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SIGNED TOTAL DISTANCE k-DOMATIC NUMBERS OF GRAPHS

S. M. Sheikholeslami and L. Volkmann

Abstract. In this paper we initiate the study of signed total distance k-domatic numbers
in graphs and we present its sharp upper bounds.

1. Introduction

In this paper, k is a positive integer, and G is a finite simple graph without
isolated vertices and with vertex set V = V(G) and edge set E = E(G). For a
vertex v € V(G), the open k-neighborhood Nj ¢(v) is the set {u € V(G) | u #
v and d(u,v) < k}. The open k-neighborhood Ny c(S) of a set S C V is the set
Uves Nr,g(v). The k-degree of a vertex v is defined as degy, (v) = [Ng,g(v)|. The
minimum and maximum k-degree of a graph G are denoted by Jx(G) and Ag(G),
respectively. If §x(G) = Ak(G), then the graph G is called distance-k-regular. The
k-th power G* of a graph G is the graph with vertex set V(G) where two different
vertices u and v are adjacent if and only if the distance d(u,v) is at most k in G.
Now we observe that Nj g(v) = Ny gr(v) = Ngr(v), degy o(v) = degy g (v) =
degen (v), 6% (G) = 01(GF) = §(G*) and AR (G) = A(G*) = A(G*). If k =1, then
we also write degg(v), Na(v), 0(GQ) for degy ¢(v), N1,c(v), 61(G) etc. Consult [7]
for the notation and terminology which are not defined here.

For a real-valued function f : V(G) — R, the weight of f is w(f) =
Yowey f(v). For S C V, we define f(S) = > cgf(v). So w(f) = f(V).
A signed total distance k-dominating function (STDKD function) is a function
[ V(G) — {=1,1} satisfying }_,cn, ;) f(u) = 1 for every v € V(G). The
minimum of the values of ZvEV(G) f(v) taken over all signed total distance k-
dominating functions f is called the signed total distance k-domination number
and is denoted by VE,S(G) Then the function assigning +1 to every vertex of G is
a STDkD function, called the function e, of weight n. Thus vfw(G) < n for every
graph of order n. Moreover, the weight of every STDkD function different from e
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is at most n — 2 and more generally, v}, [(G) = n (mod 2). Hence v} ((G) = n if
and only if € is the unique STDkD function of G. In the special case when k = 1,
Vi.+(G) is the signed total domination number v%(G) investigated in [8] and has
been studied by several authors (see for example [2]). The signed total distance
2-domination number of graphs was introduced by Zelinka [9]. By these definitions,
we easily obtain
1 (G) = 7(G). (1)
A set {f1, fa,..., fa} of signed total distance k-dominating functions on G
with the property that Zle fi(v) <1 for each v € V(G), is called a signed total
distance k-dominating family on G. The maximum number of functions in a signed
total distance k-dominating family on G is the signed total distance k-domatic
number of G, denoted by di, s(G). The signed total distance k-domatic number is
well-defined and dj, ,(G) > 1 for all graphs G, since the set consisting of any one
STDKD function, for instance the function e, forms a STDkD family of G. A dfm o
family of a graph G is a STDkD family containing dfm(G) STDkD functions. The
signed total distance 1-domatic number dﬁ’S(G) is the usual signed total domatic
number d!(G) which was introduced by Henning in [3] and has been studied by
several authors (see for example [5]). Obviously,

d (G) = di(G"). (2)

OBSERVATION 1. Let G be a graph of order n without isolated vertices. If
V1..s(G) = n, then € is the unique STDkD function of G and so dj, (G) = 1.

We first study basic properties and sharp upper bounds for the signed total
distance k-domatic number of a graph. Some of them generalize the result obtained
for the signed total domatic number.

In this paper we make use of the following results.

PROPOSITION A. Let G be a graph of order n and minimum degree 6(G) > 1.
Then v4(G) = n if and only if for each v € V(G), there exists a vertex u € Ng(v)
such that dege(u) =1 or dege(u) = 2.

