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GENERALIZED HAUSDORFF OPERATORS
ON WEIGHTED HERZ SPACES

Kuang Jichang

Abstract. In this paper, we introduce new generalized Hausdorff operators. They include
many famous operators as special cases. We obtain necessary and sufficient conditions for these
operators to be bounded on the weighted Herz spaces. The corresponding new operator norm
inequalities are obtained. They are significant improvements and generalizations of many known
results. Several open problems are formulated.

1. Introduction

The classical Hardy operator Tj is defined by

n(fa) = [ 0 20

and the classical Hardy inequality stated in Hardy et al. [4] is

p
ITofllp < p_le”pa I <p < oo, (1.1)
where the best constant factor % is the best value and it is the norm of the
operator Tj, that is,
p
Toll = .
7ol = 2

As pointed out by Kufner et al. [6], the Hardy inequality has a fascinating past
and will have (hopefully) also a fascinating future. These authors of [6] present some
important steps of the development of (1.1), of its early weighted generalizations
and of its various modifications and extensions. Another classical operator is the
Hausdorff operator

Tl(f,x):/ooo @f@) dt, x>0, (1.2)

2010 AMS Subject Classification: 26D10, 47A30
Keywords and phrases: Hausdorff operator; weighted Herz space; norm inequality.

19



20 K. Jichang

where ¢ is a local integrable function in (0,00). This operator and its varieties
have attracted many authors, for example, see [7-10]. With u = %, (1.2) yields

T (f, x) /000 %%)f(u)du, x > 0.

ChOOSiDg Q/J(u) = ’U’_IQPEH (u) and ’(/J(U) = YE, (u)a where F1 = (LOO)a Ey = (O? 1];
and ¢p denotes the characteristic function of the set F, we obtain the Hardy
operator Tp and the dual Hardy operator (or Cesdro operator) T defined by

:/mydu, x>0,

respectively. In addition, Tp = Tp+ 7§ becomes the Calderon maximal operator [1]:

_ L > [
_;/0 f(t)dt—}—/z = dt, >0,

The aim of this paper is to introduce the following new generalized Hausdorff
operator

)= /0°° @f(g(t)x) dt, == (x1,x9,...,2,) €R", (1.3)

where g(t)x = (g(t)x1,9(t)x2, ... ,9(t)zyn), ¥ : (0,00) — (0,00) is a locally inte-
grable function, g : (0,00) — (0, 00) is a monotonic function (increasing or decreas-
ing), and f is a measurable complex valued function on R™. If g(t) = % andn =1,
then T reduces to the Hausdorff operator 7.

If we introduce other forms of g and v, it is possible to obtain other operators
of interest. For example, if g(t) = ¢, ¥(t) = tw(t)pr(t), where E = (0,1], w is
a non-negative weight function, then T reduces to the weighted Hardy-Littlewood
mean operator defined in [12]:

/ fiz)w t, x=(x1,22,...,%,) €R". (1.4)

If g(t) = 3, ¥(t) = =" VDw(t)pp(t), w, E are as in (1.4), then T reduces to the
weighted Cesaro mean operator defined in [12]:

1
Ta(f,x) :/ f(%)t_"w(t) dt, = (x1,22,...,2,) ER"™.
0
If g(t) =t, Y(t) =te ™ A >0,n=1, 2 >0, then T reduces to

To(f, ) / et = [ e au = L1700
A

where L(f, a fo e~ *"du is the Laplace transform of f, u = tx, a = 2 > 0.
Hence, (1. 3) is a 51gn1ﬁcant generalization of many famous operators.

It is well-known that the Herz spaces play an important role in characterizing
the properties of functions and multipliers on the classical Hardy spaces.

In this paper, we obtain necessary and sufficient conditions for the generalized
Hausdorff operator T defined by (1.3) to be bounded on the weighted Herz spaces.
The corresponding new operator norm inequalities are obtained. Several open
problems are formulated.
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2. Definitions and statement of the main results

Letk € Z, By = {x € R" : |z| < 2*}, D}, = By, —By._1 and let ¢ = ¢p, denote
the characteristic function of the set Dy. Moreover, for a measurable function f on
R™ and a non-negative weight function w(z), we write

Pl = ([ o)

In what follows, if w = 1, then we will denote LP(R™,w) (in brief LP(w)) by LP(R™).

