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β-GREEDOIDS

Talal Al-Hawary

Abstract. In this paper, we introduce the notion of β-greedoids and discuss four basic
constructions of β-greedoids namely, deletion, contraction, direct sum and ordered sum. We show
that the operations of deletion and contraction commute and the direct sum and ordered sum
of β-greedoids G1 and G2 are interval β-greedoids if and only if G1 and G2 are both interval
β-greedoids. We also give a necessary and sufficient condition for the direct sum and ordered sum
of balanced β-greedoids to be balanced.

1. Background

We begin with some background material, which follows the terminology
and notation in [7]. A greedoid G is a pair (E, F) where E is a nonempty set and
F ⊆ 2E is a set system satisfying the following conditions.
(G1) For every non-empty X ∈ F, there is an x ∈ X such that X − x ∈ F.
(G2) For X, Y ∈ F such that the cardinality |X| of X is greater than the cardi-

nality |Y | of Y , there is an x ∈ X − Y such that Y ∪ x ∈ F.
Thus every matroid is a greedoid and a greedoid is a matroid if and only if

the axiom
(M1) If X ∈ F and Y ⊆ X, then Y ∈ F

is satisfied. For an introduction on matroids the reader is referred to [7] and [8].
Observe that axioms M1 and G2 together define a matroid and axiom G1 and
(G2’) For X, Y ∈ F such that |X| = |Y | + 1, there is an x ∈ X − Y such that

Y ∪ x ∈ F

define a greedoid. The set E is called the ground set of G and the sets in F are
called feasible. For A ⊆ E, the rank of A is r(A) = max{|X| : X ⊆ A, X ∈ F}. We
remark that several structural properties of greedoids related to the rank function
was discussed in [5] and we point out that the usual (feasible) rank function for
a greedoid is not monotone. Thus A is feasible if and only if r(A) = |A| and
it is called a basis if r(A) = |A| = r(G). The collection of all basis of G is
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denoted by B(G). Axiom G2 implies that bases elements have the same size r (or
r(G)). Unfortunately, the rank function of a general greedoid need not satisfy the
semimodularity:

r(A ∩B) + r(A ∪B) ≤ r(A) + r(B) for every A,B ⊆ E.

On the other hand, the basis rank of A is defined to be β(A) = max{|X ∩A| : X ∈
F}, which is the maximal size of the intersection of A with a basis, does satisfy the
semimodularity:

β(A ∩B) + β(A ∪B) ≤ β(A) + β(B) for every A, B ⊆ E.

Moreover, β(A) ≥ r(A). For A ⊆ E, define

F \A := {X ⊆ E −A : X ∈ F},
and, if A is feasible, define

F/A := {X ⊆ E −A : X ∪A ∈ F}.
Then it is easy to see that the set systems obtained in both cases are greedoids on
the ground set E −A. The greedoid G \A = (E −A, F \A) is called G delete A or
the restriction of G to E −A and G/A = (E −A,F/A) is called G contract A. For
all X ⊆ E −A, it is easy to see that

βG\A(X) = β(X) and βG/A(X) = β(X ∪A)− β(A).

A greedoid G = (E, F) is called an interval greedoid if it satisfies the interval
property: if A ⊆ B ⊆ C, A,B,C ∈ F, x ∈ E −C, A ∪ x ∈ F, and C ∪ x ∈ F, imply
that B ∪ x ∈ F. Thus, matroids are interval greedoids.

Operations as basic as deletion and contraction are those of direct sum and
ordered sum. Let G1 = (E1,F1) and G2 = (E2, F2) be two greedoids on disjoint
ground sets. Then their direct sum is the greedoid G1 ⊕G2 = (E1 ∪ E2, F1 ⊕ F2),
where

F1 ⊕ F2 = {X1 ∪X2 : X1 ∈ F1 and X2 ∈ F2},
and the ordered sum of G1 and G2 is the greedoid G1 ⊗G2 = (E1 ∪ E2, F1 ⊗ F2),
where

F1 ⊗ F2 = F1 ∪ {B ∪X : B ∈ B(G1), X ∈ F2}.
Observe that ∅ ∈ F1 ∩ F2 and F1 ⊗ F2 ⊆ F1 ⊕ F2, thus G1 ⊗ G2 is a subgreedoid
of G1 ⊕G2.

