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A COMPANION OF GRÜSS TYPE INEQUALITY FOR
RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS

Mohammad W. Alomari

Abstract. In this paper we derive a new companion of Grüss’ type inequality for Riemann-
Stieltjes integral. Applications to the approximation problem of the Riemann-Stieltjes are also
pointed out.

1. Introduction

In 1935, G. Grüss proved the following famous inequality regarding the integral
of the product of two functions and the product of the integrals:∣∣∣∣

1
b− a

∫ b

a

f(x)g(x) dx−
(

1
b− a

∫ b

a

f(x) dx

)(
1

b− a

∫ b

a

g(x) dx

)∣∣∣∣

≤ 1
4
(Φ− φ)(Γ− γ)

provided that f and g are two integrable functions on [a, b] and satisfying the
condition φ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ, for all x ∈ [a, b]. The constant 1

4 is best
possible in the sense that it cannot be replaced by a smaller one.

In [16], Dragomir and Fedotov have established the following functional:

D (f ;u) :=
∫ b

a

f (x) du (x)− u (b)− u (a)
b− a

∫ b

a

f (t) dt, (1.1)

provided that the Stieltjes integral
∫ b

a
f (x) du (x) and the Riemann integral∫ b

a
f (t) dt exist.

In the same paper, the authors have proved the following inequality:

Theorem 1. Let f, u : [a, b] → R be such that u is of bounded variation on
[a, b] and f is Lipschitzian with the constant K > 0. Then we have

|D (f ; u)| ≤ 1
2
K (b− a)

b∨
a

(u) ,

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.
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Also, in [7], Dragomir has obtained the following inequality:

Theorem 2. Let f, u : [a, b] → R be such that u is Lipschitzian on [a, b], i.e.,

|u (y)− u (x)| ≤ L |x− y| ,∀x, y ∈ [a, b], (L > 0)

and f is Riemann integrable on [a, b]. If m,M ∈ R, are such that m ≤ f(x) ≤ M ,
for any x ∈ [a, b], then the inequality

|D (f ; u)| ≤ 1
2
L (M −m) (b− a)

holds true. The constant 1
2 is sharp in the sense that it cannot be replaced by a

smaller quantity.

For other recent inequalities for the Riemann-Stieltjes integral, see [1–7, 9–16,
18] and the references therein.

Motivated by [17], S.S. Dragomir in [10] has proved the following companion
of the Ostrowski inequality for mappings of bounded variation:

Theorem 3. Let f : [a, b] → R be a mapping of bounded variation on [a, b].
Then we have the inequalities:

∣∣∣∣
f(x) + f(a + b− x)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ ≤
[
1
4

+
∣∣∣∣
x− 3a+b

4

b− a

∣∣∣∣
]
·

b∨
a

(f),

for any x ∈ [a, a+b
2 ] , where

∨b
a(f) denotes the total variation of f on [a, b]. The

constant 1/4 is best possible.

The aim of this paper, is to study a companion functional of (1.1). Namely,
we introduce the functional

GS (f ;u) :=
∫ a+b

2

a

f (x) + f (a + b− x)
2

du (x)− u
(

a+b
2

)− u (a)
b− a

∫ b

a

f (t) dt,

provided that the Stieltjes integral
∫ b

a
f(x)+f(a+b−x)

2 du (x), and the Riemann inte-
gral

∫ b

a
f (t) dt exist. Therefore, several bounds for GS (f ; u) are obtained. More

specifically, the integrand f is assumed to be of r-H-Hölder type and the integrator
u is to be of bounded variation, Lipschitzian and monotonic.

2. The case of bounded variation integrators

The following result holds:
Theorem 4. Let f : [a, b] → R be an r-H-Hölder type mapping on [a, b], where

r and H > 0 are given, and u : [a, b] → R be a mapping of bounded variation on
[a, b]. Then the following inequality holds

|GS (f ; u)| ≤ H

r + 1
(b− a)r

a+b
2∨
a

(u) . (2.1)
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Proof. It is well-known that for a continuous function p : [a, b] → R and a
function ν : [a, b] → R of bounded variation, one has the inequality

∣∣∣∣
∫ b

a

p (t) dν (t)
∣∣∣∣ ≤ sup

t∈[a,b]

|p (t)| ·
b∨
a

(ν) .