DEFINITION 2.1. (see [11]) Let o € R}, 0 < p,q < 0o and w; and wy be non-

negative weight functions. The homogeneous weighted Herz space K Pt (w1, ws) is
defined by

K3 (wi,w) = {f € Lo (R™ = {0}) 1 fll stz # (o) < 00}

where

1/p
f@k“g,u&}

We can similarly define the non-homogeneous weighted Herz spaces K7 (w1, ws).

1l i ) = { 2 [ (B

kEZ

It is easy to see that when w; = wy = 1, we have
KgP(1,1) = KPP (R™),
~(« s ny __ e 0, ny __ n
K{/P»(R™) = LP(|z|* dz), KJP(R™) = LP(R™).
DEFINITION 2.2. (see [2]) A non-negative weight function w satisfies Mucken-

houpt’s A, condition or w € A, if there is a constant C' independent of the cube
Q@ in R™, such that

(5 )iy (ot} < v

where |@)] is the Lebesgue measure of Q.

Our main results are the following three theorems:

THEOREM 2.1. Let o € R}, 0 < p < o0, 1 < q < o0, wy € A, and a
non-negative weight function wy satisfy

wo(tr) = tPwy(z), t>0, BER!, 2 € R (2.1)

Let ¢ : (0,00) — (0,00) be a locally integrable function having the compact sup-
port on (0,00); let g : (0,00) — (0,00) be an increasing function satisfying the
submultiplicative condition

g(w) < g(u)g(v), u,v>0.

Let ||T|| be the norm of the operator T defined by (1.8) and mapping
K&P(wr,w2) — K&P(wi,w2).
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(1) If g(t)*(ﬁJr”)/q@ is a concave function on (0,00) and

fooog(t)_“‘s_(ﬂ"’”)/q@ dt < oo, then
e t
7] < Clpa) [ glayessenra i gy (2
0
where
Clpay = G822 Pk g@), 0<p<t, o
| G 2@ (14 (1/p)(1+ g(2)), 1 <p < oc.
(2) If ||IT]| < o0, and g is a strictly increasing function on (0,00) and the
inverse g~ of g satisfies g71(t) — 0 (t — 0%), then

g(t)—aé—(ﬁﬂ)/qw dt < ||T.
0 t

(Co and & are constants given in (3.4), see Section 3 below.)

REMARK 1. ws is an extension of the power weight wy(z) = |z|%, (z € R™).
We use the following notation:

KF = {f: 1€ Ky, FO) = s |70 ()

zER™ t

is a concave function on (0, c0) }
Then KF is a subspace of the space Kg’p(wl, wa).

THEOREM 2.2 Let « € R, 0 < p < 00,0 < q < 1, g, ¥, wi, wy be as in
Theorem 2.1, and |T|| be the norm of the operator T defined by (1.3), mapping
KF — Ko (wy,w,).

(1) If g(t)f(ﬁJr")/q@ is a concave function on (0,00) and
S g(t)=eo=+m/at® gt < oo then

IT] < C(p, g, ,) / gyt g (2.4)

where C(p, q, )
Cg/ "2 /P =0 =2¢=1/p(14.q) /1 (p1q) /P (14g(2)1*19), 0<p<g<1,
=3 C5/m2AVD=2(1 4 ) V(1 + g(2)l19), 0<q<p<l,
Oy "2 D= /D=1 (14g) 1 9(14(1/p)) (14+g(2)1219), 0<g<1 < p<0(<;5)

(2) If ||IT]| < o0, and g is a strictly increasing function on (0,00) and the
inverse g~ of g satisfies g~1(t) — 0(t — 0F), then

/ g(t)_aa—ww/q@ dt <|T|.

0
(Co and & are constants given in (3.4), see Section 3 below.)
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REMARK 2. When g is a decreasing function, similar results with g(2~!) and
g~ L(t) — oo(t — o00) instead of g(2) and g~!(¢t) — 0(t — 0) can be obtained from
the previous two theorems.

