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ON LINEAR MAPS APPROXIMATELY PRESERVING
THE APPROXIMATE POINT SPECTRUM
OR THE SURJECTIVITY SPECTRUM

M. Elhodaibi, A. Jaatit

Abstract. Let X and Y be superreflexive complex Banach spaces and let £(X) and £(Y) be
the Banach algebras of all bounded linear operators on X and Y, respectively. We describe a linear
map ¢ : L(X) — L(Y) that almost preserves the approximate point spectrum or the surjectivity
spectrum. Furthermore, in the case where X =Y is a separable complex Hilbert space, we show
that such a map is a small perturbation of an automorphism or an anti-automorphism.

1. Introduction

Many authors are interested in describing additive or linear maps that pre-
serve, compress or depress some distinguished parts of the spectrum of an operator
acting between Banach spaces (see, among others [2—4, 9]). Among these parts, the
approximate point spectrum and the surjectivity spectrum are of special interest.

Recently, in [1], linear maps on £(X), which almost preserve or almost com-
press the spectrum are studied. Motivated by the approximate versions of pre-
serving and compressing the spectrum discussed in [1], we identify in this note the
approximately multiplicative or anti-multiplicative linear maps among all linear
maps ¢ : L(X) — L(Y) that almost preserve or almost compress the approximate
point spectrum or the surjectivity spectrum.

2. Notations and preliminaries

Let X and Y be two complex Banach spaces and let £(X,Y") be the Banach
space of all bounded operators from X into Y. As usual, we abbreviate £(X, X)
to L(X). Let disty denote the Hausdorff distance (on the set of compact subsets
of C) and Bx the closed unit ball of X. We write D = {z € C:| z |< 1}.

Recall that the minimum modulus and the surjectivity modulus of an operator
T € L(X,Y) are defined respectively, see 7], by
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334 On linear maps approximately preserving ...

m(T) =inf{||Tz|| : x € X, ||z|| =1} and q(T) =sup{r >0:rBy C TBx}.
Note that m(7) > 0 if and only if T is bounded below, i.e., T is injective and has
closed range, and q(7T") > 0 if and only if T is surjective. The approximate point
spectrum and the surjectivity spectrum of T' are given respectively by o,,(T) =
{AeC:m(T—X) =0} and 04 (T) = {) € C: q(T — A) = 0}. Recall also that
m(T*) = q(T) and q(T*) = m(T) where T* € L(Y*, X*) is the adjoint of T acting
between the dual spaces of Y and X.

Let T' € L(X,Y). We introduce the two following subsets of C denoted o, (T')
and o€, (T) and defined by

oep(T):={AeC:m(T - \) <e}
and

oo, (T):={XeC:q(T -\ <e€}
for € > 0. We use the terms pseudo approzximate point spectrum and pseudo
surjectivity spectrum to designate them respectively. It is clear that o,,(T) C

06p(T) and 04, (T) C 05, (T).
Throughout this paper 0.(T) denotes 04,(T) or 04, (T) and c¢(T) denotes
oep(T) or 0§, (T). Let w denote the minimum modulus if * = ap and let it denote

the surjectivity modulus if * = su.
We will make an extensive use of the following result.

LEMMA 2.1. Let T € L(X). Then the following assertions hold.
) 0(T) = Moag 05(T).

) 0(T) C o2(T) for all 0 < €1 < €a.

) act(T) = ULale(ozT) for all a #0 and € > 0.
(iv) 0.(T)+ €D C oS(T) for all e > 0.

) ol(T+S) C oISl (T) for alle >0 and S € L(X).

) 0x(T+S) Coi(T) for alle >0 and S € L(X) with ||S] < e.

) oS(T) C U{o.(T+S5):5 € L(X),||S|| <e} foralle > 0.

Proof. Tt is immediate to check the assertions (i), (ii) and (iii).

Let T € L(X). It is easy to see that w(T + S5) > w(T) — ||| for all S € L(X).

Let A € 0.(T) and let o € C such that |a| < €. It turns out that w(T — X\ —
a) — |la] <w(T — ) =0 and so w(T — A — a) < € which yields (iv).

In order to check (v), let S € £(X) and assume that \ ¢ oISl (T'). Then we
have w(T — A\) > €+ ||:S||. Therefore we get w(T +S —X) > w(T —X) —||S]| > e.
Thus A ¢ oS(T + 5).

Now, let S € L£(X) with ||S|| < e and A ¢ 0¢(T). Then w(T + S — \) >
w(T —X) —||S]| > € —||S]| > 0. This completes the proof of the assertion (vi).

