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LIGHTLIKE SUBMANIFOLDS OF INDEFINITE
PARA-SASAKIAN MANIFOLDS

S.S. Shukla and Akhilesh Yadav

Abstract. In this paper, we study invariant, slant and screen slant lightlike submanifolds of
indefinite para-Sasakian manifolds. We obtain necessary and sufficient conditions for existence of
slant and screen slant lightlike submanifolds of indefinite para-Sasakian manifolds and also provide
non-trivial examples of such submanifolds. We obtain integrability conditions of distributions D
and RadT'M on screen slant lightlike submanifolds of indefinite para-Sasakian manifold. Further
we obtain sufficient condition for induced connection on screen slant lightlike submanifolds of
indefinite para-Sasakian manifold to be metric connection.

1. Introduction

A submanifold of a semi-Riemannian manifold is called a lightlike submanifold
if the induced metric on it is degenerate. In [3], Duggal and Bejancu introduced
the geometry of arbitrary lightlike submanifolds of semi-Riemannian manifolds.
Lightlike geometry has its applications in general relativity, particularly in black
hole theory, which gave impetus to study lightlike submanifolds of semi-Riemannian
manifolds equipped with certain structures. Lightlike submanifolds of an indefinite
Sasakian manifold have been studied by Duggal and Sahin in [5]. In 2009, Sahin
[9] study screen slant lightlike submanifolds of indefinite Kaehler manifold. In
[11], authors introduced the notion of an e-para-Sasakian structure and gave some
examples.

In this article, we study lightlike submanifolds of an e-para-Sasakian manifold,
which is called an indefinite para-Sasakian manifold. The paper is arranged as fol-
lows. Section 2 contains some basic results and definitions. In Section 3, we study
invariant lightlike submanifolds of an indefinite para-Sasakian manifold giving some
examples. Section 4 deals with slant lightlike submanifolds of an indefinite para-
Sasakian manifold. In Section 5, we study screen slant lightlike submanifolds of an
indefinite para-Sasakian manifold and obtain integrability conditions of distribu-
tions D and RadT M.
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2. Preliminaries

A semi-Riemannian manifold (M,g) is called an e-almost paracontact met-
ric manifold [11] if there exists a (1,1) tensor field ¢, a vector field V' called the
characteristic vector field and a 1-form 7, satisfying

P*X =X -n(X)V, nV)=¢ no¢=0, ¢V =0, (2.1)
9(¢X,0Y) =g(X,Y) —en(X)n(Y), VXY € T(TM), (2.2)
where € = 1 or —1. It follows that
gV,V)y=e  g(X,V)=n(X),
4(X,6Y) = §(6X,Y), ¥X,Y € T(T). (2.3)
Then (¢, V,n,7) is called an e-almost paracontact metric structure on M.

An e-almost paracontact metric structure (¢, V,7,g) is called an indefinite
para-Sasakian structure [11] if

where V is Levi-Civita connection with respect to g.

A semi-Riemannian manifold endowed with an indefinite para-Sasakian struc-
ture is called an indefinite para-Sasakian manifold. From (2.4), we get

(VxV)=¢X, VX el(TM). (2.5)
Let (M,g,$,V,n) be an e-almost paracontact metric manifold. If e = 1, then MLS
said to be a spacelike e-almost paracontact metric manifold and if e = —1, then M

is called a timelike e-almost paracontact metric manifold. In this paper we consider
indefinite para-Sasakian manifold with spacelike characteristic vector field V.

A submanifold (M™,g) immersed in a semi-Riemannian manifold (WHL,?)
is called a lightlike submanifold [3] if the metric g induced from g is degenerate
and the radical distribution RadT'M is of rank r, where 1 < r < m. Let S(T'M)
be a screen distribution which is a semi-Riemannian complementary distribution
of RadT M in TM, that is

TM = RadTM ®ope, S(TM).

Now consider a screen transversal vector bundle S(TM<1), which is a semi- Rie-
mannian complementary vector bundle of RadTM in TM~. Since for any local
basis {&;} of RadT M, there exists a local null frame {N;} of sections with values
in the orthogonal complement of S(TM=) in [S(TM)]* such that g(&, N;) = d;;
and g(N;, N;) = 0, it follows that there exists a lightlike transversal vector bun-
dle ltr(T'M) locally spanned by {N;}. Let tr(T'M) be complementary (but not
orthogonal) vector bundle to TM in TM|y;. Then

tr(TM) = Utr(TM) @opn S(TM™),
TM|y =TM & tr(TM),
TM|pnr = S(TM) ®open, [RadT M & ltr(TM)] @open S(TM™L).
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The following are four cases of a lightlike submanifold (M ,9,S(TM),S(TM l)):
Case 1. r-lightlike if r < min (m,n),
Case 2. co-isotropic if r=n <m, S (TML) = {0},
Case 3. isotropic if r = m < n, S(TM) = {0},
Case 4. totally lightlike if r = m =n, S(TM) = S(TM~*) = {0}.
The Gauss and Weingarten formulae are given as
VxY =VxY +h(X,)Y), VX,Y e[(TM), (2.6)
VxV = —-Ay X + VLV, VYV €T (tr(TM)), (2.7)
where {VxY, Ay X} and {h(X,Y), Vi V} belong to T'(T'M) and I'(¢tr(T'M)) respec-

tively. V and V' are linear connections on M and on the vector bundle tr(T'M)

respectively. The second fundamental form h is a symmetric F'(M)-bilinear form

on I'(T'M) with values in I'(¢r(T'M)) and the shape operator Ay is a linear endo-
morphism of I'(T'M). From (2.6) and (2.7), we have

VxY =VxY +h (X,Y) +h*(X,Y), VXY €D(TM), (2.8)