Therefore, as u is of bounded variation on [a, b], we have
∣∣∣∣
∫ a+b

2

a

f (x) + f (a + b− x)
2

du (x)− u
(

a+b
2

)− u (a)
b− a

∫ b

a

f (t) dt

∣∣∣∣

=
∣∣∣∣
∫ a+b

2

a

[
f (x) + f (a + b− x)

2
− 1

b− a

∫ b

a

f (t) dt

]
du (x)

∣∣∣∣

≤ sup
x∈[a, a+b

2 ]

∣∣∣∣
f (x) + f (a + b− x)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ·
a+b
2∨
a

(u)

=
1

b− a
sup

x∈[a, a+b
2 ]

∣∣∣∣
∫ b

a

[
f (x) + f (a + b− x)

2
− f (t)

]
dt

∣∣∣∣ ·
a+b
2∨
a

(u)
(2.2)

As f is of r-H-Hölder type, then we have
∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)] dt

∣∣∣∣ =
∣∣∣∣
∫ b

a

f(x)− f(t) + f(a + b− x)− f(t)
2

dt

∣∣∣∣

≤ 1
2

∫ b

a

|f(x)− f(t)| dt +
1
2

∫ b

a

|f(a + b− x)− f(t)| dt

≤ H

2

[∫ b

a

|x− t|r dt +
∫ b

a

|a + b− x− t|r dt

]

=
H

r + 1
[(x− a)r+1 + (b− x)r+1] (2.3)

It follows that

sup
x∈[a,

a+b
2 ]

∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)

]
dt

∣∣∣∣

≤ H

r + 1
· sup

x∈[a, a+b
2 ]

[(x− a)r+1 + (b− x)r+1] ≤ H

r + 1
(b− a)r+1.

(2.4)

Combining (2.2) and (2.4), we get the desired result in (2.1).

Remark 1. We remark that if
∨ a+b

2
a (u) =

∨b
a+b
2

(u), then (2.1) becomes

|GS(f ;u)| ≤ H

2(r + 1)
(b− a)r ·

b∨
a

(u).
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Corollary 1. Let u be as in Theorem 4 and f : [a, b] → R be an L-
Lipschitzian mapping on [a, b]. Then the following inequality holds

|GS(f ; u)| ≤ 1
2
L(b− a) ·

a+b
2∨
a

(u).

Corollary 2. Assume that f is as in Theorem 4. Let u ∈ C(1)[a, b]. Then
we have the inequality

|GS(f ;u)| ≤ H

r + 1
(b− a)r · ‖u′‖1,[a, a+b

2 ]

where ‖·‖1 is the L1 norm, namely ‖u′‖1,[a, a+b
2 ] :=

∫ a+b
2

a
|u′(t)| dt.

Corollary 3. Assume that f is as in Theorem 4. Let u : [a, b] → R be a
Lipschitzian mapping with the constant L > 0. Then we have the inequality

|GS(f ;u)| ≤ LH

2(r + 1)
(b− a)r+1.

Corollary 4. Assume that f is as in Theorem 4. Let u : [a, b] → R be a
monotonic mapping. Then we have the inequality

|GS(f ; u)| ≤ H

r + 1
(b− a)r · |u(

a + b

2
)− u(a)|.

Remark 2. For the last three inequalities, one may deduce several inequalities
for L-Lipschitzian mappings by setting r = 1 and replace H by L. We left the details
to the reader.

Remark 3. In Theorem 4, if f(x) is assumed to be symmetric over [a, a+b
2 ],

i.e., f(x) = f(a + b− x), then we have

∣∣∣∣
∫ a+b

2

a

f(x)du(x)− u(a+b
2 )− u(a)
b− a

∫ b

a

f(t) dt

∣∣∣∣ ≤
H

r + 1
(b− a)r ·

a+b
2∨
a

(u).

3. The case of Lipschitzian integrators

Theorem 5. Let f : [a, b] → R be an r-H-Hölder type mapping on [a, b], and
u : [a, b] → R be an L-Lipschitzian mapping on [a, b], where r and H, L > 0 are
given. Then the following inequality holds

|GS(f ; u)| ≤ LH

(r + 1)(r + 2)
(b− a)r+1.
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Proof. It is well-known that for a Riemann integrable function p : [a, b] → R
and L-Lipschitzian function ν : [a, b] → R, one has the inequality

∣∣∣∣
∫ b

a

p(t)dν(t)
∣∣∣∣ ≤ L

∫ b

a

|p(t)| dt.