THEOREM 2.3. Let B € R, 1 < p < o0, and g, ¥ be two positive measurable
functions defined on (0,00), and g be a strictly monotonic function on (0,00) and
the inverse g~ of g satisfies: (1) when g is increasing, g~ (t) — 0 (t — 0F);
(2) when g is decreasing, g1 (t) — oo (t — 00), and a nonnegative weight function
w satisfies

w(tz) = tPw(x), t >0, SR, 2R
Then the operator T defined by (1.3), mapping LP(w) — LP(w), exists as a bounded
operator if and only if

/ g(t)~ (ﬁ+n)/p¢i ) dt < oo (2.6)
0
Moreover, when (2.6) holds, the operator norm ||T|| of T on LP(w) satisfies
1Tl :/ g(t)_(mn)/pwl(gt)' (2.7)
0

REMARK 3. It follows from (2.7) and (1.3) that

UL 22000 a] i dx}l/p

< ([oerennt D)L pepemal L o

where||T|| = [;° g(t)~ (6+”)/pw(t) dt is the best possible constant. In particular,
when (t) = t*¢gp(t), E = (0, ] g(t) =t, n =1, and (—o0,00) is substituted by
(0,00), and A > 0, 8 < Ap — 1, then by (2.7)7 we get

- p
It follows from (2.8) that
1/p » S 1/p
A—1
{5 [roval vl ™ < 2L T pprawan

(2.9)
where ||T|| = m is the best possible constant. If A = 1, w(z) = 1, that is,
B =0, then (2.9) reduces to the Hardy inequality (1.1). If A =1, w(z) = 27, then
(2.9) reduces to the result of [6, p. 23]. When ¥(t) = t*¢g(t), E = (0,1], A > 0,
gt)=t"1, n=1, and ( 00, 00) is substituted by (0,00), and 8 > Ap — 1, then by
(2.7), we get ||T|| = m. It follows from (2.8) that

([ [ rorrapaea) < ot ([Ciepew )
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where ||T|| = m is the best possible constant. This is the weighted extension
of the dual Hardy inequality in [5,6]. When g(t) = ¢, ¥(t) = te ™, A > 0, n = 1,
and (—o0, 00) is substituted by (0,00), and § < p— 1, > 0, then by (2.7), we get

< - r1—-(B+1)/p)
— (B+1)/p =Xt 14 _
||T||f/O t e "dt = SRSy

It follows from (2.8) that

([ roeemaron)”

- o 1/p
(124

where || T|| = # is the best possible constant. In particular, when f(x) > 0,

w(z) =1, that is, 5 = 0, then (2.10) reduces to the following Laplace transform
inequahty.

{/ooo (/ODO f(t)e= Ao dt) px_p dx}l/p

_ /p
< il Uiéf (J/ fP(z dm) (2.11)

REMARK 4. Hardy [4, Theorems 350, 352] proved the following three inequal-
ities:
Let 1 < p < oo, %4— % =1, f(z) > 0, w(x) = P72, Then

1Ll < TA/D) D (2.12)
1Ll < T(A= DIy (2.13)

For1<p<2,
1L < ()11 (2.14)

These inequalities are “the Laplace transforms analogues” of inequalities in the
theory of Fourier series. As pointed out by Hardy [3,4], it is not asserted that the
constant in (2.14) is the best possible and it may be difficult to find the best possible
value. Here we prove that the constants in (2.8)—(2.11) are the best possible. Hence,
our main results are significant generalization of many known results.

REMARK 5. There are some similar results for the non-homogeneous weighted
Herz spaces K¢"P(w1,w2). We omit the details here.

SEVERAL OPEN PROBLEMS. In Theorem 2.3, we solve the best value for C(p, 3)
in the following inequality

1T

p,w S C(pa ﬂ)Hf”P:‘*”
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that is, C(p,8) = |IT| = J;~ g(t)*w*”)/p@ dt is the best possible constant, but

yet in Theorems 2.1 and 2.2, the best value for C'(p, «) and C(p, ¢, ) in the following
inequalities

ITfllx < Cp, )l fllx
and

ITfllx < Cp,q; )| fllkr

are not solved. It is not asserted that the constants C(p,«) and C(p,q,«) in
Theorems 2.1 and 2.2 are the best possible.

3. Proofs of the theorems
We require the following lemmas to prove our results.

LEMMA 3.1. Let f be a nonnegative measurable function on [0,b], 0 < b < oo.

If 1 < p < oo, then
b P b
(/ (@) dx) < b(P‘l)/ P (a) da. (3.1)
0 0

Lemma 3.1 is an immediate consequences of Holder inequality.

