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ON SLANT SUBMANIFOLDS OF N (k)-CONTACT
METRIC MANIFOLDS

Avik De

Abstract. The object of the present paper is to study slant submanifolds of an N (k)-contact
metric manifold. We study the parallelism of @, and find out necessary and sufficient conditions
for the existence of proper slant submanifolds of N (k)-contact metric manifolds.

1. Introduction

Slant submanifolds of complex and contact manifolds is an active area of re-
search since slant immersions in complex geometry were defined by B.Y. Chen [6]
as a natural generalization of both holomorphic immersions and totally real im-
mersions. Lotta [10] has introduced the notion of slant immersion of a Riemannian
manifold into an almost contact metric manifold and he has proved some properties
of such immersions. He has also studied [9] the intrinsic geometry of 3-dimensional
non-anti-invariant slant submanifolds of K-contact manifolds. Recently, Cabreri-
zo et al. [4] studied slant submanifolds of Sasakian manifolds and considered the
parallelism of Q. Khan et al. [7, 8] studied slant submanifolds of LP-contact and
Lorentzian #-Kenmotsu manifolds. Shukla [11] studied slant immersions into quasi-
Sasakian manifolds.

Motivated by these works, we have considered proper slant submanifolds of
N (k)-contact metric manifolds. Cabrerizo et al. [4] cited several examples of slant
submanifolds of a Sasakian manifold. For k = 1, an N(k)-contact metric manifold
reduces to a Sasakian manifold. So each example of [4] will be an example of
slant submanifolds of an N (k)-contact metric manifold. In the present paper We
have found necessary and sufficient conditions for the existence of proper slant
submanifolds of an N (k)-contact metric manifold with parallel endomorphism @,
and also characterised the same using Blair’s result [1].
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2. Preliminaries

An 2n + 1-dimensional manifold M?"+! is said to admit an almost contact
structure if it admits a tensor field ¢ of type (1,1), a vector field £ and a 1-form 7
satisfying

P°X =-X+n(X)¢ ) =1,
¢& =0, n(¢X) = 0.

An almost contact metric structure is said to. be normal if the induced almost
complex structure J on the product manifold M?"*! x R defined by

T T8 = (90X — fen(X) )

is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth
function on M?"*1 x R. Let g be the compatible Riemannian metric with almost
contact structure (¢, &, n), that is,

9(6X, 9Y) = g(X,Y) = n(X)n(Y). (1)

Then M?"*! becomes an almost contact metric manifold equipped with an almost
contact metric structure (¢,£,n,g). From (1) it can be easily seen that

for any vector fields X,Y on the manifold. An almost contact metric structure
becomes a contact metric structure if g(X,¢Y) = dn(X,Y), for all vector fields
X,Y tangent to M. It is well known that the tangent sphere bundle of a flat
Riemannian manifold admits a contact metric structure satisfying R(X,Y )¢ = 0,
where R is the curvature tensor [1]. On the other hand, on a manifold M?"+!
equipped with a Sasakian structure (¢, &, 7, g), one has

R(X,Y)E=n(Y)X —n(X)Y, X,Y eTM.

As a generalization of both R(X,Y)¢ = 0 and the Sasakian case, Blair, Koufo-
giorgos and Papantoniou [3] introduced the case of contact metric manifolds with
contact metric structure (¢, £, 7, g) which satisfy

R(X,Y)E = k(n(Y)X —n(X)Y) + p(n(Y)hX —n(X)hY)

forall X, Y € TM.
The (k, p)-nullity condition on a contact metric manifold is defined by [3].

Nk 1) = {W € TMIR(X, Y)W = (kI + ph)(g(Y, W)X — g(X,W)Y)},

for all X,V € TM, where (k,p) € R2. TM denotes the tangent space of the
manifold M. A contact metric manifold with £ € N(k, ) is called a (k, u)-contact
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metric manifold. If © = 0, the (k, u)-nullity distribution reduces to k-nullity distri-
bution [12]. The k-nullity distribution N (k) of a Riemannian manifold is defined
by [12]

N(k) ={Z € TM|R(X,Y)Z = k[g(Y, Z)X — g(X, 2)Y]},
k being a constant. If the characteristic vector field £ € N(k), then we call the
contact metric manifold an N (k)-contact metric manifold.