Therefore, as u is L-Lipschitzian on [a, b], we have
∣∣∣∣
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x)− u(a+b
2 )− u(a)
b− a

∫ b

a

f(t) dt

∣∣∣∣

=
∣∣∣∣
∫ a+b

2

a

[
f(x) + f(a + b− x)

2
− 1

b− a

∫ b

a

f(t) dt

]
du(x)

∣∣∣∣

≤ L

∫ a+b
2

a

∣∣∣∣
f(x) + f(a + b− x)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ dx

=
L

b− a

∫ a+b
2

a

∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)

]
dt

∣∣∣∣ dx

As f is of r-H-Hölder type, by (2.3) we get
∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)

]
dt

∣∣∣∣ ≤
H

r + 1
[(x− a)r+1 + (b− x)r+1].

It follows that
∣∣∣∣
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x)− u(a+b
2 )− u(a)
b− a

∫ b

a

f(t) dt

∣∣∣∣

≤ L

b− a

∫ a+b
2

a

∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)

]
dt

∣∣∣∣ dx

≤ L

b− a
· H

r + 1

∫ a+b
2

a

[(x− a)r+1 + (b− x)r+1] dx

=
LH

(r + 1)(r + 2)
(b− a)r+1

and the theorem is proved.

Corollary 5. Let u be as in Theorem 5 and f : [a, b] → R be a K-Lipschitzian
mapping on [a, b]. Then the following inequality holds

|GS(f ; u)| ≤ 1
6
LK(b− a)2.

Remark 4. In Theorem 5, if f(x) is assumed to be symmetric over [a, a+b
2 ],

i.e., f(x) = f(a + b− x), then we have
∣∣∣∣
∫ a+b

2

a

f(x)du(x)− u(a+b
2 )− u(a)
b− a

∫ b

a

f(t) dt

∣∣∣∣ ≤
LH

(r + 1)(r + 2)
(b− a)r+1.
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4. The case of monotonic integrators

Theorem 6. Let f : [a, b] → R be an r-H-Hölder type mapping on [a, b], and
u : [a, b] → R be a monotonic mapping on [a, b], where r and H > 0 are given. Then
the following inequality holds

|GS(f ; u)| ≤ H

r + 1

(
1 +

1
2r+1

)
(b− a)r

[
u

(
a + b

2

)
− u(a)

]

Proof. It is well-known that for a monotonic non-decreasing function ν : [a, b] →
R and continuous function p : [a, b] → R, one has the inequality

∣∣∣∣
∫ b

a

p(t) dν(t)
∣∣∣∣ ≤

∫ b

a

|p(t)| dν(t).

Therefore, as u is monotonic non-decreasing on [a, b], we have

∣∣∣∣
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x)− u(a+b
2 )− u(a)
b− a

∫ b

a

f(t) dt

∣∣∣∣

=
∣∣∣∣
∫ a+b

2

a

[
f(x) + f(a + b− x)

2
− 1

b− a

∫ b

a

f(t) dt

]
du(x)

∣∣∣∣

=
1

b− a

∣∣∣∣
∫ a+b

2

a

[∫ b

a

(
f(x) + f(a + b− x)

2
− f(t)) dt

]
du(x)

∣∣∣∣

≤ 1
b− a

∫ a+b
2

a

∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)

]
dt

∣∣∣∣ du(x).

As f is of r-H-Hölder type, by (2.3) we get
∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)

]
dt

∣∣∣∣ ≤
H

r + 1
[(x− a)r+1 + (b− x)r+1].