LEMMA 3.2. (see [5]) Let f be a nonnegative measurable and concave function
on [a,b], 0 < a < 3. Then

{fj; /ab[f(a:)}f’dx}l/ﬁ < {‘;‘f; /ab[f(x)]a d:c}l/a. (3.2)

Setting a = 0, for « = p, § =1, that is, 0 < p < 1, we obtain from (3.2)

(/Ob f(@) dm)p < 1%})1 x pp~1 /Ob P(z) da (33).

By the properties of A, weights, we have

LEMMA 3.3 (see [2]) If w € Aw, then there exist 6 > 0, Cy > 0, such that for
each ball B in R™ and measurable subset E of B,

w(E) B\’
< = 4
S5 =) o)
where |E| is the Lebesgue measure of E and w(E) = [, w(z)dz.

LEMMA 3.4 (see [5]) (Cp inequality) Let ai,as,...,an be arbitrary real (or
complex) numbers. Then

n p n
(Z |ak|) §CP(Z |ak|p>, 0<p< oo, (3.5)
k=1 k=1
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where

o _ 1, 0<p<l,
PPt 1<p< .

In what follows, we shall write simply K;’"p(wl,wg) to denote K and B(2¥) to
denote By = {x € R : |z| < 2F}.
Proof of Theorem 2.1. Since v has a compact support on (0,00), there exists

b > 0, such that supp¢(t) C (0,b]. First, we prove (2.2). Using Minkowski’s
inequality for integrals and (2.1), and setting u = g(t)x, we get

ITH ek llgn < / { /D (g dx}l/ql/’ff’ dt

0

b y
:/ {/ |f(“)|qw2(“)du} qg(t)‘w*”)/qut.
0 \J2k=1g(t)<|u|<2kg(t) :

For each t € (0,b), there exists an integer m such that 2™~ < ¢ < 2™ Setting
Ap ={ueR": 2" g2 1) < |u| < 28g(2™7 1)}, By = B(2%g(2™71)),
Ay ={u e R": 2%(2™71) < Ju| <29(2™)}, Ep = B(2°g(2™)),

v < b{ [, s

we obtain

(T f)er

1/
T R SR P
Az
b
< [ U onln + 1omslan)o® O+ a1
0
It follows that
17 flx <
’ py1/p
{Sla@r | [ Utonlios + Iosslynta@ X a1 o)
kEZ 0 n

Now, we consider two cases for p:
Case 1. 0 < p < 1. In this case, it follows from (3.6), (3.3) and (3.5) that

1+4p)t/p
7l < SED LS (e
kEZ

’ P 1/p
x/o (||f‘PA1||Z7w2+||f(pA2||Z,w2)g(t)([3+n)p/q<w§t)> dt}

< 2(1/;0)72(1 +p)1/pb1—(;)){ |;/bzw1(El)ap/nstA |p <w1(Bk)>aP/n
B 0 e\ wy(Ey)

kEZ




Generalized Hausdorff operators 27

X g(t)—(ﬁ+n)17/q<¢i pdt] |:/0 Z Wl E2 ap/anSDAZquz

ke(Z)

] <Z1g’;§)w/ ot (,8+n)p/q(wz(f)>pdt]l/p}. (3.7)
i

By (3.4) and |By| = Nz X 2k we have
2

w1(By) (IBM) IR
AL Co A = Cog(2m™ 1) (3.8)
and (By)
w1 k m\—nd
o (Ba) < Cog(2™)7"°. (3.9)
It follows from (3.7)—(3.9) that
ITfllx < C&23/P=2(1 + p) V7| |
b
< [tamyet s gemy g i g o)
0

By the submultiplicativity of g, we have g(2™) < g(2)g(2™1). If a > 0, then

[g(2™ 1)) < [g(2™)]~**[9(2)]*°
Since ¢ is a increasing function, thus ¢ < 2™ implies that g(¢) < ¢g(2™), and therefore
that g(2™)~2% < g(t)~*9. This implies

92" )T 4 g(27) 7 < g(2™) T {1+ 9(2)*°} < g() {1+ 9(2)*°}. (3.11)
Similarly, if @ < 0, then

g(2m )7 4+ g(2m) 7 < g(t) {1 +g(2)" ). (3.12)
(3.11) and (3.12) imply that
g(2" )7 4+ g(27) 7 < g(t) {1 +9(2)"0}. (3:13)

