖T r
n(f)− f‖p = O(n−α log(n + 1)). (2.13)

In view of (2.4), one may observe that the estimate in (2.13) of Theorem 3
is sharper than in (2.3) of Theorem B. For two subclasses of functions f ∈ Lp,
1 6 p 6 ∞, we prove the following two theorems, analogous to Theorems C and D.

Theorem 4. Let f ∈ Lp, 1 6 p 6 ∞ and let (2.5) hold. If

Rn = O(1)ωp(n−1; f), (2.14)

then
‖T r

n(f)− f‖p = O(1)ωp(n−1; f). (2.15)



Functions from Lp-spaces and Taylor means 39

Theorem 5. Let f ∈ Lip(α, p) for 0 < α < 1 and 1 6 p 6 ∞ and let

Rn = O(n−α). (2.16)

Then (2.9) holds, i.e.
‖T r

n(f)− f‖p = O(n−α).

Remark. We observe that an < cn < dn < bn and

Rn =
∫ dn

cn

‖φx(t)− φx(t + an)‖p

t
exp(−Bnt2) dt + O(n−2 log n). (2.17)

Further, the integral on right-hand side of (2.17) is less or equal to In. Therefore
the conditions (2.14) and (2.16) are not stronger than (2.6) and (2.8), respectively.

3. Lemmas

We require the following lemmas for the proof of the theorems.

Lemma 1 [3].

((1− r)/h)n 6 exp(−Ant2), A > 0 and 0 6 t 6 π
2 (3.1)

and ∣∣((1− r)/h)n − exp(−Bnt2)
∣∣ 6 Knt4, t > 0. (3.2)

Lemma 2 [6]. For 0 6 t 6 π/2,

|θ − rt/(1− r)| 6 Kt3. (3.3)

Lemma 3. For 0 6 t 6 π/2 and 0 < r < 1,
∣∣∣∣sin

{(
n +

1
2

)
t + (n + 1)θ

}∣∣∣∣ 6
(

n +
1
2

)
t + K(n + 1)t3 +

(n + 1)rt
1− r

. (3.4)

This is an easy consequence of Lemma 2.

4. Proofs of the theorems

4.1 Proof of Theorem 1. We have (see [7])

T r
n(f, x)− f(x) =

1
π

∫ π

0

φx(t)
sin 1

2 t

( ∞∑

k=0

ank sin(k + 1
2 )t

)
dt,

where ∞∑

k=0

ank sin(k + 1
2 )t = L(n, r, t, θ),
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by using (1.4), (1.8) and (1.9). Now, we write

T r
n(f, x)− f(x) =

1
π

(∫ π/2

0

+
∫ π

π/2

)(
φx(t)
sin 1

2 t
L(n, r, t, θ) dt

)

= I1 + I2, say.

Then by the generalized Minkowski inequality and (1.7), we have

‖T r
n(f)− f‖p 6 ‖I1‖p + ‖I2‖p (4.1.1)

and

‖I2‖p = O(1)
∫ π

π/2

t−1ω(2)
p (t; f)((1− r)/h)n+1 dt

= O(1)(1 + 4B)−
1
2 (n+1) = O(n−1). (4.1.2)

And for constant A > 0 chosen in (3.1) of Lemma 1, we write

I1 =
1
π

(∫ cn

0

+
∫ dn

cn

+
∫ π/2

dn

)(
φx(t)
sin 1

2 t
L(n, r, t, θ) dt

)

= I1,1 + I1,2 + I1,3, say,

where cn and dn are as in (1.11). Hence by the generalized Minkowski inequality,

‖I1‖p 6 ‖I1,1‖p + ‖I1,2‖p + ‖I1,3‖p, (4.1.3)

where by Lemma 1, (1.9), (1.13) and Lemma 3,

‖I1,1‖p 6
∫ cn

0

ω
(2)
p (t; f)

t

(
1− r

h

)n+1 ∣∣∣∣
(

n +
1
2

)
t + K(n + 1)t3 +

r

1− r
(n + 1)t

∣∣∣∣ dt

6
∫ cn

0

ω(2)
p (t; f)

{(
n +

1
2

)
+ (n + 1)

(
Kt2 +

r

1− r

)}
dt

= O(1)ω(2)
p (n−1; f), (4.1.4)

and, once again by the generalized Minkowski inequality, (1.9), (1.13) and (3.1),
we get

‖I1,3‖p 6
∫ π/2

dn

t−1ω(2)
p (t; f)

(
1− r

h

)n+1

dt

6
∫ π/2

dn

t−1ω(2)
p (t; f) exp(−Ant2) dt

6 n−1

∫ π/2

dn

t−1ω(2)
p (t; f) dt. (4.1.5)

Now, by (1.9)

