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ON AN INEQUALITY OF PAUL TURAN
B. A. Zargar

Abstract. Let P(z) be a polynomial and P’(z) its derivative. In this paper, we shall obtain
certain compact generalizations and sharp refinements of some results of Govil, Malik, Turdn and
others concerning the maximum modulus of P(z) and P’(z) on the unit circle |z| = 1, which also
yields a number of other interesting results for various choices of parameters.

1. Introduction and statement of results

Let P(z) be a polynomial of degree n and P’(z) be its derivative. It was shown
by Tufan [8] that if P(z) has all its zeros in |z| < 1, then

max |P'(2)] > = max |P(2)]. (1)
|z|=1 2 |z|=1
The inequality (1) is sharp with equality for the polynomial P(z) = (z + 1)™.
As an extension of (1), Malik [5] showed that if P(z) has all its zeros in |z| < k,
where k£ < 1, then

, n
> — .
gl‘eglP ) > 17 gl‘zglP(Z)\ (2)

The estimate (2) is sharp with equality for the polynomial P(z) = (z + k)™.
The inequality (1) has been refined by Aziz and Dawood [1] who under the
same hypothesis proved that

max[P/(2)| > § {max| P(2) + min |P(2)]} (3)
The result is best possible and equality in (3) holds for P(z) = az™ + (3, where
18] < lal.

In the literature, there exists some extensions and generalizations of inequali-

ties (1), (2) and (3) (for reference see [4] and [7]). Aziz and Shah [2] have generalized
the inequality (1) by proving the following result.
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THEOREM A. If P(z) is a polynomial of degree n having all its zeros in the
disk |z| < k < 1 with s-fold zero at the origin, 0 < s < n, then

n+ ks
P > P(2)].
max[P/(2)| > S max [ P(2)

The result is sharp and the extremal polynomial is P(z) = 2°(z + k)" ~*

Recently, Aziz and Zargar [3] have obtained the following refinement of Theo-
rem A.

THEOREM B. If P(z2) is a polynomial of degree n, having all its zeros in the
disk |z| <k, k < 1 with t-fold zero at the origin, 0 <t < n, then

+ kt
Pl(z) > 22 —
|m|a)§‘ ) ke (1+k)kt

The result is sharp and equality in (4) holds for the polynomzal P(z) =z (z+k)"t

x|P(2) + min [P(2)]. (4)

In this paper, we shall first present the following generalization of Theorem B
(which is obtained as a special case for R = 1).

THEOREM 1. If P(z) is a polynomial of degree n having all its zeros in the
disk |z| < k, k < 1 with t-fold zero at the origin, 0 < t < n, then for every R > k,

R+ kt R=' (nR+ kt
Pl2) > 22T ax |P Y ()
max [P(2)| > gy mes 1P@I+ = (R+k )

The result is best possible and equality holds for the polynomial P(z) = 2 (z+k)"™*

min | P(z)].

|z|=

The following result follows by taking R = k in Theorem 1.

COROLLARY 1. If P(z) is a polynomial of degree n having all its zeros in the
disk |z| <k, 0 < k < 1 with t-fold zero at the origin, 0 <t < n, then

1
P'(2)| 2
max [P(2)] > oAl

The result is best possible with equality for the polynomial P(2) = 2! (2 + k)"~ ¢.

n+t)maX\P( )=+ (n—1) ll;ffig\ﬂZ)lk (5)

Note that the inequality (3) follows from (5) by taking k =1 and ¢t = 0.

We next present the following generalization of Theorem 1 which includes
Theorem B as a special case.

THEOREM 2. If P(z) is a polynomial of degree n having all its zeros in the
disk |z| < k, 0 < k < 1 with t-fold zero at the origin, 0 < ¢t < n, then for r < R,
R > k?,

max | P(2)]

|z|=r

t—1
4 R (TM t) Inlli—r}c|P(Z)" (6)

RInR+kt (R+k\"
P >
max IPG) > = (r+k>
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The result is best possible and equality in (6) holds for the polynomial P(z) =
c2t(z+ k)"t c#£0.

Finally, we present the following compact generalization of inequalities (4) and
(5), which is an improvement of Theorem 2 and yields a number of other interesting
results for various choices of parameters ¢, r and R.

