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S.S. Shukla and Akhilesh Yadav

Abstract. In this paper, we study invariant, slant and screen slant lightlike submanifolds of
indefinite para-Sasakian manifolds. We obtain necessary and sufficient conditions for existence of
slant and screen slant lightlike submanifolds of indefinite para-Sasakian manifolds and also provide
non-trivial examples of such submanifolds. We obtain integrability conditions of distributions D
and RadTM on screen slant lightlike submanifolds of indefinite para-Sasakian manifold. Further
we obtain sufficient condition for induced connection on screen slant lightlike submanifolds of
indefinite para-Sasakian manifold to be metric connection.

1. Introduction

A submanifold of a semi-Riemannian manifold is called a lightlike submanifold
if the induced metric on it is degenerate. In [3], Duggal and Bejancu introduced
the geometry of arbitrary lightlike submanifolds of semi-Riemannian manifolds.
Lightlike geometry has its applications in general relativity, particularly in black
hole theory, which gave impetus to study lightlike submanifolds of semi-Riemannian
manifolds equipped with certain structures. Lightlike submanifolds of an indefinite
Sasakian manifold have been studied by Duggal and Sahin in [5]. In 2009, Sahin
[9] study screen slant lightlike submanifolds of indefinite Kaehler manifold. In
[11], authors introduced the notion of an ε-para-Sasakian structure and gave some
examples.

In this article, we study lightlike submanifolds of an ε-para-Sasakian manifold,
which is called an indefinite para-Sasakian manifold. The paper is arranged as fol-
lows. Section 2 contains some basic results and definitions. In Section 3, we study
invariant lightlike submanifolds of an indefinite para-Sasakian manifold giving some
examples. Section 4 deals with slant lightlike submanifolds of an indefinite para-
Sasakian manifold. In Section 5, we study screen slant lightlike submanifolds of an
indefinite para-Sasakian manifold and obtain integrability conditions of distribu-
tions D and RadTM .
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2. Preliminaries

A semi-Riemannian manifold (M, g) is called an ε-almost paracontact met-
ric manifold [11] if there exists a (1, 1) tensor field φ, a vector field V called the
characteristic vector field and a 1-form η, satisfying

φ2X = X − η(X)V, η(V ) = ε, η ◦ φ = 0, φV = 0, (2.1)

g(φX, φY ) = g(X,Y )− εη(X)η(Y ), ∀X, Y ∈ Γ(TM), (2.2)

where ε = 1 or −1. It follows that

g(V, V ) = ε, g(X,V ) = η(X),

g(X, φY ) = g(φX, Y ), ∀X, Y ∈ Γ(TM). (2.3)

Then (φ, V, η, g) is called an ε-almost paracontact metric structure on M .
An ε-almost paracontact metric structure (φ, V, η, g) is called an indefinite

para-Sasakian structure [11] if

(∇Xφ)Y = −g(φX, φY )V − εη(Y )φ2X, ∀X, Y ∈ Γ(TM), (2.4)

where ∇ is Levi-Civita connection with respect to g.
A semi-Riemannian manifold endowed with an indefinite para-Sasakian struc-

ture is called an indefinite para-Sasakian manifold. From (2.4), we get

(∇XV ) = φX, ∀X ∈ Γ(TM). (2.5)

Let (M, g, φ, V, η) be an ε-almost paracontact metric manifold. If ε = 1, then M is
said to be a spacelike ε-almost paracontact metric manifold and if ε = −1, then M
is called a timelike ε-almost paracontact metric manifold. In this paper we consider
indefinite para-Sasakian manifold with spacelike characteristic vector field V .

A submanifold (Mm, g) immersed in a semi-Riemannian manifold (M
m+n

, g)
is called a lightlike submanifold [3] if the metric g induced from g is degenerate
and the radical distribution RadTM is of rank r, where 1 ≤ r ≤ m. Let S(TM)
be a screen distribution which is a semi-Riemannian complementary distribution
of RadTM in TM, that is

TM = RadTM ⊕orth S(TM).

Now consider a screen transversal vector bundle S(TM⊥), which is a semi- Rie-
mannian complementary vector bundle of RadTM in TM⊥. Since for any local
basis {ξi} of RadTM , there exists a local null frame {Ni} of sections with values
in the orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that g(ξi, Nj) = δij

and g(Ni, Nj) = 0, it follows that there exists a lightlike transversal vector bun-
dle ltr(TM) locally spanned by {Ni}. Let tr(TM) be complementary (but not
orthogonal) vector bundle to TM in TM |M . Then

tr(TM) = ltr(TM)⊕orth S(TM⊥),

TM |M = TM ⊕ tr(TM),

TM |M = S(TM)⊕orth [RadTM ⊕ ltr(TM)]⊕orth S(TM⊥).
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The following are four cases of a lightlike submanifold
(
M, g, S(TM), S(TM⊥)

)
:

Case 1. r-lightlike if r < min (m,n),
Case 2. co-isotropic if r = n < m, S

(
TM⊥)

= {0},
Case 3. isotropic if r = m < n, S (TM) = {0},
Case 4. totally lightlike if r = m = n, S(TM) = S(TM⊥) = {0}.
The Gauss and Weingarten formulae are given as

∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM), (2.6)