IfXN¢o.(T+S) forall S € L(X) with [|S]| < ¢, then w(T + 5 — A) > 0 for
all S € L(X) with ||S|| < e. Observe that w(T") = sup{r > 0,w(T — S) > 0 for all
S e L(X,Y),||S|| <r}, see [7, Proposition I1.9.10]. Hence we get that w(T'—X) > ¢
and so (vii) holds. m
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Let us give another basic tool that will be used later in this paper.

Let U C P(N) be a free ultrafilter on N and denote by py, the finitely additive
{0, 1}-valued measure on N, given by py(4) =11if A € Y.

We consider the Banach space £*°(X) of all bounded sequences (z,,) with z,, €
X for all n € N, equipped with the norm ||(z,)|| := sup,, ||zn]- Then Ny (X) =
{(zn) € €°°(X) : limy ||z || = 0} is a closed linear subspace of £>°(X). The quotient
Banach space XY := (*°(X)/Ny(X) is called the ultrapower of X with respect to
U. We continue to denote the equivalence class of (x,) also by (z,). It should
cause no confusion if we denote (2, )nenm by & where py (M) =1 and x,, € X for
all n € M. The norm on XY is given by

2]l =Tim [[za]| - where &= (z,) € XU,

The ultrapower £(X)¥ is a Banach algebra with respect to the product
TS = (T,S,) where T = (T},), S=(5,)eL(X)Y.

There exists a canonical isometric linear map £(X, Y)Y — L£(XY, YY) which
is defined by

T(2) = (Tpx,) where T = (T,) € L(X, Y)Y and &= (z,) € X%.

We consider £(X,Y)¥ as being a closed subspace of £(XY, Y¥). For more details
on ultrapowers, we refer the reader to [10].

LEMMA 2.2. Let X and Y be complez Banach spaces and T = (T,) €
LX, Y)Y C L(XY, YY), Then:
(i) m(T) = limg, m(T,.).
(it) a(7) = limy a(Ty).

Proof. (i) According to [7, Theorem I1.9.11], we have

m(T) = inf{||TS||,S € L(Y), ||S| = 1}.
Let € > 0. Then for each n € N there exists S,, € L(Y) with ||S,|| =1 and
|7 Snll < m(Ty,) + e
Let S = (S,) € L(Y)H. Since ||S| = 1, it turns out that
(1) < 78] = tim 1,5, | < lmm(T,) +

which gives m(T") < limy m(7},).
Let T = (T,) € L(X, Y)Y C L(XY,YY). Let & = (z,,) € X¥. We have
T#| = lim | Tpan|| > limm(7, = lim m(T},)||&
172 = lim [ Town|| 2 limm(Ty) |2, = limm(T,) 2]

and so m(7) > limy, m(T5,).
(ii) See [1, Lemma 2.5]. m
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LEMMA 2.3. Let X be a complex Banach space, and let S = (Sn)j“ =(T,) €
LX) c L(XY). Suppose that there are bounded sequences of positive numbers

(€n) and (8,) such that o< (Sy) C o (T},) almost everywhere on N. Then o<(S) C
FR

O«

(T) whenever ¢, > 0 are such that ¢ < limy €, and § > limy, d,,.

Proof. Let 0 < € < ¢ < limye, and limy 6, < & < 6. So € < ¢, and
6n < & almost everywhere. Set °o€ ((Sy,)) == {limy Ay : A € o€ (S,)  pizs-almost
everywhere }. First we establish that o€(S) C °0¢ ((S,)). Let A ¢ °0€ ((S,)), so
A o€ (Sn) piy-almost everywhere and hence w (S, —A) = €’ fiys-almost everywhere.
Therefore w(S — \) = hmuw(S —AN)>€>eie, A o(S).

Now we show that °0¢ ((S,)) C 0(T). Let A € °0¢ ((S,)), ie., A = limy A,
where \, € o€ (S,) py-almost everywhere. According to Lemma 2.1 (ii) and the
hypothesis of this Lemma, we get

An € 05 (S,) C 0 (S,) C o2 (T,) € 69 (T,) almost everywhere on N.
Clearly, T — X = (T,, — \). We have so w(T' — \) = limy w(T},, — \,) < & < 6. This
implies that A € ¢%(7'). m

The two following lemmas are derived from [1], and adapted to pseudo approx-

imate point spectrum and pseudo surjectivity spectrum.