It follows that
∣∣∣∣
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x)− u(a+b
2 )− u(a)
b− a

∫ b

a

f(t) dt

∣∣∣∣

≤ 1
b− a

∫ a+b
2

a

∣∣∣∣
∫ b

a

[
f(x) + f(a + b− x)

2
− f(t)

]
dt

∣∣∣∣ du(x)

≤ 1
b− a

· H

r + 1

∫ a+b
2

a

[(x− a)r+1 + (b− x)r+1] du(x). (4.1)

Now, using Riemann-Stieltjes integral we have

∫ a+b
2

a

(x− a)r+1du(x) =
(b− a)r+1

2r+1
u
(a + b

2

)
− (r + 1)

∫ a+b
2

a

(x− a)ru(x) dx
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and
∫ a+b

2

a

(b− x)r+1 du(x)

=
(b− a)r+1

2r+1
u
(a + b

2

)
− (b− a)r+1u(a) + (r + 1)

∫ a+b
2

a

(b− x)ru(x) dx.

Adding the above equalities, we get
∫ a+b

2

a

[(x− a)r+1 + (b− x)r+1] du(x).

= (b− a)r+1
[ 1
2r

u
(a + b

2

)
− u(a)

]
+ (r + 1)

∫ a+b
2

a

[(b− x)r − (x− a)r]u(x) dx.
(4.2)

Now, by the monotonicity property of u we have
∫ a+b

2

a

(x− a)ru(x) dx ≥ u(a)
∫ a+b

2

a

(x− a)r dx =
(b− a)r+1

2r+1(r + 1)
u(a)

and
∫ a+b

2

a

(b− x)ru(x) dx ≤ u
(a + b

2

) ∫ a+b
2

a

(b− x)r dx

=
(2r+1 − 1)
2r+1(r + 1)

(b− a)r+1u
(a + b

2

)

which gives that
∫ a+b

2

a

[(b− x)r − (x− a)r]u(x) dx

=
(b− a)r+1

2r+1(r + 1)

[
(2r+1 − 1)u

(a + b

2

)
− u(a)

]
. (4.3)

Therefore, by (4.2) and (4.3), we have
∫ a+b

2

a

[(x− a)r+1 + (b− x)r+1] du(x).

= (b− a)r+1

[
1
2r

u
(a + b

2

)
− u(a)

]
+

(b− a)r+1

2r+1

[
(2r+1 − 1)u

(a + b

2

)
− u(a)

]
.

=
(
1 +

1
2r+1

)
(b− a)r+1

[
u
(a + b

2

)
− u(a)

]
. (4.4)

Combining (4.1) and (4.4), we get
∣∣∣∣
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x)− u(a+b
2 )− u(a)
b− a

∫ b

a

f(t) dt

∣∣∣∣

≤ H

r + 1

(
1 +

1
2r+1

)
(b− a)r

[
u
(a + b

2

)
− u(a)

]
,

which is required.
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Corollary 6. Let f : [a, b] → R be a K-Lipschitzian mapping on [a, b], and
u : [a, b] → R be a monotonic mapping on [a, b], where L > 0 is given. Then the
following inequality holds

|GS(f ;u)| ≤ 5K

8
(b− a)

[
u
(a + b

2

)
− u(a)

]

5. A numerical quadrature formula for the Riemann-Stieltjes integral

In this section, we use Theorems 4–6 to approximate the Riemann–Stieltjes
integral

∫ a+b
2

a
[ f(x)+f(a+b−x)

2 ] du(x), in terms of the Riemann integral
∫ b

a
f(t) dt.

Theorem 7. Let f, u be as in Theorem 4 and let
Ih := {a = x0 < x1 < · · · < xn−1 < xn = b}

be a partition of [a, b]. Denote hi = xi+1 − xi, i = 1, 2, . . . , n− 1. Then we have
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x) = An(f, u, Ih) + Rn(f, u, Ih),

where

An(f, u, Ih) =
n−1∑

i=0

u(xi+1+xi

2 )− u(xi)
hi

×
∫ xi+1+xi

2

xi

f(t) dt (5.1)

and the remainder Rn(f, u, Ih) satisfies the estimation

|Rn(f, u, Ih)| ≤ H

r + 1
· [ν(h)]r ·

a+b
2∨
a

(u),

where ν(h) = maxi=0,n−1{hi}.
Proof. Applying Theorem 4 on the intervals [xi, xi+1], i = 1, 2, . . . , n − 1, we

get
∣∣∣∣
∫ xi+1+xi

2

xi

f(x) + f(a + b− x)
2

du(x)− u(xi+1+xi

2 )− u(xi)
hi

∫ xi+1+xi
2

xi

f(t) dt

∣∣∣∣

≤ H

r + 1
· hr

i ·
xi+1+xi

2∨
xi

(u).