∇XV = −AV X +∇t
XV, ∀V ∈ Γ(tr(TM)), (2.7)

where {∇XY,AV X} and {h(X, Y ),∇t
XV } belong to Γ(TM) and Γ(tr(TM)) respec-

tively. ∇ and ∇t are linear connections on M and on the vector bundle tr(TM)
respectively. The second fundamental form h is a symmetric F (M)-bilinear form
on Γ(TM) with values in Γ(tr(TM)) and the shape operator AV is a linear endo-
morphism of Γ(TM). From (2.6) and (2.7), we have

∇XY = ∇XY + hl (X, Y ) + hs (X, Y ) , ∀X,Y ∈ Γ(TM), (2.8)

∇XN = −ANX +∇l
X (N) + Ds (X, N) , ∀N ∈ Γ(ltr(TM)), (2.9)

∇XW = −AW X +∇s
X (W ) + Dl (X,W ) , ∀W ∈ Γ(S(TM⊥)), (2.10)

where hl(X, Y ) = L (h(X,Y )), hs(X,Y ) = S (h(X,Y )), Dl(X, W ) = L(∇t
XW ),

Ds(X,N) = S(∇t
XN). L and S are the projection morphisms of tr(TM) on

ltr(TM) and S(TM⊥) respectively. ∇land ∇s are linear connections on ltr(TM)
and S(TM⊥) called the lightlike connection and screen transversal connection on
M respectively. For any vector field X tangent to M , we put

φX = PX + FX, (2.11)

where PX and FX are tangential and transversal parts of φX respectively.
Now by using (2.6), (2.8)–(2.10) and metric connection ∇, we obtain

g(hs(X, Y ),W ) + g(Y, Dl(X, W )) = g(AW X, Y ),

g(Ds(X, N), W ) = g(N, AW X).

Denote the projection of TM on S(TM) by P . Then from the decomposition of
the tangent bundle of a lightlike submanifold, we have

∇XPY = ∇∗XPY + h∗(X, PY ), ∀X, Y ∈ Γ(TM),

∇Xξ = −A∗ξX +∇∗tXξ, ξ ∈ Γ(RadTM).

By using above equations, we obtain

g(hl(X, PY ), ξ) = g(A∗ξX, PY ),

g(h∗(X, PY ), N) = g(ANX, PY ),

g(hl(X, ξ), ξ) = 0, A∗ξξ = 0. (2.12)
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It is important to note that in general ∇ is not a metric connection. Since ∇ is
metric connection, by using (2.8), we get

(∇Xg)(Y, Z) = g(hl(X, Y ), Z) + g(hl(X, Z), Y ).

Definition 2.1. [3] A submanifold M of semi-Riemannian manifold (M, g)
is said to be totally geodesic lightlike submanifold of M if any geodesic of M , with
respect to Levi-Civita connection ∇, is a geodesic of M , i.e., hl = hs = 0 on M .

Definition 2.2. [1] A lightlike submanifold
(
M, g, S(TM), S(TM⊥)

)
of a

semi-Riemannian manifold (M, g) is minimal if hs = 0 on Rad(TM) and tr(h) = 0,
where trace is written with respect to g restricted to S(TM).

Definition 2.3. [4] A lightlike submanifold
(
M, g, S(TM), S(TM⊥)

)
of a

semi-Riemannian manifold (M, g) is said to be totally umbilical in M if there is
a smooth transversal vector field H ∈ Γ(tr(TM)) on M , called the transversal
curvature vector field of M , such that

h(X,Y ) = Hg(X, Y ), ∀X,Y ∈ Γ(TM). (2.13)

From (2.8) and (2.13), it is easy to see that M is totally umbilical if and only
if on each coordinate neighbourhood U , there exist smooth vector fields H l ∈
Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥)), such that

hl(X,Y ) = H lg(X,Y ) and hs(X,Y ) = Hsg(X, Y ), ∀X, Y ∈ Γ(TM). (2.14)

3. Invariant lightlike submanifolds

Definition 3.1. A lightlike submanifold M , tangent to the structure vector
field V , of an indefinite para-Sasakian manifold M is said to be invariant lightlike
submanifold if the following condition is satisfied:

φ(RadTM) = RadTM and φ(D) = D, (3.1)

where S(TM) = D⊥{V } and D is complementary nondegenerate distribution to
{V } in S(TM).

From (2.4), (2.5), (2.8) and (3.1), we get

hl(X,V ) = 0, hs(X, V ) = 0, ∇XV = PX, (3.2)

h(X, φY ) = φh(X,Y ) = h(φX, Y ), ∀X, Y ∈ Γ(TM). (3.3)

Let (R2m+1
q , g, φ, η, V ) denote the manifold R2m+1

q with its usual para-Sasakian
structure given by

η = 1
2 (dz −∑m

i=1 yidxi), V = 2∂z,

g = η ⊗ η + 1
4 (−∑ q

2
i=1 dxi ⊗ dxi + dyi ⊗ dyi +

∑m
i= q

2+1 dxi ⊗ dxi + dyi ⊗ dyi),

φ(
∑m

i=1(Xi∂xi + Yi∂yi) + Z∂z) =
∑m

i=1(Yi∂xi + Xi∂yi) +
∑m

i=1 Yiy
i∂z,

where (xi; yi; z) are the cartesian coordinates on R2m+1
q . Now we construct some

examples of invariant lightlike submanifolds of an indefinite para-Sasakian manifold.
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Example 1. Let (R7
2, g, φ, η, V ) be an indefinite para-Sasakian manifold,

where g is of signature (−, +, +,−, +, +,+) with respect to the canonical basis
{∂x1, ∂x2, ∂x3, ∂y1, ∂y2, ∂y3, ∂z}. Suppose M is a submanifold of R7

2 given by
x1 = y2 = u1, x2 = y1 = u2, x3 = u3, y3 = u4, z = u5.

