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ON SLANT SUBMANIFOLDS OF N(k)-CONTACT
METRIC MANIFOLDS

Avik De

Abstract. The object of the present paper is to study slant submanifolds of an N(k)-contact
metric manifold. We study the parallelism of Q, and find out necessary and sufficient conditions
for the existence of proper slant submanifolds of N(k)-contact metric manifolds.

1. Introduction

Slant submanifolds of complex and contact manifolds is an active area of re-
search since slant immersions in complex geometry were defined by B.Y. Chen [6]
as a natural generalization of both holomorphic immersions and totally real im-
mersions. Lotta [10] has introduced the notion of slant immersion of a Riemannian
manifold into an almost contact metric manifold and he has proved some properties
of such immersions. He has also studied [9] the intrinsic geometry of 3-dimensional
non-anti-invariant slant submanifolds of K-contact manifolds. Recently, Cabreri-
zo et al. [4] studied slant submanifolds of Sasakian manifolds and considered the
parallelism of Q. Khan et al. [7, 8] studied slant submanifolds of LP-contact and
Lorentzian β-Kenmotsu manifolds. Shukla [11] studied slant immersions into quasi-
Sasakian manifolds.

Motivated by these works, we have considered proper slant submanifolds of
N(k)-contact metric manifolds. Cabrerizo et al. [4] cited several examples of slant
submanifolds of a Sasakian manifold. For k = 1, an N(k)-contact metric manifold
reduces to a Sasakian manifold. So each example of [4] will be an example of
slant submanifolds of an N(k)-contact metric manifold. In the present paper We
have found necessary and sufficient conditions for the existence of proper slant
submanifolds of an N(k)-contact metric manifold with parallel endomorphism Q,
and also characterised the same using Blair’s result [1].
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2. Preliminaries

An 2n + 1-dimensional manifold M̄2n+1 is said to admit an almost contact
structure if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η
satisfying

φ2X = −X + η(X)ξ, η(ξ) = 1,

φξ = 0, η(φX) = 0.

An almost contact metric structure is said to be normal if the induced almost
complex structure J on the product manifold M̄2n+1 × R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)

is integrable, where X is tangent to M̄ , t is the coordinate of R and f is a smooth
function on M̄2n+1 × R. Let g be the compatible Riemannian metric with almost
contact structure (φ, ξ, η), that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (1)

Then M̄2n+1 becomes an almost contact metric manifold equipped with an almost
contact metric structure (φ, ξ, η, g). From (1) it can be easily seen that

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X), (2)

for any vector fields X, Y on the manifold. An almost contact metric structure
becomes a contact metric structure if g(X, φY ) = dη(X,Y ), for all vector fields
X, Y tangent to M̄ . It is well known that the tangent sphere bundle of a flat
Riemannian manifold admits a contact metric structure satisfying R(X, Y )ξ = 0,
where R is the curvature tensor [1]. On the other hand, on a manifold M̄2n+1

equipped with a Sasakian structure (φ, ξ, η, g), one has

R(X,Y )ξ = η(Y )X − η(X)Y, X, Y ∈ TM.

As a generalization of both R(X, Y )ξ = 0 and the Sasakian case, Blair, Koufo-
giorgos and Papantoniou [3] introduced the case of contact metric manifolds with
contact metric structure (φ, ξ, η, g) which satisfy

R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )

for all X, Y ∈ TM .

The (k, µ)-nullity condition on a contact metric manifold is defined by [3].

N(k, µ) = {W ∈ TM̄ |R(X, Y )W = (kI + µh)(g(Y, W )X − g(X, W )Y )},
for all X, Y ∈ TM̄ , where (k, µ) ∈ R2. TM̄ denotes the tangent space of the
manifold M̄ . A contact metric manifold with ξ ∈ N(k, µ) is called a (k, µ)-contact
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metric manifold. If µ = 0, the (k, µ)-nullity distribution reduces to k-nullity distri-
bution [12]. The k-nullity distribution N(k) of a Riemannian manifold is defined
by [12]

N(k) = {Z ∈ TM̄ |R(X,Y )Z = k[g(Y, Z)X − g(X, Z)Y ]},
k being a constant. If the characteristic vector field ξ ∈ N(k), then we call the
contact metric manifold an N(k)-contact metric manifold.

Let f : (M, g) → (M̄, g) be an isometric immersion. We denote by ∇ and ∇ the
Levi-Civita connections of M and M̄ respectively, and by T⊥(M) its normal bundle.
Then for vector fields X, Y which are tangent to M , the second fundamental form
B is given by the formula

B(X, Y ) = ∇XY −∇XY. (3)

Furthermore, for N ∈ T⊥M ,

ANX = ∇⊥XN −∇XN,

where ∇⊥ denotes the normal connection of M . The second fundamental form B
and AN are related by g(B(X, Y ), N) = g(ANX, Y ).