Summing the above inequality over i from 0 to n − 1 and using the generalized
triangle inequality, we deduce that∣∣∣∣

∫ a+b
2

a

f(x) + f(a + b− x)
2

du(x)−An(f, u, Ih)
∣∣∣∣

≤ H

r + 1

n−1∑

i=0

hr
i ·

xi+1+xi
2∨
xi

(u) ≤ H

r + 1
max

i=0,n−1
{hr

i } ·
n−1∑

i=0

xi+1+xi
2∨
xi

(u)

=
H

r + 1
[

max
i=0,n−1{hi}

]r ·
a+b
2∨
a

(u) =
H

r + 1
[ν(h)]r ·

a+b
2∨
a

(u),

and the theorem is proved.
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Theorem 8. Let f, u be as in Theorem 5. Let Ih be as above. Then we have
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x) = An(f, u, Ih) + Rn(f, u, Ih),

where An(f, u, Ih) is defined in (5.1) and the remainder Rn(f, u, Ih) satisfies the
estimation

|Rn(f, u, Ih)| ≤ LH

(r + 1)(r + 2)
· [ν(h)]r · (b− a),

where ν(h) = maxi=0,n−1{hi}.
Proof. Applying Theorem 5 on the intervals [xi, xi+1], i = 1, 2, . . . , n − 1, we

get
∣∣∣∣
∫ xi+1+xi

2

xi

f(x) + f(a + b− x)
2

du(x)− u(xi+1+xi

2 )− u(xi)
hi

∫ xi+1+xi
2

xi

f(t) dt

∣∣∣∣

≤ LH

(r + 1)(r + 2)
· hr+1

i .

Summing the above inequality over i from 0 to n − 1 and using the generalized
triangle inequality, we deduce that

∣∣∣∣
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x)−An(f, u, Ih)
∣∣∣∣ ≤

LH

(r + 1)(r + 2)

n−1∑
i=0

hr+1
i

≤ LH

(r + 1)(r + 2)
[

max
i=0,n−1

{hi}
]r ·

n−1∑
i=0

hi ≤ LH

(r + 1)(r + 2)
[ν(h)]r · (b− a),

and the theorem is proved.

Theorem 9. Let f, u be as in Theorem 6 and let Ih be as above. Then we
have ∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x) = An(f, u, Ih) + Rn(f, u, Ih),

where An(f, u, Ih) is defined in (5.1) and the remainder Rn(f, u, Ih) satisfies the
estimation

|Rn(f, u, Ih)| ≤ H

r + 1

(
1 +

1
2r+1

)
[ν(h)]r

[
u
(a + b

2

)
− u(a)

]
,

where ν(h) = maxi=0,n−1{hi}.
Proof. Applying Theorem 6 on the intervals [xi, xi+1], i = 1, 2, . . . , n − 1, we

get
∣∣∣∣
∫ xi+1+xi

2

xi

f(x) + f(a + b− x)
2

du(x)− u(xi+1+xi

2 )− u(xi)
hi

∫ xi+1+xi
2

xi

f(t) dt

∣∣∣∣

≤ H

r + 1

(
1 +

1
2r+1

)
· hr

i

[
u
(xi + xi+1

2

)
− u(xi)

]
.
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Summing the above inequality over i from 0 to n − 1 and using the generalized
triangle inequality, we deduce that

∣∣∣∣
∫ a+b

2

a

f(x) + f(a + b− x)
2

du(x)−An(f, u, Ih)
∣∣∣∣

≤ H

r + 1

(
1 +

1
2r+1

) n−1∑

i=0

hr
i

[
u
(xi + xi+1

2

)
− u(xi)

]

≤ H

r + 1

(
1 +

1
2r+1

)[
max

i=0,n−1
{hi}

]r ·
n−1∑

i=0

[
u
(xi + xi+1

2

)
− u(xi)

]

≤ H

r + 1

(
1 +

1
2r+1

)
[ν(h)]r

[
u
(a + b

2

)
− u(a)

]
,

and the theorem is proved.
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