The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5}, where
Z1 = 2(∂x1 + ∂y2 + y1∂z), Z2 = 2(∂x2 + ∂y1 + y2∂z),
Z3 = 2(∂x3 + y3∂z), Z4 = 2∂y3 and Z5 = V = 2∂z.

Hence RadTM = span {Z1, Z2}, S(TM) = span {Z3, Z4, V } and ltr(TM) is
spanned by N1 = ∂x1 − ∂y2 + y1∂z, N2 = −∂x2 + ∂y1 − y2∂z.

It follows that φZ1 = Z2, φZ2 = Z1, φZ3 = Z4, φZ4 = Z3, φN1 = N2 and
φN2 = N1. Thus φRadTM = RadTM , φD = D and φltr(TM) = ltr(TM). Hence
M is an invariant 2-lightlike submanifold of R7

2.
Example 2. Let (R9

2, g, φ, η, V ) be an indefinite para-Sasakian manifold,
where g is of signature (−,+, +, +,−, +, +,+, +) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z}. Suppose M is a submanifold of
R9

2 given by x1 = y2 = u1, x2 = y1 = u2, −x3 = y4 = u3, −x4 = y3 = u4, z = u5.
The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5}, where

Z1 = 2(∂x1 + ∂y2 + y1∂z), Z2 = 2(∂x2 + ∂y1 + y2∂z),
Z3 = 2(−∂x3 + ∂y4 − y3∂z), Z4 = 2(−∂x4 + ∂y3 − y4∂z), Z5 = V = 2∂z.

Hence RadTM = span {Z1, Z2} and S(TM) = span {Z3, Z4, V }.
Now ltr(TM) is spanned by N1 = −∂x1 + ∂y2− y1∂z, N2 = ∂x2− ∂y1 + y2∂z

and S(TM⊥) is spanned by W1 = 2(∂x3 + ∂y4 + y3∂z),W2 = 2(∂x4 + ∂y3 + y4∂z).
It follows that φZ1 = Z2, φZ2 = Z1, φZ3 = −Z4, φZ4 = −Z3, φN1 = N2,

φN2 = N1, φW1 = W2 and φW2 = W1. Thus φRadTM = RadTM , φD = D,
φltr(TM) = ltr(TM) and φS(TM⊥) = S(TM⊥). Hence M is an invariant 2-
lightlike submanifold of R9

2.

Theorem 3.1. Let (M, g, S(TM), S(TM⊥)) be an invariant lightlike subman-
ifold, tangent to the structure vector field V of an indefinite para-Sasakian manifold
M . If the second fundamental forms hl and hs of M are parallel then M is totally
geodesic.

Proof. Suppose hl is parallel. Then (∇Xhl)(Y, V ) = 0, ∀X,Y ∈ Γ(TM), which
implies

∇Xhl(Y, V )− hl(∇XY, V )− hl(Y,∇XV ) = 0, ∀X,Y ∈ Γ(TM). (3.4)

From (3.2) and (3.4), we get hl(Y,∇XV ) = 0, ∀X, Y ∈ Γ(TM). Thus from above,
we have hl(Y, PX) = 0, ∀X, Y ∈ Γ(TM). Hence hl = 0. Similarly hs = 0. Thus
M is totally geodesic.

Theorem 3.2. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold, tan-
gent to the structure vector field V of an indefinite para-Sasakian manifold M . If
M is totally umbilical then it is totally geodesic.
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Proof. Let M be a totally umbilical lightlike submanifold of an indefinite
para-Sasakian manifold M . Then, from (2.8), we have

∇XV = ∇XV + hl(X,V ) + hs(X, V ), ∀X ∈ Γ(TM). (3.5)

From (2.5), (2.11) and (3.5), we get

PX + FX = ∇XV + hl(X, V ) + hs(X,V ), ∀X ∈ Γ(TM). (3.6)

Equating transversal parts in (3.6), we get

hl(X,V ) + hs(X, V ) = FX. (3.7)

Replacing X by V in (3.7), we get

hl(V, V ) + hs(V, V ) = FV. (3.8)

Now from (2.1), (2.11) and (3.8), we get

hl(V, V ) = 0 and hs(V, V ) = 0. (3.9)

From (2.14) and (3.9), we have H lg(V, V ) = 0 and Hsg(V, V ) = 0.
Since V is non-null vector, we have H l = Hs = 0. Thus from (2.14), we obtain

hl(X, Y ) = 0 and hs(X, Y ) = 0. Hence, M is totally geodesic.

Theorem 3.3. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of nul-
lity degree two of an indefinite para-Sasakian manifold M . Then, RadTM defines
a totally geodesic foliation on M .

Proof. Let M be a lightlike submanifold of an indefinite para-Sasakian mani-
fold M . By definition of lightlike submanifold, RadTM defines a totally geodesic
foliation if and only if g(∇XY,Z) = 0, ∀X,Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)).