Remark 1. Although we will only consider greedoids on disjoint ground sets
when talking about the operations of direct sum and ordered sum, these operations
can easily be defined on the disjoint union of the ground sets of any greedoids.

The density of a loopless greedoid (i.e., has no elements of rank zero) G =
(E, F) is given by d(G) := |G|

β(G) . A greedoid G is balanced if

d(K) ≤ d(G) for all non-empty subgreedoids K of G.

Greedoids were invented in 1981 by Korte and Lovász [5]. Originally, the
main motivation for proposing this generalization of the matroid concept came from
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combinatorial optimization. Korte and Lovász had observed that the optimality of
a “greedy” algorithm could in several instances be traced back to an underlying
combinatorial structure that was not a matroid—but (as they named it) a greedoid.
In 1991, Korte, Lovász and Schrader [4] introduced greedoid as a special kind of
antimatroids. In 1992, Björner and Ziegler [7] explained the basic ideas and gave
a few glimpses of more specialized topics related to greedoids. Also, they studied
the rank function and some connections to other rank functions (a closure based
function and a kernel rank function). In 1992, Broesma and Li [2] extended the
“connectivity” concept from matroids to greedoids and in 1997, Gordon [3] extended
Crapo’s β invariant from matroids to greedoids.

In this paper, we introduce the notion of β-greedoids and discuss four basic
constructions of β-greedoids namely; deletion, contraction, direct sum and ordered
sum. We define the notion of strong maps and the kernel for strong maps and then
show that kernel notion coincides with the categorical notion of kernel. We show
the operations of deletion and contraction commute and the direct sum and ordered
sum of β-greedoids G1 and G2 are interval β-greedoids if and only if G1 and G2 are
both interval β-greedoids. We also give a necessary and sufficient condition for the
direct sum and ordered sum of balanced β-greedoids to be balanced. We extend
the density concept from matroids and graphs to greedoids. Finally, we study some
greedoid preserving operations.

2. β-greedoids

We begin this section by defining the closure of a given set in a greedoid and
use that to define flats and our main notion of greedoid which we call β-greedoid.

Definition 1. Let G = (E, F) be a greedoid and A ⊆ E. The closure of A
in G is defined to be A = {x ∈ E : β(A ∪ x) = β(A)} and A is called a β-flat of G
if β(A ∪ x) = β(A) + 1 for every x ∈ E \A.

Next, we show that the closure operation is monotone.

Lemma 2. Let G = (E, F) be a greedoid and A,B ⊆ E such that A ⊆ B.
Then A ⊆ B.

Proof. Let A ⊆ B and x ∈ A − A. Then β(A ∪ x) = β(A). Thus if BA

is a basis for A, then BA is a basis for A ∪ x. Now B ∪ x has a basis BB∪x

that contains BA, but not x. Since BB∪x must be a basis of B, it follows that
β(B ∪ x) = |BB∪x| = β(B). Therefore x ∈ B and hence A ⊆ B.

Definition 3. A greedoid G = (E, F) is a β-greedoid if A∪B = A ∪B for
all subsets A and B of E.

We first show that a β-greedoid can be defined in terms of flats. Then we
use this definition to characterize all β-greedoids. For terminology and notation
not explained here we refer the reader to [7] or [8].
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Lemma 4. A greedoid G is a β-greedoid if and only if unions of flats of G
are again flats of G.

Proof. The forward implication is obvious, we show the reverse. We first
note that by Lemma 2, for all A,B ⊆ E , we have A ⊆ A ∪B and B ⊆ A ∪B; thus,
A ∪ B ⊆ A ∪B. Hence, we need to show the reverse inclusion holds whenever the
union of flats is a flat of G. So, assume A ∪B is a flat of G. Now, A ∪B ⊆ A ∪B

implies A ∪B ⊆ A ∪B by Lemma 2. By assumption, A ∪B ⊆ A ∪ B and hence
A ∪B ⊆ A ∪B.

As for a full greedoid, β(A) = |A|, full greedoids are β-greedoids.

Definition 5. Let G be a greedoid. If x and y are not loops of G, then x
and y are parallel elements if x ∈ {y} and y ∈ {x}. By G̃ we mean the greedoid G
after deleting all loops and identifying parallel elements.

One can easily check that adding or deleting loops and parallel elements
preserves the β property, namely;

Lemma 6. A greedoid G is a β-greedoid if and only if G̃ is a β-greedoid.