Let f: (M, g) — (M, g) be an isometric immersion. We denote by V and V the
Levi-Civita connections of M and M respectively, and by T (M) its normal bundle.
Then for vector fields X,Y which are tangent to M, the second fundamental form
B is given by the formula

B(X,Y)=VxY — VxY. (3)
Furthermore, for N € T+ M,
AnyX =VxN —VxN,
where V+ denotes the normal connection of M. The second fundamental form B
and Ay are related by g(B(X,Y),N) = g(AnX,Y).
However, for an N (k)-contact metric manifold M™ of dimension n we have [3]
(Vx@)Y =g(X + hX,Y)E —n(Y)(X + hX), (4)
where h = %£§¢. We also have
h& =0, ho=—¢h, kerh= ().
In equation (4) putting £ in place of Y, we obtain
Vx§=—¢X — ¢oh(X) (5)
Now we state the following:

LEMMA 2.1. [1] A contact metric manifold M*" ' satisfying R(X,Y)¢ =0 is
locally isometric to E"*1 x S™(4), for n > 1 and flat for n = 1.

3. Slant submanifolds

A. Lotta [10] has introduced the following notion of slant immersion in almost
contact metric manifolds. Let M be an almost contact metric manifold with struc-
ture (¢,&,1m,9). By a slant submanifold of M, we mean an immersed submanifold
N of M such that for any € N and any X € T, N linearly independent on ¢
the angle between ¢X and T, N is a constant 6 € [0, 7], called the slant angle of N
in M and denoted by sla(NN). Invariant and anti-invariant subamnifolds are slant

submanifolds with slant angle § = 0 and 6 = 7 respectively. A slant submanifold

which is neither invariant nor anti-invariant is called a proper slant submanifold.

Lotta’s definition includes both the cases £ € TM and ¢ € T+M. He proves
the following theorem, which generalizes a well-known result of Yano and Kon [13]:
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THEOREM 3.1. Let M be a submanifold of a contact metric manifold M. If &
is orthogonal to M, then M 1is anti-invariant.

Since we are interested to study proper slant submanifold, we will take & € T'M
and we write, TM = D @ (£), where D is the orthogonal distribution to (£) in T'M.

In this connection a simple result can be proved as follows:

THEOREM 3.2. In a proper slant submanifold of N (k)-contact metric mani-
folds, D remains invariant under h, provided T M is invariant under h.

Proof. Let X € D. Then hX € TM, since TM is invariant under h. Now,
9(hX, &) = g(X,hg) = 0.

Hence the theorem is proved. m
For any X € TM, we write

¢X = PX + FX, (6)
where PX is the tangential component of ¢ X, and FX is the normal component
of p.X.

Similarly for any W € T+ M we have,

OW =pW + fW,

where pW, fW are the tangential and normal components of ¢W, respectively. The
submanifold M is called invariant if F' is the zero mapping. On the other hand, M
will be an anti-invariant submanifold if P is a zero mapping. Now, from (2) and
(6), by simple calculation we have

g(PX,Y)=—g(X,PY),
for any X, Y € TM. So,
g(P?*X,Y) = —g(PX, PY) = g(X, P*Y).
Hence if we denote P2 by @, we can say, @ is a self-adjoint endomorphism from

TM toTM.

Now, let X € D. Then g(PX,§) = —g(X, P£) =0, since ¢§ = 0. So, PD C D.
Again, P2D = P(PD) C PD, since PD C D. Repeating the steps we have the
following lemma:

LEMMA 3.1. Let M be a proper slant submanifold of an N (k)-contact metric
manifolds M, then P"*1D C P"D, for all positive integer n.

We define the terms VP, VF,VQ as follows:
(i) (VxP)Y =Vx(PY) - P(VxY),
(il) (VxF)Y = VL(FY) - F(VxY),
(i) (VxQ)Y = Vx(QY) — Q(VxY).
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In [4], Cabrerizo et al. have proved the following:

~ THEOREM 3.3. Let M be a submanifold of an almost contact metric manifold
M such that € € TM. Then, M is slant if and only if there exists a constant
A € [0,1] such that:

Q=-MI-n®

Furthermore, in such case, if 8 is the slant angle of M, then A = cos? 6.

We will make use of this theorem in later sections.

4. Parallelism of @ in slant submanifolds
of an N (k)-contact metric manifold

THEOREM 4.1. Let M be a slant submanifold of an N (k)-contact metric man-
ifold M , then @Q is parallel if and only if M is anti-invariant, provided —1 is not
an eigenvalue of h.