Thus, by (3.10) and(3.13), we get

||Tf|\Ks03/”2<1/P>-2<1+p>1/p<1+g<2>‘“'5>anK/O g(tyes= @/l gy

t
(3.14)

Case 2. 1 < p < co. In this case, by (3.6), (3.1), (3.3), (3.8) and (3.9), we
similarly obtain

ITfllx < (2b)'~ (1/’}){2[&01(31@)]?

kEZ
’ p 1/p
[ Uson et on oot ormrmn (KO )

< G2+ )+ 9@ Sl [ gt a3
0
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Hence, by (3.14) and (3.15), we get
Tl < Clp.a pas—@+/a ) 4
7l < o) [ g (
0

where C(p, a) is defined by (2.3).

To prove the opposite inequality, putting e € (0,1), we set wq(By)
W?(x) - |‘T|Ba and

— 9kné
= 2"no

. 0’ |x| S 17
felx) = |z|7a57(»3+n)/¢1757 lz| > 1.

Then for k =0,-1,-2,..., || fe@kllgw, = 0 and for k € Z*, we have

1/q
Qs = (/ |x‘—(a6+(6+n)/q+s)qW2(x) dq:)
2k—1|g| <2k

n 2k 1/
_ 27 /2 / r_(O‘(H_E)q_ld’r a _ Cl/qQ—k(a6+s)
T(n/2) J, " ’

||f590k|

k-1
where
o 27rn/2 2(a5+5)q -1
" T(n/2)| (ad+e)q ‘
It follows that
o0 p/ay1/p
I felli = {Zwl (Bk)ap/n (/ |x|*(a6+(5+n)/q4r6)qwg(x) d:L'> }
Pt 2h—1<|z| <2k

1/ i k Y 1/ 27"
=C}t ‘1{ 2” Ps} =CMi__—~— (3.16)
— (1 —2-pe)l/p

Since g(t)|x| > 1 implies that ¢ > gil(i‘), we have

|z

—0— n — ° —as— n _ t
T(fe,x) = [a| >0~ Ftm/a 5/ . )g(t) 6-(8+n)/q s@dt.
e

Let € (0 < € < 1) be given. Since g is a strictly increasing function, there exists
m € N, such that 27! < 1 < 2™ and 27™¢ — 1 (¢ — 0T). Note that 2*7! <
|z| < 2%, so that if & > m + 1, then g_l(‘%l) < g zr) < 97ER) <97 e).
Thus,

r/q
T f- |2 :Zwl(Bk)‘“’/"{/l 1[T(fe,x)<pk(w)]qwz(w)dm}
keZ x|>
N Bk)ap/"{ / (|- (@) a+2)a
2kl <fa| <2
g(
| I)

w
=1
oo q p/q
« (/ t)—aé—(5+n)/CI—s@ dt) wa(z) dx}
97 (1
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> (/OO g(t)—fw—(ﬂ'i'n)/q—aw dt>p
g1(e) t

o) r/q
x> w1<Bk>ap/"{/ | (OB 0+ () dx}
2k—1<|a:|§2k

k=m+1
00 t) p 27(m+1)p5
= p-od=m/a—e 20 0\ ope 2T g
(), o0 ) ot (a7

Thus, by (3.16) and (3.17), we get
||T|| > ||Tf€||K > 2—mp5{/oo g(t)—a(S—(ﬂ-‘rn)/Q—Ew(t) dt} (318)
= fllx T 971() t
Taking limit as € — 0 in (3.18), we obtain

1T > g(t)—aé—(mn)/qM i
0 t

This finishes the proof of Theorem 2.1. m

Proof of Theorem 2.2. First, we prove (2.4). Using (3.3) and the notations in
the proof of Theorem 2.1, we obtain

irneetees < { [ ([ s 1760020 ) o dx}”"

zERn t

<o [ ([ rtemp )y}

zeR™ 13
<2711+ q)l/qbl—(l/Q)

) b _ |f (w)|%ws (u) du g(t)‘(ﬁ-‘rn)(M)th 1/a
{/0 2k=1g(t)<|u| <2k g(t) ;

-1 vag-a/of [* RASRIONTAR
<21+ 0] a4 ol g )