Proof. Assume that y4(G) = n and there exists a vertex v every neighbor of
which has degree at least 3. Then the function f that assigns to v the value —1 and
to all other vertices the value 1 is a signed total dominating function of G. This
leads to the contradiction v.(G) < n — 2. Hence at least one neighbor of v is of
degree 1 or 2. On the other hand, if every vertex of v has a neighbor of degree 1 or
2, then e is the unique signed total dominating function of G, and so v{(G) =n. m

The special case of Proposition A that G is a tree can be found in [2], the proof
is almost the same.

PROPOSITION B. [3] The signed total domatic number d%(G) of a graph G,
without isolated vertex, is an odd integer.

PrOPOSITION C. [3] If G is a graph without isolated vertices, then 1 < d%(G) <
I(G).
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PROPOSITION D. [4, 6] Let G be a graph with §(G) > 1, and let v be a vertex
of even degree deg(v) = 2t with an integer t > 1. Then d'(G) < t when t is odd
and d}(G) <t —1 when t is even.

PROPOSITION E. [3] Let k > 1 be an integer, and let K,, be the complete graph
of order n. For n > 2, we have

3 ifn=1 (mod 2)
ket =t ={ 5 ®
otherwise.
PRrROPOSITION F. [3] If K,, is the complete graph of order n > 2, then
n+1 n n . :
—[2]1+4+|2] ifnisodd,
2 (K,) = { %5~ J;J Lg,QJ i i )
L [2E2] 4 | 2£2] if nis even.

2

Since Ni ki, (v) = Nk, (v) for each vertex v € V(K,) and each positive in-
teger k, each signed total dominating function of K, is a signed total distance
k-dominating function of K, and vice versa. Using Proposition F, we obtain

df, ((Ky) = di(K,) = { |25 = T3]+ (3] ifnis odd,

3 3
2 [2£2] 4 | 2E2 ] if p is even.
More generally, the following result is valid.

OBSERVATION 2. Let & > 1 be an integer, and let G be a graph of order n
without isolated vertices. If diam (G) < k, then 7} (G) = 75(K,) and dj, (G) =

d(Kp).

The next result is immediate by Observation 2, Propositions E and F.

COROLLARY 3. If k > 2 is an integer, and G is a graph of order n with
diam (G) = 2 and 6(G) > 1, then

: 3 ifnisodd
’Yk,s(G) = . .
2 if n is even,
and . ) ) | |
d. (G) = %5~ = [531+ 5] ifnisodd,
S (2427 4 | 22| if n is even
2 4 4 .

COROLLARY 4. Let k > 2 be an mteger and let G be a graph of order n
with §(G) > 1. If diam (G) # 3, then v; (G) = vi(K,) and dj, (G) = di(K,) or
@

Vs (G) = 75 (Kn) and di, (G) = d{(Kn).

Proof. 1f diam (G) < 2, then it follows from Observation 2 that v} (G) =
Vi(Ky) and df, ((G) = di(Ky,). If diam (G) > 3, then the hypothesis diam (G) # 3
implies that diam (G) > 4. Now, according to a result of Bondy and Murty [1,
page 14], we deduce that diam (G) < 2. Applying again Observation 2, we obtain
V.s(G) = 7i(Ky) and df, (G) = di(K,). m
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COROLLARY 5. If k > 3 is an integer and G a graph of order n with 6(G) > 1,
then 7; ((G) = 7i(Ky) and dj (G) = di(Ky) or v ((G) = 7i(Ky) and dj, (G) =
dy(Ky).

PROPOSITION 6. Let k > 1 be an integer, and let G be a graph of order n and
minimum degree 6(G) > 1.

If k =1, then 'y,i,s(G) = n if and only if for each v € V(QG), there exists a
verter u € Ng(v) such that degg(u) =1 or degq(u) = 2.

If k > 2, then 7};5(6’) = n if and only if all components of G are of order 2
or 3.

Proof. In the case k = 1, Proposition A implies the desired result.
Assume now that k > 2. If all components of G are of order 2 or 3, then it is
easy to see that e is the unique STDkD function of G' and thus 7} ((G) = n.