I1,2 =
1
π

∫ dn

cn

φx(t)
sin 1

2 t

[(
1− r

h

)n+1

− exp(−B(n + 1)t2)
]

sin{(n + 1
2 )t + (n + 1)θ} dt

+
1
π

∫ dn

cn

φx(t)
sin 1

2 t
exp(−B(n + 1)t2) sin{(n + 1

2 )t + (n + 1)θ} dt

= I1,2,1 + I1,2,2, say.
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Then, by the generalized Minkowski inequality,
‖I1,2‖p 6 ‖I1,2,1‖p + ‖I1,2,2‖p. (4.1.6)

Now, proceeding as above and using (3.2) of Lemma 1, we get

‖I1,2,1‖p 6 Kn

∫ dn

cn

ω(2)
p (t; f)t3 dt = O(1)dnω(2)

p (dn; f) (4.1.7)

and

I1,2,2 =
1
π

∫ dn

cn

φx(t)
sin 1

2 t
exp(−B(n + 1)t2) sin{(n + 1)(t + θ)} dt

+ O(1)
∫ dn

cn

|φx(t)| exp(−B(n + 1)t2) dt

= R1 + R2, say.

Arguing as above,

‖R2‖p = O(1)
∫ dn

cn

ω(2)
p (t; f) exp{−B(n + 1)t2} dt

and

R1 =
1
π

∫ dn

cn

φx(t)
sin 1

2 t
exp(−Bnt2) sin n(t + θ) dt + O(n−1)

= R′1 + O(n−1), say.

Therefore, by the generalized Minkowski inequality,

‖I1,2,2‖p = ‖R′1‖p + O(1)
∫ dn

cn

ω(2)
p (t + cn; f) exp(−Bnt2) dt + O(n−1). (4.1.8)

Now, for 1/(1− r) = q, we have
| sin n(t + θ)− sin nqt| 6 n|θ − rqt| 6 Knt3, (4.1.9)

by Lemma 2. Then, arguing as above and using (4.1.9), we have

‖R′1‖p 6 Kn

∫ dn

cn

t2ω(2)
p (t; f) exp(−Bnt2) dt

+
∥∥∥∥

1
π

∫ dn

cn

φx(t)
sin 1

2 t
exp(−Bnt2) sin nqt dt

∥∥∥∥
p

= O(1)dnω(2)
p (dn; f) + ‖J‖p, say, (4.1.10)

where

J =
1
π

∫ dn

cn

φx(t)
sin 1

2 t
exp(−Bnt2) sin nqt dt

=
1
π

∫ dn

cn

φx(t)
{

cosec
t

2
− 2

t

}
exp(−Bnt2) sin nqt dt

+
2
π

∫ dn

cn

t−1φx(t) exp(−Bnt2) sin nqt dt

= J1 + J2, say.
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Now, proceeding as above and using that cosec t
2 − 2

t = O(t), we get

‖J‖p = O(1)
∫ dn

cn

tω(2)
p (t; f) exp(−Bnt2) dt + ‖J2‖p

= O(1)dnω(2)
p (dn; f) + ‖J2‖p. (4.1.11)

Using the transformation t 7→ t + cn, we get sin nq(t + cn) = − sin nqt and

πJ2 =
∫ dn

cn

φx(t)− φx(t + cn)
t

exp(−Bnt2) sin nqt dt

+
∫ dn

cn

φx(t + cn)
t

exp(−Bnt2) sin nqt dt

−
∫ dn−cn

0

φx(t + cn)
t + cn

exp(−Bn(t + cn)2) sin nqt dt

= π(J2,1 + J2,2 + J2,3), say.

Then, by the generalized Minkowski inequality and (1.12), we have

‖J2‖p 6 Rn + ‖J2,2 + J2,3‖p (4.1.12)

and

π(J2,2 + J2,3) =
∫ dn

cn

φx(t + cn)
t

{exp(−Bnt2)− exp(−Bn(t + cn)2)} sin nqt dt

+ cn

∫ dn

cn

φx(t + cn)
t(t + cn)

exp(−Bn(t + cn)2) sin nqt dt

+
∫ dn

dn−cn

φx(t + cn)
t + cn

exp(−Bn(t + cn)2) sin nqt dt

−
∫ cn

0

φx(t + cn)
t + cn

exp(−Bn(t + cn)2) sin nqt dt

= π(L1 + L2 + L3 + L4), say.