THEOREM 3. If P(z) is a polynomial of degree n having all its zeros in the
disk |z| < k, 0 < k < 1 with t-fold zero at the origin, 0 < t < n, then for r < R,
rR > k?

max |P'(z2)| >

R+EN""TR"YnR + kt
|2|=R ( ) [ X 1P

r+k rt R4k fﬁir
t—1 n—
T @)

min [P(: >|] )

The result is best possible and equality in (7) holds for the polynomial P(z) =
c2t(z+ k)"t e #£0.

Since n >t and R > r, we see that

n—t
M}t}t r+k
R+k R+ Ek

This implies

n—t
nR+kt_t r+k > 0.
R+k R+Ek

Using this fact in (7), the following result immediately follows from Theorem 3.
COROLLARY 2. If P(z) is a polynomial of degree n having all its zeros in the

disk |z| < k, 0 < k < 1 with t-fold zero at the origin, 0 < ¢t < n, then for r < R,
R > k?,

max |P’ >
ma [P/)

R+k\"'[R'nR+kt
P(2)|].
<r+k> {rt Rk PG (®)

The result is sharp and equality in (8) holds for the polynomial P(z) = z'(z+k)"~*
If we take t = 0 in Theorem 3, we obtain

COROLLARY 3. If P(z) is a polynomial of degree n having all its zeros in the
disk |z| < k, 0 < k < 1, then for r < R, Rr > k?

R+k\"[ n
P(2)] > ™ in | P(2)].
mag P ) <r+k) [Rﬂ;ﬁi}i' ()l + i min 1)

The following result follows by taking » = 1 in Theorem 3.
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COROLLARY 4. If P(z) is a polynomial of degree n having all its zeros in the
disk |z| < k, 0 < k < 1 with t-fold zero at the origin, 0 < t < n, then for k < R,

n—t
max |P'(z)] > (R+k) {Rt_lnR—i_kt max | P(z)|

|z|=R 1+ k R4k |z=1
R~ /ynR+kt 14+ k\n—t .
Kt (R+k - (R—Hc) )|§|“_I}<|P(Z)|}

For the proofs of Theorems 2 and 3, we need the following lemma, which may
be of independent interest.

LEMMA. If P(z) is a polynomial of degree n, having all its zeros in |z| < k,
k > 0 with t-fold zero at the origin, then for |z| =1, rR > k? and r < R,

(k"
Prz)| < — (L% P(R2)|. 9
Pral< g (1)) 1P )
Equality in (9) holds for the polynomial P(z) = 2'(z + k)"~ *.

Proof. Since P(z) has all of its zeros in |z| < k and ¢-fold zero at the origin,
we can write

P() = 2 H(2), (10)
where H(z) is a polynomial of degree n — ¢ having all of its zeros in |z| < k, so that

n—t
H(z) = cH(z — Rje'%),
j=1

where R; <k, j=1,2,...,n —t. This implies that for each 0, 0 < 0 < 2,

H(rew) ret(0=0i) _ R;
H(Re™) L | Ret0=0) — Ry |

n—t

(11)

Now for R>r, Rr > R? and for each 0, 0 < 0 < 27, it can be easily verified that
ret(@=0;) R; ? < r+ R 2
Rei0=0) —R;| “\R+R;)

Since R; < k for all j = 1,2,...,n —t, it follows from (11) that if » < R and
rR > k2, then

’ H(re') o (7‘+k)"_t

HEre®) | S\Ryk)

Using (10), it follows that
P(re®) | rt | H(re®) o rt (r+k)"t
P(Re®)| ~ Rt |H(Re®)| SRE\R+ k)

Hence, for R > r, Rr > k? and for each 6, 0 < 6 < 2, we have

; ek ;
e

wherefrom the desired result follows immediately. m
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2. Proofs of the theorems

Proof of Theorem 1. Let m = min|,— |P(2)|. Then m < |P(z)| for |z| =k
gives m|%|" < |P(2)| for |z| = k. Since all the zeros of P(z) lie in [z] < k < 1
with t-fold zero at the origin, it follows (by Rouché’s Theorem for m > 0) that for
every complex number « such that |o| < 1, the polynomial G(z) = P(z) + 2"
has all of its zeros in |z| < k with t-fold zero at the origin. Hence, the polynomial
F(z) = G(Rz) has all of its zeros in |z| < % < 1, with ¢-fold zero at the origin, so
that we can write

F(z) = 2"H(2), (12)
where H(z) is a polynomial of degree n — t, having all of its zeros in |z| < % < 1
From (12), we have

2F'(2) zH'(2)
=t . 13
o) TTHG (13)
If 21, 22, ... , Zn—¢ are the zeros of H(z), then |z;| < % Llforallj=1,2,...,n—t,

and from (13), we obtain
eiGF/(eiG) eieH/(eiG) n—t 1
Re {F(ew) } =1+ Re {H(ew) } =t+ ;Re (1 — zje—w) (14)

for points ¢, 0 < 6 < 27 which are not zeros of H(z).