LEMMA 2.4. Let X and Y be complex Banach spaces and ¢ : L(X) — L(Y)
be a surjective linear map such that
o.(o(T)) Co(T) forall TecL(X),|T|=1
and some 6 > 0. Then q(¢) <146 and
o (&(T)) € AWTITOTE (Y for all T € £(X),
€>0and 0 <k <q(¢).

Proof. Let T € L£(X),e > 0and 0 < k < q(¢). Let then k < 7 < q(¢). Let
A€ gi(¢(T)). According to Lemma 2.1 (vii), there exists S € L(Y) with|S]| < e
such that A € 0, (¢(T)+S). It is clear that S = ¢(R) for some R € L(X) such that
|R|| < £. Indeed, using the definition of q(¢) and the fact that ||1S]| < 1, there is
R' € L(X) with ||[R'[| < 1 such that q(¢)1S = ¢(R'), i.e., S = P(Gz '), then we
may take R = ¢ )R/

Now, let 0 < p < (14 6)(7 — £). We first treat the case where T'+ R # 0. By
Lemma 2.1 (ii),(iii),(v) and our hypothe51s we have

A€o (d(T)+ S) =0.(¢(T+ R))

R

T+ R 5| T+R)|| S| T+R|+p
C |IT + Rllo? ( )—a* (T+R)C o’ (T+ R)
|7+ R|
5(HTH+

Co )+p(T+R) f(HTH+§)+p+$(T) - gf(”TH"'iH%(T),
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If T+ R = 0, the inclusion o, (¢(T + R)) c o2UTIH7)%e(

rest of inclusions can be checked as in the precedent case.

Since eD = o5(¢(0)) C Uf(HOH—F%H%(O) =D foralle > 0and 0 < k < q(¢),
then q(¢) <1+4.m

T + R) is obvious. The

LEMMA 2.5. Let X and Y be complex Banach spaces and ¢ : L(X) — L(Y)
be a continuous linear map such that

0.(T) Col(¢(T)) forall T eL(X),|T|=1
and some 6 > 0. Then 1 —0 < ||¢|| and

oS(T) C o3 ITIFITe(y(TY)  for all T € £L(X),
e>0andv > |||

Proof. Let T € L(X),e > 0 and v > ||¢||. Let then k < p < (v —||@]|)e. Let
A € 0¢(T). According to Lemma 2.1 (vii), there exists S € L(Y) with||S|| < e such
that A € 0. (T + 5).

We proceed as in the proof of Lemma 2.4. If T'4+ S # 0, we get, by Lemma
2.1 (i), (vi), that

T+5
AEU*(T+S):||T+S|J*< i )

T+ 5]
I + Sllo? (¢ (Hﬁﬁn)) = TSN G(T 1 §)) € TSI (5T 1 5))

c a£(||T|\+e)+p(¢(T) +¢(8)) C UE(HT\IJrerJrH(bHe(¢(T)) c Of(I\T|\+6)+Ve(¢(T))

If T+ S = 0, obviously, o.(T+S) C 0£<HT+SH+”(¢)(T+S)) and it follows, similarly
to the precedent case, the desired inclusion. By taking 7" = 0 in the inclusion
checked, we have

eD = 5<(0) C o3IO (4(0)) = (5 + v)eD

for all e > 0 and v > ||¢||. Then 1 —6 < ||¢||. m
The following result (see for instance [2, 3, 4], will be important in the sequel.

LEMMA 2.6. Let X and Y be complex Banach spaces and let A and B be
standard operator algebras on X and Y, respectively. Let ¢ : A — B be a linear
map. Suppose that either of the following conditions hold:

(1) ¢: A — B is surjective and o.(¢(T)) = 0.(T) for all T € A or
(2) ¢: A — B is bijective and o.(¢(T)) C o.(T) for all T € A or
(3) ¢: A— B is bijective and 0.(T) C 0.(¢(T)) for all T € A.

Then either there exists an invertible operator A € L(X,Y) such that ¢(T) =
AT A=Y for all T € A or there exists an invertible operator A € L(X*,Y) such that
&(T) = AT*A~L for all T € A. In the last case, X and Y are reflezive.
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3. Main results

Before formulating our results, we introduce the following quantities (see [6]) :

mult(¢) := sup{[|[¢(T'S) — ¢(T)(5)|| : T, S € LX), |T]| = [|S] = 1},
amult(¢) := sup{[[¢(T'S) — ¢(S)o(T)|| : T, 5 € LX), [T = [|S]| = 1}
which allow to measure respectively the multiplicativity and the anti-multiplicativity
of ¢.
The following theorems are given for superreflexive Banach spaces. For details
on this type of spaces, see for instance [5, 11]. Recall that if X is a superreflex-

ive Banach space then the Banach algebra £(X)¥ is an unital standard operator
algebra on XY (see [1, Lemma 2.2 .