However, for an N(k)-contact metric manifold Mn of dimension n we have [3]

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX), (4)

where h = 1
2Lξφ. We also have

hξ = 0, hφ = −φh, kerh = 〈ξ〉.
In equation (4) putting ξ in place of Y , we obtain

∇Xξ = −φX − φh(X) (5)

Now we state the following:

Lemma 2.1. [1] A contact metric manifold M2n+1 satisfying R(X, Y )ξ = 0 is
locally isometric to En+1 × Sn(4), for n > 1 and flat for n = 1.

3. Slant submanifolds

A. Lotta [10] has introduced the following notion of slant immersion in almost
contact metric manifolds. Let M be an almost contact metric manifold with struc-
ture (φ, ξ, η, g). By a slant submanifold of M , we mean an immersed submanifold
N of M such that for any x ∈ N and any X ∈ TxN linearly independent on ξ ,
the angle between φX and TxN is a constant θ ∈ [0, π

2 ], called the slant angle of N
in M and denoted by sla(N). Invariant and anti-invariant subamnifolds are slant
submanifolds with slant angle θ = 0 and θ = π

2 respectively. A slant submanifold
which is neither invariant nor anti-invariant is called a proper slant submanifold.

Lotta’s definition includes both the cases ξ ∈ TM and ξ ∈ T⊥M . He proves
the following theorem, which generalizes a well-known result of Yano and Kon [13]:
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Theorem 3.1. Let M be a submanifold of a contact metric manifold M . If ξ
is orthogonal to M , then M is anti-invariant.

Since we are interested to study proper slant submanifold, we will take ξ ∈ TM
and we write, TM = D⊕〈ξ〉, where D is the orthogonal distribution to 〈ξ〉 in TM .

In this connection a simple result can be proved as follows:

Theorem 3.2. In a proper slant submanifold of N(k)-contact metric mani-
folds, D remains invariant under h, provided TM is invariant under h.

Proof. Let X ∈ D. Then hX ∈ TM , since TM is invariant under h. Now,

g(hX, ξ) = g(X, hξ) = 0.

Hence the theorem is proved.
For any X ∈ TM , we write

φX = PX + FX, (6)

where PX is the tangential component of φX, and FX is the normal component
of φX.

Similarly for any W ∈ T⊥M we have,

φW = pW + fW,

where pW, fW are the tangential and normal components of φW , respectively. The
submanifold M is called invariant if F is the zero mapping. On the other hand, M
will be an anti-invariant submanifold if P is a zero mapping. Now, from (2) and
(6), by simple calculation we have

g(PX, Y ) = −g(X,PY ),

for any X, Y ∈ TM . So,

g(P 2X,Y ) = −g(PX, PY ) = g(X, P 2Y ).

Hence if we denote P 2 by Q, we can say, Q is a self-adjoint endomorphism from
TM to TM .

Now, let X ∈ D. Then g(PX, ξ) = −g(X, Pξ) = 0, since φξ = 0. So, PD ⊂ D.
Again, P 2D = P (PD) ⊂ PD, since PD ⊂ D. Repeating the steps we have the
following lemma:

Lemma 3.1. Let M be a proper slant submanifold of an N(k)-contact metric
manifolds M , then Pn+1D ⊂ PnD, for all positive integer n.

We define the terms ∇P,∇F,∇Q as follows:
(i) (∇XP )Y = ∇X(PY )− P (∇XY ),
(ii) (∇XF )Y = ∇⊥X(FY )− F (∇XY ),
(iii) (∇XQ)Y = ∇X(QY )−Q(∇XY ).
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In [4], Cabrerizo et al. have proved the following:

Theorem 3.3. Let M be a submanifold of an almost contact metric manifold
M such that ξ ∈ TM . Then, M is slant if and only if there exists a constant
λ ∈ [0, 1] such that:

Q = −λ{I − η ⊗ ξ}
Furthermore, in such case, if θ is the slant angle of M , then λ = cos2 θ.

We will make use of this theorem in later sections.

4. Parallelism of Q in slant submanifolds
of an N(k)-contact metric manifold

Theorem 4.1. Let M be a slant submanifold of an N(k)-contact metric man-
ifold M , then Q is parallel if and only if M is anti-invariant, provided −1 is not
an eigenvalue of h.

Proof. Let θ be the slant angle of M in M , then for any X, Y ∈ TM , we have
from Theorem 3.3,

Q(∇XY ) = cos2 θ(−∇XY + η(∇XY )ξ), (7)

and
∇XQY = − cos2 θ{∇XY − η(∇XY )ξ − g(Y,∇Xξ)ξ − η(Y )∇Xξ}, (8)

since, X(η(Y )) = η(∇XY ) + g(Y,∇Xξ).
Hence, ∇Q = 0 if and only if cos2 θ{g(Y,∇Xξ)ξ + η(Y )∇Xξ} = 0. So, either

cos θ = 0, which implies M is anti-invariant, or

g(Y,∇Xξ)ξ + η(Y )∇Xξ = 0. (9)

Also, g(∇Xξ, ξ) = −g(ξ,∇Xξ) = −g(∇Xξ, ξ). Hence, g(∇Xξ, ξ) = 0, which implies
∇Xξ ∈ D.

