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GENERALIZED DISTANCE AND FIXED POINT THEOREMS IN
PARTIALLY ORDERED PROBABILISTIC METRIC SPACES

Reza Saadati

Abstract. Recently, Ćirić, Miheţ and Saadati [Topoplogy Appl. 156 (2009), 2838-2844]
proved a common fixed point theorem in partially ordered probabilistic metric spaces. In this
paper, we consider the generalized distance in probabilistic metric spaces introduced by Saadati,
et. al., [Bull. Iranian Math. Soc. 35:2 (2009), 97–117] and prove some fixed point theorems in
partially ordered probabilistic metric spaces.

1. Introduction

The Banach fixed point theorem for contraction mappings has been general-
ized and extended in many directions [1, 4, 6, 8, 9, 14, 15]. Recently Nieto and
Rodriguez-Lopez [8] and Ran and Reurings [10] presented some new results for con-
tractions in partially ordered metric spaces. The main idea in [8] and [10] involve
combining the ideas of iterative technique in the contraction mapping principle
with those in the monotone technique.

Recall that if (X,≤) is a partially ordered set and F : X → X is such that
for x, y ∈ X, x ≤ y implies F (x) ≤ F (y), then a mapping F is said to be non-
decreasing. The main result of Nieto and Rodriguez-Lopez [8] and Ran and Reur-
ings [10] is the following fixed point theorem.

Theorem 1.1 Let (X,≤) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Suppose F is a non-
decreasing mapping with

d(F (x), F (y)) ≤ kd(x, y) (1.1)

for all x, y ∈ X, x ≤ y, where 0 < k < 1. Also suppose either
(a) F is continuous or
(b) if {xn} ⊂ X is a non-decreasing sequence with xn → x in X,
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then xn ≤ x for all n hold. If there exists an x0 ∈ X with x0 ≤ F (x0) then F has
a fixed point.

The works of Nieto and Rodriguez-Lopez [8] and Ran and Reurings [10] have
motivated Agarwal et al. [1], Bhaskar and Lakshmikantham [2] and others authors
[12] and [13] to undertake further investigation of fixed points in the area of ordered
metric spaces.

2. Preliminaries

K. Menger introduced the notion of a probabilistic metric space in 1942 and
since then the theory of probabilistic metric spaces has developed in many direc-
tions [16]. The idea of K. Menger was to use distribution functions instead of
nonnegative real numbers as values of the metric. The notion of a probabilistic
metric space corresponds to situations when we do not know exactly the distance
between two points, but we know probabilities of possible values of this distance. A
probabilistic generalization of metric spaces appears to be of interest in the investi-
gation of physical quantities and physiological thresholds. It is also of fundamental
importance in probabilistic functional analysis.

Throughout this paper, the space of all probability distribution functions
(briefly, d.f.’s) is denoted by ∆+ = {F : R ∪ {−∞, +∞} −→ [0, 1] : F is left-
continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1} and the subset
D+ ⊆ ∆+ is the set D+ = {F ∈ ∆+ : l−F (+∞) = 1}. Here l−f(x) denotes the
left limit of the function f at the point x, l−f(x) = limt→x− f(t). The space ∆+ is
partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and
only if F (t) ≤ G(t) for all t in R. The maximal element for ∆+ in this order is the
d.f. given by

ε0(t) =
{

0, if t ≤ 0,

1, if t > 0.

Definition 2.1. [16] A mapping T : [0, 1] × [0, 1] −→ [0, 1] is a continuous
t-norm if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T (a, 1) = a for all a ∈ [0, 1];

(d) T (a, b) ≤ T (c, d) whenever a ≤ c and c ≤ d, and a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are TP (a, b) = ab and TM (a, b) =
min(a, b).

Now t-norms are recursively defined by T 1 = T and

Tn(x1, · · · , xn+1) = T (Tn−1(x1, · · · , xn), xn+1)

for n ≥ 2 and xi ∈ [0, 1], for all i ∈ {1, 2, . . . , n + 1}.
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We say that a t-norm T is of Hadžić type if the family {Tn}n∈N is equicontin-
uous at x = 1, that is,

∀ε ∈ (0, 1) ∃δ ∈ (0, 1) a > 1− δ ⇒ Tn(a) > 1− ε (n ≥ 1) .