Since rank(RadTM) = 2, we can write X, Y ∈ Γ(RadTM) as a linear combi-
nation of ξ and φξ, that is X = A1ξ + B1φξ and Y = A2ξ + B2φξ. Now since ∇ is
a metric connection, using (2.8), we get

g(∇XY, Z) = Xg(Y, Z)− g(Y,∇XZ)

= −g(Y,∇XZ) = −g(Y, hl(X, Z))

= −g(A2ξ + B2φξ, hl(A1ξ + B1φξ, Z))

= −A1A2g(ξ, hl(ξ, Z))−B1A2g(ξ, hl(φξ, Z))−B2A1g(φξ, hl(ξ, Z))

−B2A2g(φξ, hl(φξ, Z)), for all X,Y ∈ RadTM and Z ∈ Γ(S(TM)).
(3.10)

From (2.12), (3.3) and (3.10), we get g(∇XY, Z) = 0, which completes the proof.

4. Slant lightlike submanifolds

At first, we state the following lemmas for later use:

Lemma 4.1. Let M be an r-lightlike submanifold of an indefinite para-
Sasakian manifold M of index 2q with structure vector field tangent to M . Sup-
pose that φRadTM is a distibution on M such that RadTM ∩ φRadTM = {0}.
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Then φltr(TM) is a subbundle of the screen distribution S(TM) and φRadTM ∩
φltr(TM) = {0}.

Lemma 4.2. Let M be a q-lightlike submanifold of an indefinite para-Sasakian
manifold M , of index 2q with structure vector field tangent to M . Suppose RadTM
is a distribution on M such that RadTM ∩ φRadTM = {0}. Then any comple-
mentary distribution to φltr(TM)⊕ φRadTM in S(TM) is Riemannian.

The proofs of Lemma 4.1 and Lemma 4.2 follow as in Lemma 3.1 and Lemma
3.2 respectively of [10], so we omit them.

Definition 4.1. Let M be a lightlike submanifold of an indefinite para-
Sasakian manifold M with structure vector field tangent to M . Then we say that
M is slant lightlike submanifold of M if the following conditions are satisfied:

(i) RadTM is a distribution on M such that φRadTM ∩RadTM = {0},
(ii) For each non-zero vector field X tangent to D at x ∈ U ⊂ M , the angle

θ(X) between φX and the vector space Dx is constant, i.e. it is independent of
the choice of x ∈ U ⊂ M and X ∈ Dx, where D is complementary distribution to
(φRadTM ⊕ φltr(TM))⊥{V } in the screen distribution S(TM).

This constant angle θ(X) is called slant angle of distribution D. A slant
lightlike submanifold is said to be proper if D 6= {0} and θ 6= 0, π

2 .

From the above definition, we have the following decomposition

TM = RadTM⊥(φRadTM ⊕ φltr(TM))⊥D⊥{V } . (4.1)

From Definition 4.1, we conclude that the class of slant lightlike submanifolds does
not include invariant lightlike submanifolds of an indefinite para-Sasakian manifold.

Example 1. Let (R9
2, g, φ, η, V ) be an indefinite para-Sasakian manifold,

where g is of signature (−,+, +, +,−, +, +,+, +) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z}. Suppose M is a submanifold of
R9

2 given by −x1 = y2 = u1, x2 = u2, x3 = 0, x4 = u3, y1 = u4, y3 = u5 sin θ,
y4 = u5 cos θ, z = u6, where θ ∈ (0, π

2 ).
The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6}, where
Z1 = 2(−∂x1 + ∂y2 − y1∂z), Z2 = 2(∂x2 + y2∂z), Z3 = 2(∂x4 + y4∂z),
Z4 = 2∂y1, Z5 = 2(sin θ∂y3 + cos θ∂y4), Z6 = V = 2∂z.

Hence RadTM = span {Z1} and S(TM) = span {Z2, Z3, Z4, Z5, V }.
Now ltr(TM) is spanned by N = ∂x1 + ∂y2 + y1∂z and S(TM⊥) is spanned

by W1 = 2(∂x3 +y3∂z),W2 = 2(cos θ∂y3−sin θ∂y4). It follows that φZ1 = 2(∂x2−
∂y1 + y2∂z) = Z2−Z4, φN = ∂x2 +∂y1 + y2∂z = 1

2 (Z2 +Z4) and g(φZ1, φN) = 1.
Thus φRadTM and φltr(TM) are distributions on M and D = span {Z3, Z5}
is a slant distribution with slant angle θ. Thus TM = RadTM⊥(φRadTM ⊕
φltr(TM))⊥D⊥{V }. Hence M is a slant lightlike submanifold of R9

2.

Theorem 4.3. Let M be a lightlike submanifold of an indefinite para-
Sasakian manifold M with structure vector field tangent to M such that φRadTM∩
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RadTM = {0}. Then M is slant lightlike submanifold if and only if there exists a
constant λ ∈ [0, 1] such that P 2X = λ(X − η(X)V ), ∀X ∈ Γ(D).

Proof. Let M be a lightlike submanifold of an indefinite para-Sasakian manifold
M . Suppose there exists a constant λ, such that P 2X = λ(X − η(X)V ) = λφ2X,
∀X ∈ Γ(D). Now

cos θ(X) =
g(φX,PX)
|φX||PX| =

g(X, φPX)
|φX||PX| =

g(X, P 2X)
|φX||PX| = λ

g(X, φ2X)
|φX||PX| = λ

g(φX, φX)
|φX||PX| .

From above equation, we get

cos θ(X) = λ
|φX|
|PX| . (4.2)

Also |PX| = |φX| cos θ(X), which implies

cos θ(X) =
|PX|
|φX| . (4.3)

From (4.2) and (4.3), we get cos2 θ(X) = λ(constant). Hence, M is a slant lightlike
submanifold.