Conversely, assume that v;, (G) = n. Suppose to the contrary that G has
a component Gy of order n(G;) > 4. If diam(G;) > 3, then assume that
T1To ... T, IS a longest path in Gp. It is straightforward to verify that the func-
tion f : V(G) — {—1,1} defined by f(z1) = —1 and f(x) = 1 otherwise is
a signed total distance k-dominating function of G which is a contradiction. If
diam (G1) < 2, then Proposition E, Observation 2 and Corollary 3 show that
Y.s(G1) <3 < 4 < n(Gy) and consequently 7j ((G) < n. This contradiction
completes the proof. m

2. Basic properties of the signed total distance k-domatic number

In this section we present basic properties of d}; s(G) and sharp bounds on the
signed total distance k-domatic number of a graph.

PROPOSITION 7. Let G be a graph with 6(G) > 1. The signed total distance
k-domatic number of G is an odd integer.

Proof. According to the identity (2), we have dj, (G) = d.(G¥). In view of
Proposition B, d(G*) is odd and thus dj, ,(G) is odd, and the proof is complete. m

THEOREM 8. If G is a graph with §(G) > 1, then
1< dL,(G) < 6(C).
Moreover, if d}i’s(G) = 0k(G), then for each function of any d?s—family
{f1, f2,-+, fa} and for all vertices v of minimum k-degree 0 (G), 3, c . o) filw)
=1 and Z?Zl filu) =1 for every u € Nj c(v).
Proof. Let {f1, f2,...,fa} be a STDkD family of G such that d = dj ,(G),
and let v be a vertex of minimum k-degree 0;(G). Then [Ny ¢(v)| = 6x(G) and

d d
1<d= ; 1< ;Zuem,c(v) fi(u)

= X ifi(u)s S 1=30(G).

uENk,G(’U) 1=1 uENk’G(’U)
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If &t (G) = 0x(G), then the two inequalities occurring in the proof become equal-
ities, which gives the two properties given in the statement. m

THEOREM 9. Let k > 1 be an integer, and let G be a graph with 6(G) > 1. If
G contains a vertex v of even k-degree deg, o(v) = 2t with an integer t > 1, then
d, o(G) <t when t is odd and dj, (G) <t —1 when t is even.

Proof. Since degy, (v) = deggx(v) = 2t, Proposition D and (2) imply that
df, ((G) = dt(G*) <t when t is odd and d}, [(G) = d(G*) <t—1 when t is even. m

Restricting our attention to graphs G of even minimum k-degree, Theorem
9 leads to a considerable improvement of the upper bound of d};,s(G) given in
Theorem 8.

COROLLARY 10. Ifk > 1 is an integer, and G is a graph of even minimum k-
degree 6.(G) > 1, then dj, (G) < 61,(G)/2 when 6,(G) =2 (mod 4) and dj, (G) <
0k(G)/2 — 1 when 6;(G) =0 (mod 4).

THEOREM 11. Let G be a graph of order n with signed total distance k-
domination number v} .(G) and signed total distance k-domatic number di, (G).
Then 7 7

VZ,S(G) : dYItc,s(G> <n.
Moreover, if 7};5(6') ~dj, (G) = n, then for each STDkD family { f1, fa,--- , fa} on
G with d = dj, (G), each function f; is a 7, ,-function and 25:1 fi(v) =1 for all
veV.

Proof. Let {f1, f2,...,fa} be a STDkD family on G such that d = d} (G)
and let v € V. Then
d

0 91(6) = 3 94.(6) £ 32 Doy £i0)

i=1 ’ =1

S Y A< N =,

VeV i=1 veV
If 4} ,(G) - d}, (G) = n, then the two inequalities occurring in the proof be-
come equalities. Hence for the dfe7s—family {f1,f2,+, fa} on G and for each 1,

Yvey fiv) =91 (G), thus each function f; is a 4} ,-function, and Zle filv)y =1
for all v. m

The next corollary is a consequence of Theorem 11 and Proposition 7, and it
improves Observation 1.

COROLLARY 12. If 7} ((G) > %, then d} (G) = 1.