TM is a trivial example of a t-norm of Hadžić type, but TP is not of Hadžić type.

Definition 2.2. A Menger probabilistic metric space (briefly, Menger PM-
space) is a triple (X,F , T ), where X is a nonempty set, T is a continuous t-norm,
and F is a mapping from X ×X into D+ such that, if Fx,y denotes the value of F
at the pair (x, y), the following conditions hold: for all x, y, z in X,

(PM1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t + s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.3. A Menger probabilistic normed space (briefly, Menger PN-
space) is a triple (X, µ, T ), where X is a vector space, T is a continuous t-norm,
and µ is a mapping from X into D+ such that, the following conditions hold: for
all x, y in X,

(PN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(PN2) µαx(t) = µx( t

|α| ) for α 6= 0;

(PN3) µx+y(t + s) ≥ T (µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.4. Let (X,F , T ) be a Menger PM-space.
(1) A sequence {xn}n in X is said to be convergent to x in X if, for every ε > 0

and λ > 0, there exists positive integer N such that Fxn,x(ε) > 1 − λ whenever
n ≥ N .

(2) A sequence {xn}n in X is called Cauchy sequence if, for every ε > 0 and
λ > 0, there exists positive integer N such that Fxn,xm(ε) > 1 − λ whenever
n,m ≥ N .

(3) A Menger PM-space (X,F , T ) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X.

Definition 2.5. Let (X,F , T ) be a Menger PM space. For each p in X and
λ > 0, the strong λ− neighborhood of p is the set

Np(λ) = {q ∈ X : Fp,q(λ) > 1− λ},
and the strong neighborhood system for X is the union

⋃
p∈V Np where Np =

{Np(λ) : λ > 0}.
The strong neighborhood system for X determines a Hausdorff topology for X.

Theorem 2.6. [16] If (X,F , T ) is a PM-space and {pn} and {qn} are se-
quences such that pn → p and qn → q, then limn→∞ Fpn,qn(t) = Fp,q(t) for every
continuity point t of Fp,q.
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3. r-distance

Kada, Suzuki and Takahashi [5] introduced the concept of w-distance on a met-
ric space and proved some fixed point theorems. Using the concept of w-distance,
Saadati et. al. [11] defined the concept of r-distance on a Menger PM-space. In
this section, we review the r-distance and its properties, for more details, see [11].

Definition 3.1. Let (X,F , T ) be a Menger PM-space. Then the function
f : X2 × [0,∞] −→ [0, 1] is called a r-distance on X if the following are satisfied:

(r1) fx,z(t + s) ≥ T (fx,y(t), fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0;
(r2) for any x ∈ X and t ≥ 0, fx,. : X × [0,∞] −→ [0, 1] is continuous;
(r3) for any ε > 0, there exists δ > 0 such that fz,x(t) ≥ 1−δ and fz,y(s) ≥ 1−δ

imply Fx,y(t + s) ≥ 1− ε.

Let us give some examples of r-distance.
Example 3.2. Let (X,F , T ) be a Menger PM-space. Then f = F is a r-

distance on X.
Proof. Now (r1) and (r2) are obvious. We show (r3). Let ε > 0 be given and

choose δ > 0 such that
T (1− δ, 1− δ) ≥ 1− ε.

Then, for Fz,x(t) ≥ 1− δ and Fz,y(s) ≥ 1− δ we have

Fx,y(t + s) ≥ T (Fz,x(t), Fz,y(s)) ≥ T (1− δ, 1− δ) ≥ 1− ε.

Example 3.3. Let (X,F , T ) be a Menger PM-space. Then the function
f : X2 × [0,∞) −→ [0, 1] defined by fx,y(t) = 1− c for every x, y ∈ X and t > 0 is
a r-distance on X, where c ∈]0, 1[.