Conversely, suppose that M is a slant lightlike submanifold. Then cos2 θ(X) =
λ, where λ is a constant. From (4.3), we have |PX|2

|φX|2 = λ. Now g(PX,PX) =
λg(φX, φX), which gives g(X,P 2X) = λg(X,φ2X). Thus g(X, (P 2 − λφ2)X) = 0.
Since X is non-null vector, we have (P 2 − λφ2)X = 0. Hence, P 2X = λφ2X =
λ(X − η(X)V ), ∀X ∈ Γ(D).

Corollary 4.4. Let M be a slant lightlike submanifold of an indefinite para-
Sasakian manifold M with slant angle θ. Then

g(PX, PY ) = cos2 θ(g(X, Y )− η(X)η(Y )), ∀X, Y ∈ Γ(D),

g(FX, FY ) = sin2 θ(g(X, Y )− η(X)η(Y )), ∀X, Y ∈ Γ(D).

Proof. Since g(PX, PY ) = g(X, P 2Y ) = g(X, λφ2Y ) = λg(X,φ2Y ) =
λg(φX, φY ), ∀X, Y ∈ Γ(D), we have

g(PX, PY ) = cos2 θg(φX, φY ), ∀X, Y ∈ Γ(D). (4.4)

Thus g(PX,PY ) = cos2 θ(g(X,Y )− η(X)η(Y )), ∀X,Y ∈ Γ(D).
From (4.4), we obtain g(PX, PY ) = (1 − sin2 θ)g(φX, φY ), ∀X, Y ∈ Γ(D),

which implies g(φX, φY ) − g(PX, PY ) = sin2 θg(φX, φY ), ∀X, Y ∈ Γ(D), which
gives g(FX, FY ) = sin2 θ(g(X,Y ) − η(X)η(Y )), ∀X, Y ∈ Γ(D). This completes
the proof.

Now, we denote the projections on RadTM,φRadTM, φltr(TM) and D in
TM by P1, P2, P3 and P4, respectively. Similarly, we denote the projections on
ltr(TM) and S(TM⊥) by Q1 and Q2, respectively. Then, we get

X = P1X + P2X + P3X + P4X + η(X)V, ∀X ∈ Γ(TM). (4.5)

W = Q1W + Q2W, ∀W ∈ Γ(tr(TM)). (4.6)
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Now applying φ to (4.5), we have

φX = φP1X + φP2X + φP3X + fP4X + FP4X, ∀X ∈ Γ(TM),

where fP4X (resp. FP4X) denotes the tangential (resp. screen transversal) com-
ponent of φP4X. Thus we get

φP1X ∈ φRadTM, φP2X ∈ Γ(RadTM), φP3X ∈ Γ(ltr(TM)),

fP4X ∈ Γ(D), FP4X ∈ Γ(S(TM⊥)).

Applying φ to (4.6), we obtain φW = φQ1W + BQ2W + CQ2W , where BQ2W
(resp. CQ2W ) denote the tangential (resp. transversal) component of φQ2W .

Now, by using (2.4), (4.5) and (2.8)–(2.10) and equating tangential, lightlike
transversal and screen transversal components, we obtain

−g(φX, φY )V − η(Y )φ2X = ∇XφP1X +∇XφP2X −AφP3Y X +∇XfP4Y

−AFP4Y X − φP1∇XY − φP2∇XY

− fP4∇XY − φhl(X, Y )−Bhs(X,Y ), (4.7)

hl(X, φP1Y ) + hl(X, φP2Y ) + hl(X, fP4Y ) = −∇l
XφP3Y −Dl(X, FP4Y )

+ φP3∇XY,

hs(X, φP1Y ) + hs(X, φP2Y ) + hs(X, fP4Y ) = −Ds(X, φP3Y )−∇s
XFP4Y

+ FP4∇XY − Chs(X, Y ).

Theorem 4.5. Let M be a proper slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field V tangent to M . Then induced
connection ∇ is never a metric connection.

Proof. Suppose that the induced connection is a metric connection. Then
∇XφP2Y ∈ Γ(RadTM) and hl(X, Y ) = 0. Thus for Y ∈ φRadTM and X ∈
φltr(TM), (4.7) becomes

−g(X,Y )V = ∇XφP2X − φP1∇XY − φP2∇XY − fP4∇XY −Bhs(X,Y ).

Since TM = RadTM ⊕ φRadTM ⊕ φltr(TM)⊕D ⊕ V , from (4.8), we get

φP1∇XY = 0, ∇XφP2X + φP2∇XY = 0,

g(X, Y )V = 0, fP4∇XY + Bhs(X, Y ) = 0. (4.9)

Now, taking X = φN and Y = φξ in (4.9), we get g(N, ξ)V = 0. Thus V = 0,
which is a contradiction. Hence M does not have a metric connection.

5. Screen slant lightlike submanifolds

At first, we state the following lemma for later use:

Lemma 5.1. Let M be a 2q-lightlike submanifold of an indefinite para-Sasakian
manifold M , of index 2q such that 2q < dim(M) with structure vector field tangent
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to M . Then the screen distribution S(TM) of lightlike submanifold M is Riemann-
ian.

The proof of above lemma follows as in Lemma 4.1 of [10], so we omit it.