Next, we define modular greedoids and compare them with β-greedoids.
Definition 7. A greedoid G is modular if every flat A in G is modular,

that is if for every other flat B, β(A) + β(S −A) = β(G).

Lemma 8. For a greedoid G = (E, F), the following are equivalent:
(1) G is modular.
(2) For all flats A and B such that A∩B = ∅, we have β(A∪B) = β(A)+β(B).
(3) For every flat A and every subset B such that A ∩B = ∅ and A ∪B = E,

we have β(A ∪B) = β(A) + β(B).

Proof. (1) ⇒ (2) and (2) ⇒ (3) are trivial. We shall show (3) ⇒ (2) and omit
the similar proof that (2) ⇒ (1). Assume that (3) holds, but (2) does not. Let A
and B be flats for which A∩B = ∅ and β(A∪B) 6= β(A)+β(B). By (3), A∩B 6= ∅
or A ∪B 6= E and so β(X) + β(Y ) < β(G). Let Z be a basis for G/A ∪ B. We
show B ∪ Z ∩ A = ∅ and B ∪ Z ∪A = E. Clearly B ∪ Z ∪A = E. Now suppose
that x is a non-loop element of B ∪ Z ∩ A. Then x /∈ B since A ∩B = ∅. Thus if
W is a basis of B, then W ∪x is feasible in G|A∪B . But Z ∪W ∪x is feasible in G,
a contradiction to the fact that x ∈ B ∪ Z. Hence B ∪ Z ∩A = ∅.

Theorem 9. A β-greedoid is a modular greedoid.

Proof. Let G be a β-greedoid, and let A and B be flats in G such that
A∩B = ∅. By the semimodular property, we have β(A∪B) ≤ β(A)+β(B).Without
loss of generality, we may assume that β(A) = n and β(B) = m where m ≥ n.
Then there exist flats A1, A2, . . . , An−1 and B1, B2, . . . , Bm−1 such that

∅ ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An−1 ⊂ A and ∅ ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bm−1 ⊂ B.



β-greedoids 347

Moreover, these are maximal chains of flats in A and B, respectively. By Lemma 4,
A∪B,Ai∪Bi and A∪Bj are flats in G, for i = 1, 2, . . . , n−1 and j = 1, 2, . . . ,m−1.
Hence,

∅ ⊂ A1 ⊂ A1 ∪B1 ⊂ A2 ∪B1 ⊂ · · · ⊂ An−1 ∪B1

⊂ A ∪B1 ⊂ A ∪B2 · · · ⊂ A ∪Bm−1 ⊂ A ∪B

is a chain of flats in A∪B of size n+m. Therefore, β(A∪B) ≥ n+m = β(A)+β(B).
Thus by Lemma 8, G is modular.

3. Deletion and contraction greedoids

In this section, we study properties of greedoids deletion and contraction
operations and show that these operations commute. We start by proving the
following.

Proposition 10. If BA is a basis for the restriction G|A of G to A, then

F(G/A) = {X ⊆ E −A : G|A has a basis B such that X ∪B ∈ F(G)}
= {X ⊆ E −A : X ∪BA ∈ F(G)}.

Proof. Clearly {X ⊆ E − A : G|A has a basis B such that X ∪B ∈ F(G)}
contains the set {X ⊆ E −A : X ∪BA ∈ F(G)}. Suppose X ∪B ∈ F(G) for some
basis B of G|A. We shall show that X ∈ F(G/A). Clearly X ∪ B is a basis of
X ∪A, so β(X ∪B) = β(X ∪A). Therefore,

βG/A(X) = β(X ∪A)− β(B) = β(X ∪B)− β(B) = |X ∪B| − |B| = |X|,
that is, X ∈ F(G/A). Hence,

{X ⊆ E −A : G|A has a basis B such that X ∪B ∈ F(G)} ⊆ F(G/A).

Finally we show {X ⊆ E−A : X ∪BA ∈ F(G)} contains F(G/A). If X ∈ F(G/A),
then

|X| = βG/A(X) = β(X ∪A)− β(A)

= β(X ∪BA)− |BA|.
Hence |X ∪BA| = β(X ∪BA), so X ∪BA ∈ F(G).