Proof. Now (r1) and (r2) are obvious. To show (r3), for any ε > 0, put
δ = 1 − c/2. Then we have that fz,x(t) ≥ 1 − c/2 and fz,y(s) ≥ 1 − c/2 imply
Fx,y(t + s) ≥ 1− ε.

Example 3.4. Let (X, µ, T ) be a Menger PN-space. Then the function f :
X2 × [0,∞) −→ [0, 1] defined by fx,y(t + s) = T (µx(t), µy(s)) for every x, y ∈ X
and t, s > 0 is a r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. Then we have

fx,z(t + s) = T (µx(t), µz(s)) ≥ T (T (µx(t/2), µy(t/2)), T (µy(s/2), µz(s/2)))

= T (fx,y(t), fy,z(s)).

Hence (r1) holds. Also (r2) is obvious. Let ε > 0 be given and choose δ > 0 such
that T (1− δ, 1− δ) ≥ 1− ε. Then, for fz,x(t) ≥ 1− δ and fz,y(s) ≥ 1− δ we have

Fx,y(t + s) = µx−y(t + s) ≥ T (µx(t), µy(s))

≥ T (T (µx(t/2), µz(t/2)), T (µy(s/2), µz(s/2)))

= T (fz,x(t), fz,y(s)) ≥ T (1− δ, 1− δ) ≥ 1− ε.

Hence (r3)also holds.
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Example 3.5. Let (X, µ, T ) be a Menger PN-space. Then the function f :
X2 × [0,∞] −→ [0, 1] defined by fx,y(t) = µx(t) for every x, y ∈ X and t > 0 is a
r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. Then we have

fx,z(t + s) = µz(t + s) ≥ T (µy(t), µz(s)) = T (fx,y(t), fy,z(s)).

Hence (r1) holds. Also (r2) is obvious. Let ε > 0 be given and choose δ > 0 such
that T (1− δ, 1− δ) ≥ 1− ε. Then, for fz,x(t) ≥ 1− δ and fz,y(s) ≥ 1− δ we have

Fx,y(t + s) = µx−y(t + s) ≥ T (µx(t), µy(s)) = T (fz,x(t), fz,y(s))

≥ T (1− δ, 1− δ) ≥ 1− ε.

Hence (r3) holds.
Example 3.6. Let (X,F , T ) be a Menger PM-space and let A be a continuous

mapping from X into X. Then the function f : X2 × [0,∞] −→ [0, 1] defined by

fx,y(t) = min(FAx,y(t), FAx,Ay(s))

for every x, y ∈ X and t, s > 0 is a r-distance on X.
Proof. Let x, y, z ∈ X and t, s > 0. If FAx,z(t) ≤ FAx,Ay(t) then we have

fx,z(t + s) = FAx,z(t + s) ≥ T (FAx,Ay(t), FAy,z(s))

≥ T (min(FAx,y(t), FAx,Ay(t)), min(FAy,z(s), FAx,Ay(s))

= T (fx,y(t), fy,z(s)).

With this inequality, we have

fx,z(t + s) = FAx,Az(t + s) ≥ T (FAx,Ay(t), FAy,Az(s))

≥ T (min(FAx,y(t), FAx,Ay(t)), min(FAy,z(s), FAx,Ay(s))

= T (fx,y(t), fy,z(s)).

Hence (r1) holds. Since A is continuous, (r2) is obvious . Let ε > 0 be given and
choose δ > 0 such that T (1 − δ, 1 − δ) ≥ 1 − ε. Then, from fz,x(t) ≥ 1 − δ and
fz,y(s) ≥ 1− δ we have FAz,x(t) ≥ 1− δ and FAz,y(s) ≥ 1− δ. Therefore

Fx,y(t + s) ≥ T (FAz,x(t), FAz,y(s)) ≥ T (1− δ, 1− δ) ≥ 1− ε.

Hence (r3) holds.
Next, we discuss some properties of r-distance.