Definition 5.1. Let M be a 2q-lightlike submanifold of an indefinite para-
Sasakian manifold M of index 2q such that 2q < dim(M) with structure vector
field tangent to M . Then we say that M is screen slant lightlike submanifold of M
if following conditions are satisfied:

(i) RadTM is invariant with respect to φ, i.e. φ(RadTM) = RadTM ,
(ii) For each non-zero vector field X tangent to D at x ∈ U ⊂ M , the angle

θ(X) between φX and the vector space Dx is constant, i.e. it is independent of
the choice of x ∈ U ⊂ M and X ∈ Dx, where D is complementary nondegenerate
distribution to {V } in S(TM) such that S(TM) = D⊥{V }.

This constant angle θ(X) is called the slant angle of distribution D. A screen
slant lightlike submanifold is said to be proper if D 6= {0} and θ 6= 0, π

2 .

From the above definition, we have the following decomposition

TM = RadTM⊥D⊥{V } . (5.1)

From Definitions 4.1 and 5.1, we conclude that the class of screen slant lightlike
submanifolds does not include slant lightlike submanifolds of an indefinite para-
Sasakian manifold and vice-versa.

Theorem 5.2. Let M be a screen slant lightlike submanifold of M . Then M
is invariant (resp. screen real) if and only if θ = 0( resp. θ = π

2 ).

Proof of the above theorem follows from Proposition 4.1 of [10].
Example 1. Let (R9

2, g, φ, η, V ) be an indefinite para-Sasakian manifold,
where g is of signature (−,+, +, +,−, +, +,+, +) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z}. Suppose M is a submanifold of
R9

2 given by x1 = y2 = u1, x2 = y1 = u2, x3 = u3 cos θ, x4 = u3 sin θ, y3 = u4 sin θ,
y4 = u4 cos θ, z = u5.

The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5}, where
Z1 = 2(∂x1 + ∂y2 + y1∂z), Z2 = 2(∂x2 + ∂y1 + y2∂z),
Z3 = 2(cos θ∂x3 + sin θ∂x4 + y3 cos θ∂z + y4 sin θ∂z),
Z4 = 2(sin θ∂y3 + cos θ∂y4), Z5 = V = 2∂z.

Hence RadTM = span {Z1, Z2} and S(TM) = span {Z3, Z4, V }.
Now ltr(TM) is spanned by N1 = −∂x1 + ∂y2− y1∂z, N2 = ∂x2− ∂y1 + y2∂z

and S(TM⊥) is spanned by
W1 = 2(− sin θ∂x3 + cos θ∂x4 − y3 sin θ∂z + y4 cos θ∂z),
W2 = 2(cos θ∂y3 − sin θ∂y4).

It follows that φZ1 = Z2, φZ2 = Z1, which implies that RadTM is invariant, i.e.,
φRadTM = RadTM . On other hand, we can see that D = span {Z3, Z4} is a slant
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distribution with slant angle 2θ. Hence M is screen slant 2-lightlike submanifold
of R9

2.
Now, we denote the projections on RadTM and D in TM by P1 and P2

respectively. Similarly, we denote the projections on ltr(TM) and S(TM⊥) by Q1

and Q2 respectively. Then, we get

X = P1X + P2X + η(X)V, ∀X ∈ Γ(TM). (5.2)

Now applying φ to (5.2), we have φX = φP1X + φP2X, which gives

φX = φP1X + fP2X + FP2X, ∀X ∈ Γ(TM), (5.3)

where fP2X (resp. FP2X) denotes the tangential (resp. transversal) component of
φP2X. Thus we get φP1X ∈ RadTM, fP2X ∈ Γ(D), FP2X ∈ Γ(S(TM⊥)). Also,
we have

W = Q1W + Q2W, ∀W ∈ Γ(tr(TM)). (5.4)

Applying φ to (5.4), we obtain

φW = φQ1W + φQ2W, (5.5)

which gives
φW = φQ1W + BQ2W + CQ2W, (5.6)

where BQ2W (resp. CQ2W ) denotes the tangential (resp. transversal) component
of φQ2W .

Now, by using (2.4), (5.3), (5.6) and (2.8)–(2.10) and equating tangential,
lightlike transversal and screen transversal components, we obtain

−g(φX, φY )V − η(Y )φ2X = ∇XφP1Y +∇XfP2Y −AFP2Y X

− φP1∇XY − fP2∇XY + Bhs(X, Y ),
(5.7)

hl(X,φP1Y ) + hl(X, fP2Y ) = φhl(X, Y )−Dl(X, FP2Y ),

hs(X,φP1Y ) + hs(X, fP2Y ) = Chs(X,Y )−∇s
XFP2Y − FP2∇XY.

(5.8)

Theorem 5.3. Let M be a 2q-lightlike submanifold of an indefinite para-
Sasakian manifold M with structure vector field tangent to M . Then M is screen
slant lightlike submanifold if and only if
(i) the lightlike transversal vector bundle ltr(TM) is invariant with respect to φ,
(ii) there exists a constant λ ∈ [0, 1] such that P 2X = λ(X−η(X)V ), ∀X ∈ Γ(D).

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M . Then its radical distribution RadTM is invariant with re-
spect to φ, i.e., φX = X ∀X ∈ ΓRadTM .

Now, for N ∈ Γltr(TM) and X ∈ ΓD, using (2.3) and (5.3), we obtain
g(φN, X) = g(N, φX) = g(N, fX + FX) = g(N, fX) + g(N, FX) = 0.