Proof. Let 0 be the slant angle of M in M, then for any X,Y € TM, we have
from Theorem 3.3,

Q(VxY) = cos? 0(=VxY +1(VxY)§), (7)
and
VxQY = —cos’ {VxY = n(VxY)E = g(Y, V&) —n(Y)Vxé}, (8)
since, X(n(Y)) = n(VxY) +g(Y, Vx¢).
Hence, VQ = 0 if and only if cos? 8{g(Y, Vx&)¢ +n(Y)VxE&} = 0. So, either
cosf = 0, which implies M is anti-invariant, or
g(Y,VxE+n(Y)VxE =0. (9)
Also, g(Vx¢&,€) = —g(§, Vx§) = —g(Vx¢&,§). Hence, g(Vx§, §) = 0, which implies
VxéeD.
Now, suppose Vx& # 0. Then (9) implies n(Y") = 0, that is, Y € D. But then
(9) implies, Vx& € D+ = (¢), which is impossible.
Hence, Vx& = 0. Using (5) and (3) we obtain Vx¢ = —PX — PhX. So, if —1
is not an eigenvalue of h, then PX = 0. This completes the proof. m

Thus we have the following:

COROLLARY 4.1. Let M be a proper slant submanifold of an N (k)-contact
metric manifold M, then Q is parallel if and only if Vx& = 0, provided —1 is not
an eigenvalue of h.

Now, from (7), (8) and using Vx§ = —PX — PhX, we see that if M is a slant
submanifold of an N (k)- contact metric manifold M, then

(VxQ)Y = cos? 0{g(X + hX,PY)¢ — n(Y)(PX + hPX)},
for any X,Y € T'M, where 6 denotes the slant angle of M.
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LEMMA 4.1. [10] Let M be a slant submanifold of an almost contact metric
manifold M. Denote by 0 the slant angle of M. Then, at each point x of M, Q|p
has only one eigenvalue A\; = — cos? 0.

We prove that the converse is also true.

Let Ai(x) be the only eigenvalue of Q|p at x € M. Let Y € D be an unit
eigenvector associated to A1, i.e., QY = \1Y. Then, we have

XY +MVxY =Vx(QY)=Q(VxY)+ (X + hX, PY)E, (10)
for any X € TM, since Y € D. Now, since Y is a unit vector we obtain,
g(Y,VxY) = —g(VxY,Y) = —g(¥,VxY)
and,
9(Q(VxY),Y) =g(VxY,QY) = \g(VxY,Y) = 0.
Hence, both VxY and Q(VxY') are orthogonal to Y. Hence, from (10) we conclude
that \; is constant on M. Now, let X € TM. Then, X = X +n(X)¢, where X € D.
So,
QX = QX =M X = M(X —n(X)).

Hence, by virtue of Theorem 3.3 we conclude that M is slant, and A\; = — cos? 6.

Thus, we obtain:

THEOREM 4.2. Let M be a submanifold of an N (k)-contact metric manifold
M such that € € TM. Then, M is slant if and only if

(i) Q|p has only one eigenvalue at each point of M.
(ii) There exists A : M — [0,1] such that

(VxQ)Y = A(g(X +hX, PY)E — (Y)(PX + PhX)),
for X,Y € TM and \ = cos? 0, where 0 is the slant angle of M.

THEOREM 4.3. Let M be a proper slant submanifold of an N (k)-contact metric
manifold M. Q is parallel if and only if D is autoparallel.

Proof. Suppose @ is parallel. Let X,Y € D. Then we have, g(VxY,§) =
—g(Y,Vx&) = 0. which implies, VxY € D. Hence, D is autoparallel.

Conversely, suppose D is autoparallel. So, for X, Y € D, VxY € D. So,
(VxQ)Y = Vx(QY) — Q(VxY) € D, by Lemma 3.1. Since, M is slant, from
Theorem 4.2 we have

(VxQ)Y = cos? 0{g(X + hX,PY)¢ —n(Y)(PX + PhX)} € (¢),

since n(Y) = 0 for all Y € D. Combining, we conclude that (VxQ)Y = 0, that is,
Q is parallel. m

THEOREM 4.4. In a proper slant submanifold of an N (k)-contact metric man-
ifold if the endomorphism Q is parallel, then R(X,Y )¢ =0, for all X, Y € TM.
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Proof. The proof follows directly from Corollary 4.1, since
R(X,Y){ =VxVy{—VyVx{—Vixy){ =
Thus by virtue of Lemma 2.1 we obtain the result:

PROPOSITION 4.1. In a proper slant submanifold of an N (k)-contact metric

manifold if the endomorphism Q is parallel, then M will be locally isometric to the
Riemannian product of a flat (n + 1)-dimensional manifold and an n-dimensional
manifold of positive curvature 4, that is, E"1 x S™(4).
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