Lemma 3.7. Let (X,F , T ) be a Menger PM-space and let f be a r-distance on
it. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be sequences in [0,∞)
converging to zero, and let x, y, z ∈ X and t, s > 0. Then the following hold:
(1) if fxn,y(t) ≥ 1 − αn and fxn,z(s) ≥ 1 − βn for any n ∈ N, then y = z. In

particular, if fx,y(t) = 1 and fx,z(s) = 1, then y = z;
(2) if fxn,yn(t) ≥ 1−αn and fxn,z(s) ≥ 1−βn for any n ∈ N, then Fyn,z(t+s) → 1;
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(3) if fxn,xm
(t) ≥ 1 − αn for any n,m ∈ N with m > n, then {xn} is a Cauchy

sequence;
(4) if fy,xn(t) ≥ 1− αn for any n ∈ N, then {xn} is a Cauchy sequence.

Proof. We first prove (2). Let ε > 0 be given. From the definition of r-
distance, there exists δ > 0 such that fu,v(t) ≥ 1 − δ and fu,z(s) ≥ 1 − δ imply
Fv,z(t + s) ≥ 1− ε. Choose n0 ∈ N such that αn ≤ δ and βn ≤ δ for every n ≥ n0.
Then we have, for any n ≥ n0 fxn,yn

(t) ≥ 1−αn ≥ 1−δ and fxn,z(t) ≥ 1−βn ≥ 1−δ
and hence Fyn,z(t + s) ≥ 1 − ε. This implies that {yn} converges to z. It follows
from (2) that (1) holds. Let us prove (3). Let ε > 0 be given. As in the proof of
(1), choose δ > 0 and then n0 ∈ N. Then for any n, m ≥ n0 + 1,

fxn0 ,xn
(t) ≥ 1− αn0 ≥ 1− δ and fxn0 ,xm

(s) ≥ 1− αn0 ≥ 1− δ

and hence Fxn,xm(t + s) ≥ 1− ε. This implies that {xn} is a Cauchy sequence.

3. Main results

We introduce first the following concept.

Definition 4.1. Suppose (X,≤) is a partially ordered set and f : X → X be
a self mapping on X. We say f is inverse increasing if for x, y ∈ X,

f(x) ≤ f(y) implies x ≤ y. (4.1)

In the proof of our first theorem we use the following two lemmas:

Lemma 4.2. Let (X, F, T ) be a PM space with T of Hadžić-type and f be a
r-distance on (X,F , T ). Let {xn} be a sequence in X such that, for some k ∈ (0, 1),

fxn,xn+1(kt) ≥ fxn−1,xn(t) (n ≥ 1, t > 0).

Then {xn} is a Cauchy sequence.

Proof. The proof is similar to Lemma 2.1 of [7], see also [3].

Theorem 4.3. Let (X,≤) be a partially ordered set and (X,F , T ) be a com-
plete PM-space under a t-norm TM of Hadžić-type. Let f be an r-distance on
(X,F , T ). Let A : X → X be a non-decreasing self-mapping on X and there exists
k ∈ (0, 1) such that

fA(x),A2(x)(kt) ≥ fx,A(x)(t), for all x ≤ Ax. (4.2)

Suppose also that:
(i) for every x ∈ X with x ≤ Ax

sup{T (fx,y(t), fx,Ax(t))} < 1, for every y ∈ X with y 6= Ay. (4.3)

(ii) there exists x0 ∈ X such that x0 ≤ Ax0.
Then A has a fixed point in X.
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Proof. If Ax0 = x0, then the proof is finished. Suppose that Ax0 6= x0. Since
x0 ≤ Ax0 and A is non-decreasing, we obtain

x0 ≤ Ax0 ≤ A2x0 ≤ · · · ≤ An+1x0 ≤ · · · .

Hence, for each n ∈ N we have

fAnx0,An+1x0(t) ≥ fx0,Ax0

(
t

kn

)
. (4.4)

Now, since kn

1−k ≥
∑m

i=n ki, then for m ≥ n ∈ N, we successively have

fAnx0,Amx0

(
kn

1− k
t

)
≥ fAnx0,Amx0

(
m∑

i=n

kit

)

≥ T (fx0,Ax0 (knt) , . . . , fx0,Ax0 (kmt) ≥ fx0,Ax0 (t) ,

and therefore,

fAnx0,Amx0 (t) ≥ fx0,Ax0

(
1− k

kn
t

)
.