Corollary 11. If BA is a basis for G|A, then the bases of G/A are

B(G/A) = {B ⊆ E −A : G|A has a basis B́ such that B ∪ B́ ∈ B(G)}
= {B ⊆ E −A : B ∪BA ∈ B(G)}.

Observe that B(G\A) is the set of maximal members of {B−A : B ∈ B(G)}
and F(G/A) ⊆ F(G \ A) for every feasible set A in G. Next, we give a necessary
and sufficient condition for the contraction of a feasible set to be the same as the
deletion of that set.
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Proposition 12. If A is a feasible set in G, then

G/A = G \A if and only if β(G \A) = β(G)− β(A).

Proof. Suppose G/A = G \ A and let B be a basis of G \ A. Then B is a
basis of G/A and hence by Corollary 11, B .∪BA is a basis of G for some basis BA

of G|A. Thus

β(G) = |B .∪BA| = |B|+ |BA|
= β(A) + β(G \A).

Suppose β(G\A) = β(G)−β(A). Since F(G/A) ⊆ F(G\A), to show G/A = G\A,
we need only show F(G \ A) ⊆ F(G/A). But if X ∈ F(G \ A), then X is a subset
of a basis B of G \A and B is contained in a basis B .∪B́ of G. Evidently

β(G) = |B́ .∪B| = |B|+ |B́|
= β(G \A) + |B́|.

Since β(G \ A) = β(G) − β(A), we have β(A) = |B́|, that is, B́ is a basis of G|A.
Hence B ∈ B(G/A), so X ∈ F(G/A) and G/A = G \A.

Corollary 13. For all A ∈ F, G/A = G \ A if and only if β(G \ A) ≤
β(G/A).

Proof. If G/A = G \ A, then clearly β(G \ A) ≤ β(G/A). If β(G \ A) ≤
β(G/A), then as F(G/A) is a subset of F(G \A) we must have β(G \A) ≥ β(G/A).
Thus G/A = G \A.

In the next proposition, we show that the operations of deletion and con-
traction commute.

Proposition 14. Let G = (E, F) be a greedoid. Then (G\ Á)/A = (G/A)\
Á = ({X ⊆ E − (Á ∪A) : X ∪A ∈ F},F(G\Á)/A).

Proof. We need only to show (G \ Á)/A and (G/A) \ Á have the same
collections of feasible sets. If X ∈ F(G\Á)/A, then X ⊆ (E− Á)−A and X ∪A ∈ F.

That is, X ⊆ (E − A)− Á and X ∈ FG/A and hence X ∈ F(G/A)\Á. Conversely, if

X ∈ F(G/A)\Á, then X ⊆ (E − A)− Á and X ∈ FG/A. That is, X ⊆ (E − Á)− A

and X ∪A ∈ F and hence X ∈ F(G\Á)/A. Therefore, F(G\Á)/A = F(G/A)\Á.

The straightforward proof of the following proposition is omitted.

Proposition 15. {B1 ∪B2 : B1 ∈ B(G1) and B2 ∈ B(G2)} = B(G1 ⊗G2)
which is equal to B(G1 ⊕G2).

Corollary 16. Let G1 = (E1, F1) and G2 = (E2,F2) be greedoids on
disjoint ground sets. If X ⊆ E1 ∪ E2, then

βG1⊗G2(X) = βG1⊕G2(X) = βG1(X ∩ E1) + βG2(X ∩ E2).
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4. On greedoids preserving operations

In this section, we prove the operations of direct sum and ordered sum take
interval greedoids (resp., β-greedoids) to interval greedoids (resp., β-greedoids). In
fact, we show that the direct sum and ordered sum of greedoids G1 and G2 is an
interval greedoid (resp., β-greedoids) if and only if G1 and G2 are both interval
greedoids (resp., β-greedoids). We also give a condition for the direct sum and
ordered sum of balanced greedoids to be balanced.

For i = 1, 2, we recall (see [7]), for all X ⊆ E1 ∪E2, X
G1⊕G2 = X ∩ E1

G1 ∪
X ∩ E2

G2 .

Theorem 17. Let G1 and G2 be greedoids on disjoint ground sets. Then
G1 ⊕G2 (G1 ⊗G2) is a β-greedoid if and only if G1 and G2 are β-greedoids.