Now, suppose ∇Xξ 6= 0. Then (9) implies η(Y ) = 0, that is, Y ∈ D. But then
(9) implies, ∇Xξ ∈ D⊥ = 〈ξ〉, which is impossible.

Hence, ∇Xξ = 0. Using (5) and (3) we obtain ∇Xξ = −PX −PhX. So, if −1
is not an eigenvalue of h, then PX = 0. This completes the proof.

Thus we have the following:

Corollary 4.1. Let M be a proper slant submanifold of an N(k)-contact
metric manifold M , then Q is parallel if and only if ∇Xξ = 0, provided −1 is not
an eigenvalue of h.

Now, from (7), (8) and using ∇Xξ = −PX −PhX, we see that if M is a slant
submanifold of an N(k)- contact metric manifold M , then

(∇XQ)Y = cos2 θ{g(X + hX, PY )ξ − η(Y )(PX + hPX)},
for any X, Y ∈ TM , where θ denotes the slant angle of M .



202 A. De

Lemma 4.1. [10] Let M be a slant submanifold of an almost contact metric
manifold M . Denote by θ the slant angle of M . Then, at each point x of M , Q|D
has only one eigenvalue λ1 = − cos2 θ.

We prove that the converse is also true.
Let λ1(x) be the only eigenvalue of Q|D at x ∈ M . Let Y ∈ D be an unit

eigenvector associated to λ1, i.e., QY = λ1Y . Then, we have

X(λ1)Y + λ1∇XY = ∇X(QY ) = Q(∇XY ) + λg(X + hX,PY )ξ, (10)

for any X ∈ TM , since Y ∈ D. Now, since Y is a unit vector we obtain,

g(Y,∇XY ) = −g(∇XY, Y ) = −g(Y,∇XY )

and,
g(Q(∇XY ), Y ) = g(∇XY, QY ) = λ1g(∇XY, Y ) = 0.

Hence, both∇XY and Q(∇XY ) are orthogonal to Y . Hence, from (10) we conclude
that λ1 is constant on M . Now, let X ∈ TM . Then, X = X+η(X)ξ, where X ∈ D.
So,

QX = QX = λ1X = λ1(X − η(X)ξ).

Hence, by virtue of Theorem 3.3 we conclude that M is slant, and λ1 = − cos2 θ.
Thus, we obtain:
Theorem 4.2. Let M be a submanifold of an N(k)-contact metric manifold

M such that ξ ∈ TM . Then, M is slant if and only if
(i) Q|D has only one eigenvalue at each point of M .
(ii) There exists λ : M → [0, 1] such that

(∇XQ)Y = λ(g(X + hX, PY )ξ − η(Y )(PX + PhX)),

for X, Y ∈ TM and λ = cos2 θ, where θ is the slant angle of M .

Theorem 4.3. Let M be a proper slant submanifold of an N(k)-contact metric
manifold M . Q is parallel if and only if D is autoparallel.

Proof. Suppose Q is parallel. Let X, Y ∈ D. Then we have, g(∇XY, ξ) =
−g(Y,∇Xξ) = 0. which implies, ∇XY ∈ D. Hence, D is autoparallel.

Conversely, suppose D is autoparallel. So, for X, Y ∈ D,∇XY ∈ D. So,
(∇XQ)Y = ∇X(QY ) − Q(∇XY ) ∈ D, by Lemma 3.1. Since, M is slant, from
Theorem 4.2 we have

(∇XQ)Y = cos2 θ{g(X + hX,PY )ξ − η(Y )(PX + PhX)} ∈ 〈ξ〉,
since η(Y ) = 0 for all Y ∈ D. Combining, we conclude that (∇XQ)Y = 0, that is,
Q is parallel.

Theorem 4.4. In a proper slant submanifold of an N(k)-contact metric man-
ifold if the endomorphism Q is parallel, then R(X, Y )ξ = 0, for all X, Y ∈ TM .
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Proof. The proof follows directly from Corollary 4.1, since

R(X, Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ.

Thus by virtue of Lemma 2.1 we obtain the result:

Proposition 4.1. In a proper slant submanifold of an N(k)-contact metric
manifold if the endomorphism Q is parallel, then M will be locally isometric to the
Riemannian product of a flat (n + 1)-dimensional manifold and an n-dimensional
manifold of positive curvature 4, that is, En+1 × Sn(4).
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