By Lemma 4.2, we conclude that {Anx0} is Cauchy sequence in (X,F , T ). Since
(X,F , T ) is a complete PM-space, there exists z ∈ X such that limn→∞Anx0 = z.
Let n ∈ N be an arbitrary but fixed. Then since {Anx0} converges to z in (X,F , T )
and fAnx0,· is continuous, we have

fAnx0,z(t) ≥ lim
m→∞

fAnx0,Amx0(t) ≥ fx0,Ax0

(
1− k

kn
t

)
.

Assume that z 6= Az. Since Anx0 ≤ An+1x0, by (4.3), we have

1 > sup{T (fAnx0,z(t), fAnx0,An+1x0(t))}

≥ sup
{

T (fx0,Ax0

(
1− k

kn
t

)
, fx0,Ax0

(
t

kn

)
)
}

= 1.

This is a contradiction. Therefore, we have z = Az.
Another result of this type is the following

Theorem 4.4. Let (X,≤) be a partially ordered set and (X,F , T ) be a com-
plete PM-space under a t-norm TM of Hadžić-type. Let f be a r-distance on
(X,F , T ). Let A : X → X be a non-decreasing mapping and there exists k ∈ (0, 1)
such that (4.2) holds. Assume that one of the following assertions holds:

(i) for every x ∈ X with x ≤ Ax

sup{T (fx,y(t), fx,Ax(t))} < 1, for every y ∈ X with y 6= Ay and t > 0. (4.5)

(ii) if both {xn} and {Axn} converge to y, then y = Ay;
(iii) A is continuous.
If there exists x0 ∈ X with x0 ≤ Ax0, then A has a fixed point in X.
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Proof. The case (i), was proved in Theorem 4.4.
Let us prove first that (ii)=⇒(i). Assume that there exists y ∈ X with y 6= Ay

such that
sup{T (fx,y(t), fx,Ax(t))} = 1.

Then there exists {zn} ∈ X such that zn ≤ Azn and

lim
n→∞

T (fzn,y(t), fzn,Azn
(t)) = 1.

Then fzn,y −→ 1 and fzn,Azn
−→ 1. By Lemma 3.7, we have that Azn −→ y. We

also have

fzn,A2zn
(t) ≥ T

(
fzn,Azn

(
t

2

)
, fAzn,A2zn

(
t

2

))

≥ fzn,Azn

(
t

2k

)
−→ 1

Again by Lemma 3.7, we get A2zn −→ y. Put xn = Azn. Then both {xn} and
{Axn} converges to y. Thus, by (ii) we have y = Ay. Thus (ii)=⇒(i) holds.

Now, we show that (iii)=⇒(ii). Let A be continuous. Further assume that
{xn} and {Axn} converges to y. Then we have

Ay = A( lim
n→∞

xn) = lim
n→∞

xn = y.

5. Common fixed point theorem for commuting mappings

The next example shows that if the mapping h : X → X is continuous with
respect to (X,F , T ) and g : X → X satisfies the condition

fg(x),g(y)(t) ≥ fh(x),h(y)

(
t

k

)
, for all x, y ∈ X, t > 0 and some k ∈ (0, 1),

then, in general, g may be not continuous in (X,F , T ).
Example 5.1. Let X := (R, | · |) be a normed linear space. Consider Example

3.5 with r-distance defined by

fx,y(t) = µy(t) =
t

t + |y| for every x, y ∈ R and t ≥ 0.

Consider the functions h and g defined by h(x) = 4 and

g(x) =
{

1, if x ∈ Q,

0, if x ∈ R \Q.