It follows that

ITfllx <2711+ q>“qbl—“/q>{Zm(Bk)ap/”
keZ

p/ay1/p
Z,M)g(t)(‘””)(@)th] } . (3.19)

b
x [ [ ren g +son

Now,we consider three cases:

Case 1. 0 < p < ¢ < 1. In this case, it follows from (3.19), (3.3), (3.5), (3.1),
(3.8) and (3.9) that

ITf|lx <27 OHWD)g=A/P (1 4 g)V9(p 4 ¢)/Ppt=(/P)

b 1/p
A B [sonlyutlfenlsoat ey al

kEZ



30 K. Jichang
< 2(1/p)—(1/q)—2q—(1/P)(1 + q)l/Q(p + q)l/pr”K

b

w1(Bk) ya/n_ w1(Br) yas } ~(B+m)/a ()

[ hems 2B g t
< Cg‘/"2(1/”)_(1/‘1)_2(1_(1/1’)(1 + q)l/q(p + q)l/pr”K

g / (g(am1) 25 4 g(am) -2 )g(t) B+ o
0

< C§/mo/P=(a)=20=(/P) (1 4 g)V9(p + )P (1 + g(2)1*10)| fll
p-as-@+m/a Pl 4 gy
X/o g(t) L dt. (3.20)

Case 2. 0 < ¢ < p < 1. In this case, by (3.19), (3.5), (3.1), (3.8) and (3.9), we
similarly obtain

1
ITfllx < Wbl—(l/p){zwl(Bk)ap/n
keZ
’ g Ja (g~ B+mp/a YD) v
x / (150, gy 1 F s 17/ 291(2) ”<t>pdt}

b w1 w1 a/m _
< 20020 e [ { (D () T (oot g

< G/ 4 V(14 @) e [ g . (3
0

Case 3. 0 < ¢ <1< p < oo. In this case, by (3.19), (3.1), (3.5), (3.3), (3.8)
and (3.9), we obtain

(14 q)/apt=0/p) ,
1Tl < iy ) 2 @1 (Br) "
kEZ

b
x / (ol + 1o,
< CR/mUID=@PL (1 4 g) Va1 4 (1/p)) (1 + g(2)1)]| ]
o0 t
« /O g(t)faﬁfwm/q@ dt. (3.22)

%;M)g(t)<ﬁ+”>p/q<@>pdt}l/p

Hence, by (3.20)—(3.22), we get
T|<C o t *a5*(ﬁ+n)/qM dt
1Tl < C(p g, 9 L dt,
0

where C(p, ¢, «) is defined by (2.5). By the same technique used in Theorem 2.1
one can show that the opposite inequality:

> —ad— n t
71> [ gty et g

This finishes the proof of Theorem 2.2. m
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Proof of Theorem 2.3. By Minkowski inequality for integrals and setting u =
g(t)z, we get

e < [ ([ 150000 L ey )

< | °°{ | e put) dx}l/pwf) at
- [ rwrew du}l/pgu)“’*m/”’fﬁ a

=l [ ot A g

It follows that

(el zsup% < /Oo i~/ Y 4
f#0 Hf”p.,w 0 t

To prove the opposite inequality, putting e € (0,1), we set w(z) = |z|® and
0, lz| <1,
felz) = { |x|—(ﬁ+n)/p—8, lz| > 1,
thus
/2 e 27m/2
L ||~ HnteR) (2 do = 7/ prnTPE g =
P /|x|>1 I'(n/2) Jy pel'(n/2)

If g is strictly increasing, putting |z| < 1, g(t)|z| > 1 implies that ¢ > gil(ﬁ) >

g~ 1(e). Tt follows that

_ - B o 1T
e ={ [ ([ @R dra) da |

1/

t

~ —(G+n)/p—e P (2) 212 1)
2</gl(5)g(t) t dt>{p€F(”/2)} '

This implies

|17 > HTf8|p7w > /OO g(t)—(ﬁ+n)/P—sw(t) dt. (3.23)
| fellp,w 9-1(e) t
Taking limits as € — 0 in (3.23), we get
7= [ gty e g (3.24)
0

Then by (3.23) and (3.24), we have
7= [ gty e o
0

The proof for the decreasing case is similar. The theorem is proved. m
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