PROPOSITION 3.1. Let X and Y be complex Banach spaces. Let (¢,,) be a

sequence of surjective linear maps from L(X) onto L(Y) and let qAS be the linear
map (¢,,) from LX) C L(XY) into LYY C L(YY). The following assertions
hold.

(i) If there exist k, K > 0 and a sequence of positive numbers (e,,) tending to
0 such that

0x(0n(T)) C o (T)  forall T e L(X),|T| =1,
q(pn) > k and [|pn]| < K
for each n € N, then
o (H(T)) C ou(T) forall T =(T,)e L(X)H.

(i) If there exist K > 0 and a sequence of positive numbers (e,) tending to 0
such that

0.(T) C 0% (6a(T)) for all T € L(X),|T] =1
and ||énl| < K

for each n € N, then

0.(T) C o (P(T)) forall T =(T,)e L(X)H.

Proof. (i) Let T = (T,,) € L(X)". Let € > 0 and let p such that e < p <
(k + 1)e. Applying Lemma 2.4, we obtain

o en(ITnll+g51)+ w51

o (On(Th)) C o (T,) forall neN.
Since limyy e, (|| T || + kL-ﬁ) + k—f_l < limy e, (K + k%_l) + k—il = k—il < ¢, it follows

by Lemma 2.3, that

ek N N

o7 (B(T) € oS(D).
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Consequently, by Lemma 2.1 (i), it turns out that

0. ($(T)) = Nes00E T (S(T)) C Neso0s(T) = 0(T),

as desired.

(ii) Let € > 0 and let p such that € < p < (K~! + 1)e. Applying Lemma
2.5 instead of Lemma 2.4, and using the same technique as in the proof of (i), we
conclude the proof of (ii). m

In the following theorem, we describe linear maps that almost compress the
approximate point spectrum or the surjectivity spectrum.

THEOREM 3.2. Let X and Y be superreflerive Banach spaces. Then for each
K, e > 0 there is § > 0 such that if ¢ : L(X) — L(Y) is a bijective linear map with

0. (¢(T)) Cod(T) forall TeL(X),|T|=1
and ||¢]|, |71 < K, then
min{mult(¢), amult(¢)} < e.

Proof. Suppose that there exist K,7 > 0 and a sequence (¢,) of bijective
linear maps from £(X) onto L(Y) verifying

0. (¢(T)) CoZ (T) forall T e L(X),|T| =1,
pnll, 1671 < K

and
min{mult(¢, ), amult(¢,)} > 7

for each n € N. We consider the map
¢ = (6n) : LX) C LXY) = L) € LYY).
The linear map ¢ is continuous and by [8, Lemma 2.1] it is bijective with inverse
given by ¢~! = (4, ).
Observe that q(¢n) = [|¢; 1| ™" > K~ ! foreachn € N. Let T = (T},) € L(X)Y.
Using Proposition 3.1 (i), we obtain that

0.(o(T)) C 0. (T).

Since £(X)¥ and L(Y)Y are unital standard operator algebras on XY and YY¥
respectively, we get, by Lemma 2.6, that ¢ is either a homomorphism or an anti-

homomorphism. Since mult(¢) = limy, mult(¢,) and amult(¢) = limy amult(ep,)
(see [1, Lemma 3.4]), we have

lizin min{mult(¢, ), amult(¢,)} = min{lizjr{n mult(¢y ), liLrln amult(¢,)}
= min{mult(¢), amult(¢)} = 0

which yields a contradiction. m
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Note that a Hilbert space is supereflexive. As an application of the above
theorem in the context of a Hilbert space, we give the following result.

COROLLARY 3.3. Let H be a separable Hilbert space. Then for each K,e > 0
there is § > 0 such that if ¢ : L(H) — L(H) is a bijective linear map with

0. (o(T)) C o(T) forall T e L(X),|T||=1

and ||¢]], |7 || < K, then ||¢ — || < € for some automorphism or anti-automor-
phism ¢ : L(H) — L(H).