Then

fg(x),g(y)(t) =
t

t + |g(y)| ≥
t

t + 1
≥ t

t + 4
3

=
t

t + |h(y)| = fh(x),h(y)

(
t
1
3

)
.
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Definition 5.2. Let (X,≤) be a partially ordered set and g, h : X → X. By
definition, we say that g is h-non-decreasing if for x, y ∈ X,

h(x) ≤ h(y) implies g(x) ≤ g(y). (5.1)

Theorem 5.3. Let (X,≤) be a partially ordered set and (X,F , T ) be a com-
plete PM-space under a t-norm TM of Hadžić-type. Let f be a r-distance on
(X,F , T ). Let h, g : X −→ X be mappings that satisfy the following conditions:

(a) g(X) ⊆ h(X);
(b) g is h-non-decreasing and h is inverse increasing;
(c) g commutes with h and h, g are continuous in (X,F , T );
(d) fg(x),g(y)(t) ≥ fh(x),h(y)

(
t
k

)
for all x, y ∈ X with x ≤ y, t > 0 and some

0 < k < 1.
(e) there exists x0 ∈ X such that:

(i) h(x0) ≤ g(x0) and (ii) h(x0) ≤ h(g(x0)).
Then h and g have a common fixed point u ∈ X. Moreover, if g(v) = g2(v)

for all v ∈ X, then fu,u = 1.

Proof. We claim that for every h(x) ≤ g(x) and t > 0,

sup{T (fh(x),g(x)(t), fh(x),z(t), fg(x),z(t), fg(x),g(g(x)(t)))} < 1

for every z ∈ X with g(z) 6= g(g(z)). For the moment suppose the claim is true. Let
x0 ∈ X with h(x0) ≤ g(x0). By (a) we can find x1 ∈ X such that h(x1) = g(x0).
By induction, we can define a sequence {xn}n ∈ X such that

h(xn) = g(xn−1). (5.2)

Since h(x0) ≤ g(x0) and h(x1) = g(x0), we have

h(x0) ≤ h(x1). (5.3)

Then from (b), g(x0) ≤ g(x1), that means, by (5.2), that h(x1) ≤ h(x2). Again by
(b) we get g(x1) ≤ g(x2), that is, h(x2) ≤ h(x3). By this procedure, we obtain

g(x0) ≤ g(x1) ≤ g(x2) ≤ g(x3) ≤ · · · ≤ g(xn) ≤ g(xn+1) ≤ · · · . (5.4)

Hence from (5.2) and (5.4) we have h(xn−1) ≤ h(xn) and by (4.1) we have xn−1 ≤
xn. By induction we get that

fh(xn),h(xn+1)(t) = fg(xn−1),g(xn)(t) ≥ fh(xn−1),h(xn)

(
t

k

)
≥ · · · ≥ fh(x0),h(x1)

(
t

kn

)

for n = 1, 2, · · · . Also, since kn

1−k ≥
∑m

i=n ki, then for m ≥ n ∈ N, with m > n,

fh(xn),h(xm)

(
kn

1− k
t

)
≥ fh(xn),h(xm)

(
m∑

i=n

kit

)

≥ T (fh(xm−1,h(xm)(kmt), · · · fh(xn),h(xn+1)(k
nt))

≥ fh(x0),h(x1)(t),
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which implies that,

fh(xn),h(xm)(t) ≥ fh(x0),h(x1)

(
1− k

kn
t

)
.

Thus, by Lemma 3.7, we obtain that {h(xn)} is a Cauchy sequence in (X,F , T ).
Since (X,F , T ) is complete, there exists y ∈ X such that limn→∞ h(xn) = y.
As a result the sequence g(xn−1) = h(xn) tends to y as n → +∞ and hence
{g(h(xn))}n converges to g(y) as n → +∞. However, g(h(xn)) = h(g(xn)), by the
commutativity of h and g, implies that h(g(xn)) converges to h(y) as n → +∞.
Because limit is unique, we get h(y) = g(y) and, thus, h(h(y)) = h(g(y)). On the
other hand, by lower continuity of fx,· we have, for each n ∈ N, that

fh(xn),y(t) ≥ lim
m→∞

fh(xn),h(xm)(t) ≥ fh(x0),h(x1)

(
1− k

kn
t

)
,

fg(xn),y(t) ≥ lim
m→∞

fh(xn+1),h(xm)(t) ≥ fh(x0),h(x1)

(
1− k

kn+1
t

)
.