The upper bound on the product 7} ,(G) - dj, [(G) leads to a bound on the
sum.
THEOREM 13. If G is a graph of order n with minimum degree 6(G) > 1, then
Vs (G) + dj, o(G) < n+1,
with equality if and only if dj, (G) =1 and ~; ,(G) = n.
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Proof. According to Theorem 11, we obtain
t t n t

G)+d, (G) < —+ +d: (G). 6
’Yk,s( )+ k,s( )— d};s(G) + k,s( ) ( )
In view of Theorem 8, we have 1 < dfm(G) < n. Using theses inequalities, and the
fact that the function g(z) = x + n/z is decreasing for 1 < x < y/n and increasing

for v/n < x < n inequality (6) leads to

n

Vs (G) + dj 5 (G) < e +d (G) < max{g(1),g(n)} =n+1,

and the desired bound is proved.
If dj, ,(G) = 1 and v} (G) = n, then obviously v} (G) +dj, (G) =n+1.
Conversely, assume that 7} ,(G) +d}, ,(G) = n+1. In view of Theorem 8, we

observe that dj, (G) < 0x(G) < n — 1. If n = 2, then we deduce that dj, (G) = 1.
If we assume in the case n > 3 that 2 < dfw(G)7 then we obtain as above that

Yo(@) + di (G) < e+ dl, (G) < max{g(2),g(n — 1)}
7 ’ dk,s(G) ’
:max{n—l—2,n+n—1} <n+1,
2 n—1

a contradiction to the assumption v; (G) + d (G) = n + 1. Tt follows that
d}, o(G) =1 in each case and hence 7} ,(G) = n. This completes the proof. m

COROLLARY 14. Let k > 1 be an integer, and let G be a graph of order n and
minimum degree 6(G) > 1.

Ifk =1, then 'y,i,S(G) +d’}€’s(G) =n+1 if and only if for each v € V(G), there
exists a vertexr u € Ng(v) such that dege(u) =1 or dege(u) = 2.

If k > 2, then vf, [(G) +dj, ,(G) = n+1 if and only if all components of G are
of order 2 or 3.

Proof. If k =1 and for each v € V(G), there exists a vertex u € Ng(v) such
that degg(u) = 1 or degg(u) = 2, then Proposition A yields v ((G) = n. Thus,
by Observation 1, dj (G) = 1 and so v; (G) +d}, (G) =n+ 1. If k > 2 and
all components of GG are of order 2 or 3, then it follows from Proposition 6 that
V1..s(G) = n and therefore 7}, ((G) +d}, (G) =n + 1.

Conversely, assume that v; (G) + dj, ,(G) = n + 1. Theorem 13 implies that
d}, ,(G) =1 and hence v} ,(G) = n. Now Proposition 6 leads to the desired result,
and the proof is complete. m

If 2 < d} ,(G), then Theorem 13 shows that 7}, ,(G)+di, ,(G) < n. In the next
corollary we will improve this bound slightly. 7 7

COROLLARY 15. Let G be a graph of order n > 3 with 6(G) > 1. If2 < df, [(G),
then
Y (G) + i (G) <n—1.
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Proof. Since dj, ,(G) > 2, Theorem 13 implies that 7} (G) + d}, ,(G) < n.
Now suppose to the contrary that v; (G) + dj, ,(G) = n. It follows from Theorem
7 that d?S(G) is odd, a contradiction to the fact that, as seen in the introduction,
Y.s(G)=n (mod 2). m

COROLLARY 16. Let G be a graph of order n with 6(G) > 1, and let k > 1 be
an integer. If min{~j [(G),d} (G)} > a, with 2 < a < /n, then

a(G) + (G Sat T

Proof. Since min{~}, ,(G),dj, ,(G)} > a > 2, it follows from Theorem 11 that
a<d (G) < Z. Applying the inequality (6), we obtain

LL(G) i (G) < di (G) + s
7k,s( )+ k,s( ) —= k,s( )+ d};s(G)
The bound results from the facts that the function g(z) = x + n/x is decreasing
for 1 <z < y/n and increasing for y/n < x <n.m
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