Thus φN does not belong to Γ(D).
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For N ∈ Γltr(TM) and W ∈ ΓS(TM⊥), from (2.3) and (5.6), we have
g(φN, W ) = g(N, φW ) = g(N, BW + CW ) = g(N, BW ) + g(N, CW ) = 0.

Hence we conclude that φN does not belong to ΓS(TM⊥).
Now, suppose that φN ∈ Γ(RadTM). Then φ(φN) = φ2N = −N + η(N)V ∈

Γ(ltrTM)⊕span {V }, which contradicts that RadTM is invariant. Hence ltr(TM)
is invariant with respect to φ.

Since |PX| = |φX| cos θ(X), ∀X ∈ Γ(D), we have

cos θ(X) =
|PX|
|φX| . (5.9)

In view of (5.9), we get cos2 θ(X) = |PX|2
|φX|2 = g(PX,PX)

g(φX,φX) = g(X,P 2X)
g(X,φ2X) , which gives

g(X,P 2X) = cos2 θg(X, φ2X). (5.10)

Since M is screen slant lightlike submanifold, cos2 θ(X) = λ(constant) ∈ [0, 1].
Therefore from (5.10), we get g(X, P 2X) = λg(X, φ2X) = g(X,λφ2X), which

implies g(X, (P 2−λφ2)X) = 0. Since X is non-null vector, we have (P 2−λφ2)X =
0, which implies

P 2X = λφ2X = λ(X − η(X)V ), ∀X ∈ Γ(D).

This proves (ii).
Conversely suppose that conditions (i) and (ii) are satisfied. We can show that

RadTM is invariant in similar way that ltr(TM) is invariant. From (ii) we have
P 2X = λφ2X, ∀X ∈ Γ(D) , where λ(constant) ∈ [0, 1] .

Now, cos θ(X) = g(φX,PX)
|φX||PX| = g(X,φPX)

|φX||PX| = g(X,P 2X)
|φX||PX| = λ g(X,φ2X)

|φX||PX| = λ g(φX,φX)
|φX||PX| .

From the above equation, we get

cos θ(X) = λ
|φX|
|PX| . (5.11)

Therefore (5.9) and (5.11) give cos2 θ(X) = λ(constant). Hence M is a screen slant
lightlike submanifold.

Corollary 5.4 Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with slant angle θ, then

g(PX, PY ) = cos2 θ(g(X, Y )− η(X)η(Y )), ∀X, Y ∈ Γ(D),

g(FX, FY ) = sin2 θ(g(X, Y )− η(X)η(Y )), ∀X, Y ∈ Γ(D). (5.12)

The proof of above corollary follows using the steps as in proof of Corollary
3.2 of [9].

Lemma 5.5. Let M be a lightlike submanifold of an indefinite para-Sasakian
manifold M . Then we have
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(i) g(∇XY, V ) = −g(Y, φX), ∀X,Y ∈ Γ(TM)− {V },
(ii) g([X, Y ], V ) = 0, ∀X,Y ∈ Γ(TM)− {V } .

Proof. Let M be a lightlike submanifold of an indefinite para-Sasakian manifold
M . Then from (2.8), we have

g(∇XY, V ) = g(∇XY, V ), ∀X, Y ∈ Γ(TM)− {V } . (5.13)

Since ∇ is a metric connection, from (5.13) we get

g(∇XY, V ) = −g(Y,∇XV ), ∀X,Y ∈ Γ(TM)− {V } . (5.14)

From (2.5) and (5.14), we obtain

g(∇XY, V ) = −g(Y, φX), ∀X, Y ∈ Γ(TM)− {V } . (5.15)

On interchanging X and Y in (5.15), we get

g(∇Y X, V ) = −g(X, φY ), ∀X, Y ∈ Γ(TM)− {V } . (5.16)

From (2.3), (5.15) and (5.16), we have

g([X, Y ], V ) = 0, ∀X, Y ∈ Γ(TM)− {V } . (5.17)

Theorem 5.6. Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field tangent to M . Then
(i) the radical distribution RadTM is integrable if and only if hs(Y, φX) =

hs(X, φY ) and (∇XφP1)Y = (∇Y φP1)X, ∀X, Y ∈ Γ(RadTM),
(ii) the distribution D is integrable if and only if P1(∇XfY − ∇Y fX) =

P1(AFY X −AFXY ), ∀X, Y ∈ Γ(D).

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M . From (5.8), we get

hs(X,φY ) = Chs(X,Y )− FP2∇XY, ∀X, Y ∈ Γ(RadTM). (5.18)

Interchanging X and Y in (5.18), we get

hs(Y, φX) = Chs(Y, X)− FP2∇Y X, ∀X, Y ∈ Γ(RadTM). (5.19)

From (5.18) and (5.19), we get

hs(Y, φX)− hs(X, φY ) = FP2(∇XY −∇Y X) = FP2[X, Y ]. (5.20)

From (5.7), we have

∇XφP1Y −φP1∇XY −fP2∇XY +Bhs(X, Y ) = 0, ∀X, Y ∈ Γ(RadTM). (5.21)

On interchanging X and Y in (5.21), we get

∇Y φP1X−φP1∇Y X−fP2∇Y X +Bhs(Y,X) = 0, ∀X, Y ∈ Γ(RadTM). (5.22)

From (5.21) and (5.22), we have

(∇XφP1)Y − (∇Y φP1)X = fP2([X, Y ]), ∀X,Y ∈ Γ(RadTM). (5.23)