Therefore, by the generalized Minkowski inequality,

‖J2,2 + J2,3‖p 6 ‖L1‖p + ‖L2‖p + ‖L3‖p + ‖L4‖p. (4.1.13)

Now, we observe that

exp(−Bnt2)− exp(−Bn(t + cn)2) = 2nB

∫ t+cn

t

u exp(−Bnu2) du

= O(t + cn) exp(−Bnt2)

and t−1(t + cn) is non-increasing. Therefore we get

‖L1‖p = O(1)
∫ dn

cn

ω(2)
p (t + cn; f) exp(−Bnt2) dt, (4.1.14)



Functions from Lp-spaces and Taylor means 43

‖L2‖p = O(cn)
∫ dn

cn

ω
(2)
p (t + cn; f)
t(t + cn)

dt, (4.1.15)

‖L3‖p = O(1)dnω(2)
p (dn; f), (4.1.16)

‖L4‖p = O(1)ω(2)
p (n−1; f), (4.1.17)

Now, collecting (4.1.1) through (4.1.17) except (4.1.2) and (4.1.9), we get (2.11).

4.2. Proof of Theorem 2. By (1.1) and (2.11), we get

n−1

∫ π/2

dn

t−1ω(2)
p (t; f) dt 6 2n−1

∫ π/2

n−1
t−1ωp(t; f) dt 6 πωp(n−1; f),

(4.2.1)
∫ dn

cn

ω(2)
p (t + cn; f) exp(−Bnt2) dt

6 1
Bn

∫ dn

cn

ωp(t + cn; f)
t + cn

d

dt
(− exp(−Bnt2)) dt

= O(1)ωp(n−1; f), (4.2.2)

cn

∫ dn

cn

ω
(2)
p (t + cn; f)
t(t + cn)

dt = O(1)ωp(n−1; f) log(n + 1). (4.2.3)

And, by (2.11) and (1.9),

dnω(2)
p (dn; f) = O(1)ωp(n−1; f) log(n + 1). (4.2.4)

Finally we observe that

‖φx(t + cn)− φx(t)‖p 6 ωp(cn; f) (4.2.5)

and hence
Rn = O(1)ωp(n−1; f) log(n + 1). (4.2.6)

Now, using (4.2.1) through (4.2.6) except (4.2.5) in (2.10), we get (2.12).

4.3. Proof of Theorem 3. For f ∈ Lip(α, p), 0 < α 6 1, p > 1, we have

ωp(t; f) = O(tα) (4.3.1)

and hence by (1.1) and (4.3.1) we get

n−1

∫ π/2

dn

t−1ω(2)
p (t; f) dt = O(n−1), (4.3.2)

∫ dn

cn

ω(2)
p (t + cn; f) exp(−Bnt2) dt = O(n−α), (4.3.3)

cn

∫ dn

cn

ω
(2)
p (t + cn; f)
t(t + cn)

dt = O(1)
{

n−α, 0 < α < 1,

n−1 log(n + 1), α = 1,
(4.3.4)
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and

dnω(2)
p (dn; f) = O(1)

{
n−α, 0 < α < 1,

n−1 log(n + 1), α = 1.
(4.3.5)

Finally, by (4.2.6) and (4.3.1), we get

Rn = O(n−α) log(n + 1), 0 < α 6 1. (4.3.6)

Now, using (4.3.2) through (4.3.6) in (2.10), we get the required result (2.13).

4.4. Proof of Theorem 4. We first observe that (2.5) implies (2.11) and there-
fore (4.2.1) and (4.2.2) hold. Also, for 0 < γ < 1,

cn

∫ dn

cn

ωp(t + cn; f)
t(t + cn)

dt 6 c1−γ
n ωp(2cn; f)

∫ ∞

cn

tγ−2 dt = O(1)ωp(n−1; f). (4.4.1)

and
dnω(2)

p (dn; f) 6 2d1+γ
n nγωp(n−1; f) = O(1)ωp(n−1; f). (4.4.2)

Thus, by using (4.2.1), (4.2.2), (4.4.1), (4.4.2) and (2.14) in (2.10), we get (2.15).

4.5. Proof of Theorem 5. Proceeding as in Theorem 3 for 0 < α < 1 and using
(2.16) for (4.3.6), we get (2.9).

This completes the proofs of the theorems.

5. Corollaries

As we have already remarked, for continuous functions f , Lp[0, 2π] and
ωp(δ; f), respectively, reduce to C2π and ω(δ; f) for p = ∞. Therefore, by let-
ting p = ∞ in Theorem 4, we get the following generalization of a theorem due to
Chui and Holland [2]:

Corollary 1. Let f ∈ C2π and let

t−ηω(t; f) be non-increasing with t for 0 < η < 1

and Rn = O(1)ω(n−1; f). Then

‖T r
n(f)− f‖c = O(1)ω(n−1; f).

The following result provides Jackson order, which may be deduced from Corol-
lary 1 by letting η = α and ω(t; f) = tα:

Corollary 2. Let f ∈ C2π ∩ Lipα, where 0 < α < 1, and let

Rn = O(n−α) (5.1)

Then ‖T r
n(f)− f‖c = O(n−α).

It may be observed that Chui and Holland [2] obtained this result by taking
In = O(n−α) for Rn = O(n−α) in (5.1) and Rn < In, since an < cn < dn < bn.
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