Notice that, by (5.1), (5.2) and (5.3) we obtain h(x0) ≤ h(h(x1)) and thus, by (5.1),
we get g(x0) ≤ g(h(x1)). Then

h(x1) ≤ g(h(x1)) = h(g(x1)) = h(h(x2)).

By (5.1) we get that g(x1) ≤ g(h(x2)) and thus h(x2) ≤ h(g(x2)). Continuing this
process we get

h(xn) ≤ h(g(xn)), n = 0, 1, 2, 3, . . . ,

and by (4.1) we get xn ≤ g(xn), n = 0, 1, 2, . . .

Using now the condition (d), we have

fg(xn),g(g(xn))(t) ≥ fh(xn),h(g(xn)

(
t

k

)
= fg(xn−1),g(g(xn−1))

(
t

k

)

≥ fh(xn−1),h(g(xn−1))

(
t

k2

)
= fg(xn−2),g(g(xn−2))

(
t

k2

)

≥ · · · ≥ fh(x1),g(h(x1))

(
t

kn

)
.

We will show that g(y) = g(g(y)). Suppose, by contradiction, that g(y) 6= g(g(y))).
Then, for every t > 0 we have:

1 > sup{T (fh(x),g(x)(t), fh(x),y(t), fg(x),y(t), fg(x),g(g(x))(t) : x ∈ X}
≥ sup{T (fh(xn),g(xn)(t), fh(xn),y(t), fg(xn),y(t), fg(xn),g(g(xn))(t)) : n ∈ N}
= sup{T (fh(xn),h(xn+1)(t), fh(xn),y(t), fg(xn),y(t), fg(xn),g(g(xn))(t) : n ∈ N}

≥ sup
n

{
T

(
fh(x0),h(x1)

(
t

kn

)
, fh(x0),h(x1)

(
t

kn

)
, fh(x0),h(x1)

(
t

kn+1

)
,

fh(x1),g(h(x1))

(
t

kn

) )
: n ∈ N

}
= 1.
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This is a contradiction. Therefore g(y) = g(g(y)). Thus, g(y) = g(g(y)) = h(g(y)).
Hence u := g(y) is a common fixed point of h and g.

Furthermore, since g(v) = g(g(v)) for all v ∈ X, we have

fg(y),g(y)(t) = fg(g(y)),g(g(y))(t) ≥ fh(g(y)),h(g(y))

(
t

k

)
= fg(y),g(y)

(
t

k

)
,

which implies that, fg(y),g(y) = 1.
Now it remains to prove the initial claim. Assume that there exists y ∈ X

with g(y) 6= g(g(y)) and

sup{T (fh(x),g(x)(t), fh(x),y(t), fg(x),y(t), fg(x),g(g(x))(t)) : x ∈ X} = 1.

Then there exists {xn} such that

lim
n→∞

{T (fh(xn),g(xn)(t), fh(xn),y(t), fg(xn),y(t), fg(xn),g(g(xn))(t))} = 1.

Since fh(xn),g(xn)(t) −→ 1 and fh(xn),y(t) −→ 1, by Lemma 3.7, we have

lim
n→∞

g(xn) = y. (5.5)

Also, since fg(xn),y(t) −→ 1 and fg(xn),g(g(xn))(t) −→ 1, by Lemma 3.7, we have

lim
n→∞

g(g(xn)) = y. (5.6)

By (5.5), (5.6) and the continuity of g we have

g(y) = g(lim
n

g(xn)) = lim
n

g(g(xn)) = y.

Therefore, g(y) = g(g(y)), which is a contradiction. Hence, if g(y) 6= g(g(y)), then
for t > 0 we have

sup{T (fh(x),g(x)(t), fh(x),y(t), fg(x),y(t), fg(x),g(g(x))(t)) : x ∈ X} > 0.
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