Proof of (i) follows from (5.17), (5.20) and (5.23).
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Now from (5.7) and (2.2), we obtain

g(φX, φY )V +∇XfY −AFY X = φP1∇XY +fP2∇XY −Bhs(X,Y ), ∀X, Y ∈ Γ(D).
(5.24)

Interchanging X and Y in (5.24), we have

g(φY, φX)V +∇Y fX−AFXY = φP1∇Y X+fP2∇Y X−Bhs(Y, X), ∀X, Y ∈ Γ(D).
(5.25)

From (5.24) and (5.25), we get

∇XfY −∇Y fX + AFXY −AFY X

= φP1∇XY − φP1∇Y X + fP2∇XY − fP2∇Y X

= φP1[X,Y ] + fP2[X,Y ], ∀X,Y ∈ Γ(D). (5.26)

The equation (5.26) implies

P1(∇XfY −∇Y fX)+P1(AFXY −AFY X) = φP1[X,Y ], ∀X,Y ∈ Γ(D). (5.27)

Proof of (ii) follows from (5.17) and (5.27).

Theorem 5.7. Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field tangent to M . Then S(TM)
defines a totally geodesic foliation if and only if ∇XfY −AFY X has no component
in RadTM , ∀X, Y ∈ Γ(D).

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M . From (2.2) and (2.8), we get

g(∇XY, N) = g(−(∇Xφ)Y +∇XφY, φN), ∀X, Y ∈ Γ(D) and N ∈ ltr(TM).

Using (2.4) in above equation, we get

g(∇XY, N) = g(g(φX, φY )V + η(Y )φ2X +∇XφY, φN). (5.28)

From (2.1) and (5.28), we obtain

g(∇XY,N) = g(∇XφY, φN), ∀X, Y ∈ Γ(D) and N ∈ ltr(TM). (5.29)

From (2.8), (2.10), (5.3) and (5.29), we get
g(∇XY, N) = g(∇XfY +hl(X, fY )+hs(X, fy)−AFY X+∇s

XFY +Dl(X, FY ), φN).
From the above equation, we get

g(∇XY, N) = g(∇XfY −AFY X,φN), ∀X, Y ∈ Γ(D) and N ∈ ltr(TM).
which completes the proof.

Theorem 5.8. Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field tangent to M . If Bhs(X,Y ) =
0, ∀X ∈ Γ(TM) and Y ∈ Γ(RadTM) then the induced connection ∇ is a metric
connection.

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M . Then the induced connection ∇ on M is a metric connec-
tion if and only if RadTM is parallel distribution with respect to ∇ ([3]). Since
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Bhs(X,Y ) = 0, ∀X ∈ Γ(TM) and Y ∈ Γ(RadTM), we have g(Bhs(X, Y ), Z) = 0,
∀X,Z ∈ Γ(TM) and Y ∈ Γ(RadTM). Thus from (5.5) and (5.6), we obtain

g(φhs(X, Y ), Z) = 0, ∀X, Z ∈ Γ(TM) and Y ∈ Γ(RadTM). (5.30)

Using (2.3) and (5.3) in (5.30), we get

g(hs(X, Y ), FP2Z) = 0, ∀X,Z ∈ Γ(TM) and Y ∈ Γ(RadTM). (5.31)

Now from (2.8), we get

g(FP2∇XY, φhs(X, Y )) = g(FP2∇XY, φ∇XY − φ∇XY − φhl(X, Y )),

∀X ∈ Γ(TM) and Y ∈ Γ(RadTM). (5.32)

Since ltr(TM) is invariant, from (2.4), (5.3) and (5.32), we get

g(FP2∇XY, φhs(X, Y )) = g(FP2∇XY,∇XφY )− g(FP2∇XY, FP2∇XY ). (5.33)

From (2.8) and (5.33), we obtain

g(FP2∇XY, φhs(X,Y )) = g(FP2∇XY, hs(X, φY ))− g(FP2∇XY, FP2∇XY ).
(5.34)

From (5.12), (5.31) and (5.34), we get

g(FP2∇XY, φhs(X, Y )) = sin2 θg(P2∇XY, P2∇XY ),

∀X ∈ Γ(TM) and Y ∈ Γ(RadTM). (5.35)

Now from (2.2) and (5.3), we have

g(fP2∇XY, φhs(X, Y )) = g(FP2∇XY, φhs(X, Y )),

∀X ∈ Γ(TM) and Y ∈ Γ(RadTM). (5.36)

The equations (5.30) and (5.36) imply

g(FP2∇XY, φhs(X,Y )) = 0, ∀X ∈ Γ(TM) and Y ∈ Γ(RadTM). (5.37)

From (5.35) and (5.37), we get

sin2 θg(P2∇XY, P2∇XY ) = 0, ∀X ∈ Γ(TM) and Y ∈ Γ(RadTM).

Since M is proper screen slant lightlike submanifold and D is Riemannian, we
get P2∇XY = 0. Hence ∇XY ∈ Γ(RadTM), i.e., radical distribution RadTM is
parallel, which completes the proof.
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AG, Basel, Boston, Berlin (2010).

[7] D.L. Johnson, L.B. Whitt, Totally geodesic foliations, J. Diff. Geo. 15 (1980), 225–235.

[8] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press New
York (1983).

[9] B. Sahin, Screen slant lightlike submanifolds, Int. Electronic J. Geometry 2 (2009), 41–54.

[10] B. Sahin, C. Yildirim, Slant lightlike submanifolds of indefinite Sasakian manifolds, Fac. Sci.
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