Theorem 18. Let G1 = (E1, F1) and G2 = (E2,F2) be greedoids on disjoint
ground sets. Then G1 and G2 are interval β-greedoids if and only if G1 ⊕G2 is an
interval β-greedoid.

Proof. Suppose G1 and G2 are interval greedoids. If A ⊆ B ⊆ C, A,B, C ∈
F1⊕F2, x ∈ E1 ∪E2−C, A∪x ∈ F1⊕F2, and C ∪x ∈ F1⊕F2, then A = A1 ∪A2,

B = B1 ∪ B2, C = C1 ∪ C2 where Ai, Bi, Ci are feasible sets in Gi for i = 1, 2,
Ai ∪ x ∈ Fi (as Ai ∪ x = (A1 ∪ A ∪ x) ∩ Ei). Similarly, Ci ∪ x ∈ Fi. Moreover,
x ∈ (E1 ∪E2−C1)∩ (E1 ∪E2−C2). Hence suppose x ∈ Ei−Ci for i = 1 or i = 2
and as Ai ⊆ Bi ⊆ Ci, Bi ∪ x ∈ Fi. But

B ∪ x = B1 ∪B2 ∪ x = (B1 ∪ x) ∪B2 ∈ F1 ⊕ F2.

Therefore, G1 ⊕G2 is an interval greedoid.
Suppose G1 ⊕G2 is an interval greedoid. If A ⊆ B ⊆ C, A,B,C ∈ F1, x an

element in E1−C, A∪x ∈ F1, and C∪x ∈ F1, then as∅ ∈ F2, A∪∅ ⊆ B∪∅ ⊆ C∪∅,
A∪∅, B ∪∅, C ∪∅ ∈ F1⊕F2, x ∈ E1 ∪E2−C, (A∪x)∪∅, (B ∪x)∪∅ ∈ F1⊕F2

and as G1 ⊕ G2 is an interval greedoid, B ∪ x = (B ∪ ∅) ∪ x ∈ F1 ⊕ F2. But
B ∪ x = (B ∪ x) ∩ E1 ∈ F1 and hence G1 is an interval greedoid. Similarly, G2 is
an interval greedoid. Now by Theorem 17, the result follows.

Theorem 19. Let G1 = (E1, F1) and G2 = (E2,F2) be greedoids on disjoint
ground sets. Then G1 and G2 are interval β-greedoids if and only if G1 ⊗G2 is an
interval β-greedoid.

Proof. The proof is similar to that of the direct sum one in the preceding
theorem and thus omitted.

We end this section by giving a necessary and sufficient condition for the
direct sum and ordered sum of balanced loopless greedoids to be balanced.

Theorem 20. The direct sum (respectively, the ordered sum) of balanced
loopless greedoids G1 and G2, on disjoint ground sets, is balanced if and only if

d(G1) = d(G2) = d(G1 ⊕G2) (respectively, d(G1) = d(G2) = d(G1 ⊗G2)).
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Proof. We only prove the direct sum part since the order sum one is similar.
Let G1 = (E1,F1) and G2 = (E2, F2) be balanced greedoids on disjoint ground
sets. Suppose that G1⊕G2 is balanced. Evidently d(Gi) ≤ d(G1⊕G2) for i = 1, 2
and thus

|E1|β(G1) + |E1|β(G2) ≤ |E1|β(G1) + |E2|β(G2) and

|E2|β(G1) + |E2|β(G2) ≤ |E1|β(G2) + |E2|β(G2).

Hence |E1|β(G2) ≤ |E2|β(G1) ≤ |E1|β(G2) which implies |E2|β(G1) = |E1|β(G2)
or

d(G2) =
|E2|

β(G2)
=

|E1|
β(G1)

= d(G1) = d(G1 ⊕G2).

Conversely, suppose that d(G1) = d(G2) = d(G1⊕G2). If N is a subgreedoid
of G1 ⊕G2, then N = N1 ⊕N2 where each Ni = N ∩ Ei. Thus d(Ni) = |E(Ni)|

β(Ni)
≤

|E1|
β(G1)

and hence

|E(N1)|β(G1) + |E(N2)|β(G1) ≤ |E1|β(N1) + |E1|β(N2),

and

d(N) =
|E(N1)|+ |E(N2)|

β(N1) + β(N2)
≤ |E1|

β(G1)
= d(G1 ⊕G2).

Therefore, G1 ⊕G2 is balanced.
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