1 1
Now, if |w| < % < 1, then it can be easily verified that Re <1 > > =
Using this fact in (14), we see that —w 1+ 5

F'(efe) > Re ewF'(e@) > n—t th+nR
F(eif) F(eif) 1+£  R+k
for points ¢, 0 < # < 27 which are not zeros of H(z). This implies that
i tk+nR i
[F' ()] = [F(e))] (15)

R+Ek
for points €?, 0 < 6 < 27, other than zeros of F(z). Since (15) is trivially true for
points ¢’ which are the zeros of F(2), it follows that

, tk+nR
> Tr = 1.
P> RG] for o] =1 (16)
Replacing F(z) by G(Rz) in (16), we get
, tk +nR
> TRt —1.
|G'(Rz)| > R(R+k)|G(Rz)\ for |z|=1 (17)

Using that G(z) = P(z) + 2", it follows that

amtR!~! tk+nR
P'(R — > ——— PR _— 18
for |z| = 1 and for every «a, |a| < 1. Choosing the argument on the RHS of (18)
such that

amR!

la|mR?
Lt

amR' ,
Kt

= |P(Rz)| +

'P(Rz) + for |z] =1,
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from (18), we obtain

mtR 1 tk+nR |o|mR?
|P'(R2)| + I la| > RETH) {P(Rz)| + I }

for |z| =1 and |a| < 1. Letting |a] — 1, we conclude that

tk+nR R*! (tk+nR
P! > ————|P S et N 1
PR > i)+ S { TR (19
for |z| = 1, which gives
tk +nR R (th+nR
P/ 27 P —_— 7_t 3 P .
m 1P > gy o P+ S { S5~ i )

This completes the proof of Theorem 1. m

Proof of Theorem 2. Proceeding similarly as in the proof of Theorem 1, it
follows from (19) that
tk +nR R*! (tk+nR
P(R2)| > ———|P(R —_— S -
P> i PR { Rtk }
for |z| = 1. Applying the above Lemma, it follows that
tk+nR R* (R+k\"" R*=Y (th+nR
P'(Rz)| > — P — =
|7 (Rz)] R(R+k)kt<r+k> P+ =\ R+k m
for |z| = 1. This implies that

R-Ytk+nR (R+k\""
P > P
max P> TR () i)
R*1 /(thk+nR
—+ ) min |P

which completes the proof of Theorem 2. m

Proof of Theorem 3. We proceed similarly as in the proof of Theorem 1. It

follows from (17) that
, tk+nR
> — fi =1
G(12)| > s G| for |
Now, applying the above Lemma to G(z), we get
tk+nR R" (R+k

R(R+k)rt \r+k

where r < R and 7R > k?. Since G(z) = P(z) + 342", it follows from (20) that

G’ (Rz)| >

) ) |G(rz)| for |z]=1, (20)

amtR!™1 tk+nR R' (R+E\"" amt
P'(R —2 > — p —(r2)"| (21
B2+ = RR+R)r \7+k (re) + = (ra)| (21)
for |z| = 1 and for every o with |a| < 1. Choosing the argument of o such that
amt m
’P(rz) + (rz2)t| = |P(rz)| + |a\ﬁrt for |z| =1,
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it follows from (21) that

tK+nR (R+E\"" R
P > —|P
|P(R=)] R(R+k)<r+k> rt‘ (rz)]
la| , i [tk+nR (R+E\"""
1ol —t
Tt TRr e \rvk "
for |z| = 1. Letting |a| — 1, we get
tk+nR (R+k\"" R
P’ > —|P
P (R=)] R(R+k)<r+k> rt‘ (rz)]

R' (R+k\""'[th+nR r+k\"
+ s —t m
Kt r+k R+k R+k
for |z| = 1. This implies that

ma |P(2)] > (R + k)”t {Rt—l(tk +nk) P(2)]

|z|=R r+k rt(R+k) |z|=r
Rtk +nR r4+k\nt] .
Kkt [R—Hc N (R+k) ]E“_I}JP(Z)}’

which proves the desired result. m
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