Proof. The hypothesis of this Corollary and Theorem 3.2 give immediate-
ly for each K, > 0 that min{mult(¢),amult(¢)} < ¢’. It is well known that
jmult(¢) < min{mult(¢), amult(¢)} where jmult(¢) := sup{||¢(T?) — ¢(T)?| : T €
L(H),|T|| =1} (see [6]). Therefore jmult(¢) < ¢’

Let € > 0 and let ¢ = min{e, ||¢p~1||7}. Clearly q(¢) = [|¢7 |7 > K1, we
obtain, by [1, Corollary 3.10], that ||¢ — ®|| < € for some epimorphism or anti-
epimorphism ¢ : L(H) — L(H). Since ¢ is invertible and ||¢ — 9| < [|¢~ 1|72,
then 1 is invertible. Consequently 1 is either an automorphism or an anti-
automorphism. m

If we replace ¢(T') by T and T by ¢(T') in Theorem 3.2 we obtain, by using
Lemma 2.5 instead of Lemma 2.4, the following theorem.

THEOREM 3.4. Let X and Y be superreflexive Banach spaces. Then for each
K,e >0 there is 6 > 0 such that if ¢ : L(X) — L(Y) is a bijective linear map with

0.(T) Cod($(T)) forall T e L(X),|T|=1
and |||, 67| < K, then
min{mult(¢), amult(¢)} < e.

Using Theorem 3.4 and the same technique as in Corollary 3.3, we get the
following corollary.

COROLLARY 3.5. Let H be a separable Hilbert space. Then for each K, e > 0
there is § > 0 such that if ¢ : L(H) — L(H) is a bijective linear map with

0.(T) C o2(H(T)) forall T e L(H),|T|=1

and ||¢||,|¢7|| < K, then ||¢p — || < € for some automorphism or anti-automor-
phism 1 L(H) — L(H).

The following theorem gives a description of linear maps which almost preserve
the approximate point spectrum or the surjectivity spectrum.

THEOREM 3.6. Let X and Y be superreflerive Banach spaces. Then for each
k,K,e > 0 there is 6 > 0 such that if ¢ : L(X) — L(Y) is a surjective linear map
with

dist g (0. (¢(T)),0.(T)) <6 forall T e L(X),||T||=1,
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q(¢) > k and ||¢]| < K, then
¢ s injective and min{mult(¢), amult(¢)} < e.

Proof. Suppose that there exist k, K, 7 > 0 and a sequence (¢,) of surjective
linear maps from £(X) onto L£(Y) satisfying

H?}ﬁgl dist g (04 (dn (1)), 0.(T)) — 0, a(Pn) >k, |onll < K

and
¢n, is not injective or min{mult(¢, ), amult(¢,)} > 7

for each n € N. Let €, be a sequence of positive numbers such that

lime, =0 and sup disty(o.(¢pn(T)),0.(T)) <€, forall neN.
I7]1=1

It is well known that disty(0«(¢n(T)),0+(T)) = max{inf{e > 0, o0.(¢,(T)) C
0.(T) + eD},inf{e > 0, 0.(T) C 0x(én(T)) + eD}}. So, by Lemma 2.1 (iv), we
get for all T € £(X),||T]] =1 that

x(Pn(T)) C ou(T) + €,D C 057 (T)
and
0+(T) C 04(én(T)) + €uD C 0" (60 (T))
for each n € N.
Now, we consider the continuous linear operator
b= (¢n): LX) C LXY) — LYY C LYY).

Since q(¢) = limy q(¢n) > k > 0, so ¢ is surjective. By Proposition 3.1 (i), (ii), we
obtain that for all T = (T},) € L(X )

0.(¢(T)) = 0. (T).
Thus, Lemma 2.6 yields that g?) is either an isomorphism or an anti-isomorphism.

We have then that ¢ is bijective and so (¢,) is bijective, thus (¢, ) is injective,
furthermore we have

liZ}{n min{mult(¢,), amult(¢,)} = min{liLI{n mult(¢y, ), lizfln amult(¢,)}

= min{mult(¢), amult(¢)} = 0
which is a contradiction. m
COROLLARY 3.7. Let H be a separable Hilbert space. Then for each k, K,e > 0
there is § > 0 such that if ¢ : L(H) — L(H) is a surjective linear map with
distg (o« (d(T)),04(T)) <& forall T e L(H),|T| =1,
q(@) > k and ||¢|| < K, then ||¢ — ¢| < € for some automorphism or anti-
automorphism ¢ : L(H) — L(H).

Proof. Using Theorem 3.6 and [1, Corollary 3.10], we proceed as in the proof
of Corollary 3.3. m
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