VxN=—-AyX + VY (N)+D*(X,N), VN €TD(itr(TM)), (2.9)

VxW = —Aw X + V% (W) + DY (X, W), YW e D(S(TM*1Y)), (2.10)

where h(X,Y) = L(h(X,Y)), h*(X,Y) = S (h(X,Y)), DX, W) = L(V&W),

D$(X,N) = S(V4N). L and S are the projection morphisms of tr(TM) on

ltr(TM) and S(T M) respectively. Viand V* are linear connections on ltr(T M)

and S(TM™) called the lightlike connection and screen transversal connection on
M respectively. For any vector field X tangent to M, we put

¢X = PX + FX, (2.11)
where PX and F'X are tangential and transversal parts of ¢.X respectively.
Now by using (2.6), (2.8)—(2.10) and metric connection V, we obtain
g(h*(X,Y), W) +3(Y, D'(X, W) = g(Aw X, Y),
g(D*(X,N),W)=g(N,Aw X).

Denote the projection of TM on S(TM) by P. Then from the decomposition of
the tangent bundle of a lightlike submanifold, we have

VxPY =VLPY +h*(X,PY), VX,Y €eI(TM),
Vx§=-A; X + Ve, € eT(RadTM).
By using above equations, we obtain
g(h'(X,PY),€) = g(Ac X, PY),
g(h* (X, PY),N) = g(An X, PY),
g(h'(X,€),§) =0, A =0. (2.12)
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It is important to note that in general V is not a metric connection. Since V is
metric connection, by using (2.8), we get

(Vxg)(Y, Z) :g(hl(X,Y),Z) +§(hl(XvZ)7Y)'

DEFINITION 2.1. [3] A submanifold M of semi-Riemannian manifold (M,g)
is said to be totally geodesic lightlike submanifold of M if any geodesic of M, with
respect to Levi-Civita connection V, is a geodesic of M, i.e., h! = h®* =0 on M.

DEFINITION 2.2. [1] A lightlike submanifold (M,g,S(TM),S(TM=)) of a
semi-Riemannian manifold (M, g) is minimal if h* = 0 on Rad(T'M) and tr(h) = 0,
where trace is written with respect to g restricted to S(T'M).

DEFINITION 2.3. [4] A lightlike submanifold (M,g,S(TM),S(TM™)) of a
semi-Riemannian manifold (M,g) is said to be totally umbilical in M if there is
a smooth transversal vector field H € I'(tr(T'M)) on M, called the transversal
curvature vector field of M, such that

WMX,Y)=Hg(X,Y), VX,Y eI (TM). (2.13)

From (2.8) and (2.13), it is easy to see that M is totally umbilical if and only
if on each coordinate neighbourhood U, there exist smooth vector fields H' &
L(itr(TM)) and H® € T(S(TM™)), such that

RH(X,Y)=H'g(X,Y) and h*(X,Y)=HGg(X,Y), VX,Y cT(TM). (2.14)

3. Invariant lightlike submanifolds

DEFINITION 3.1. A lightlike submanifold M, tangent to the structure vector
field V, of an indefinite para-Sasakian manifold M is said to be invariant lightlike
submanifold if the following condition is satisfied:

¢(RadTM) = RadTM and ¢(D) = D, (3.1)

where S(TM) = DL {V} and D is complementary nondegenerate distribution to
{V}in S(TM).
From (2.4), (2.5), (2.8) and (3.1), we get
(X, V)=0, h*(X,V)=0, VxV =PX, (3.2)
MX,9Y) =oh(X,Y) =h(¢X,Y), VX, Y eI'(TM). (3.3)

Let (R2™*1,g,4,7,V) denote the manifold R2™*! with its usual para-Sasakian
structure given by

n=5(dz = X7 yidat), V =20z,
g=n@n+i(- i def @ dat +dy’ @ dy' + YTy, dot @ dat + dyf @ dy),
(L, (XiOw; + Yidy:) + 20z) = 321, (YiOw; + Xi0y:) + 3212, Yiy'0z,

where (2%;y’; 2) are the cartesian coordinates on Rgm“. Now we construct some
examples of invariant lightlike submanifolds of an indefinite para-Sasakian manifold.
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ExXAMPLE 1. Let (RY,g,¢,7,V) be an indefinite para-Sasakian manifold,
where g is of signature (—, 4,4, —,+,+,+) with respect to the canonical basis
{0x1, 029, 023, 0y1, Oy, 0ys, 02}. Suppose M is a submanifold of RY given by
! :y2:ulax2:y1 :"U,Q,QL'?’:’ZL:;, y?’:u4,z:u5.

The local frame of TM is given by {Z1, Za, Z3, Z4, Z5}, where

Z1 = 2(0x1 + Oys + y'02), Zy = 2(0xo + Oy + y?02),

Z3 = 2(0x3 +y302), Z4=120y3 and Z5=V =20z
Hence RadTM = span{Zi,Z2}, S(TM) = span{Zs,Z,,V} and lr(TM) is
spanned by N1 = 0z, — Oya + y'0z, Ny = —0x9 + Oy1 — y202.

It follows that ¢pZ1 = Zs, ¢Zs = Z1, ¢Z3 = Z4, ¢pZ4 = Z3, N1 = Ny and
¢N2 = Nyi. Thus ¢RadTM = RadT M, ¢D = D and ¢ltr(TM) = ltr(TM). Hence
M is an invariant 2-lightlike submanifold of R.

ExXAMPLE 2. Let (R3,g,6,m,V) be an indefinite para-Sasakian manifold,
where § is of signature (—,+,+,+, —, +,+,+,+) with respect to the canonical
basis {0z, 0xq, 013, Oxy, Oy1, Oy, Oys, Oys, 0z}. Suppose M is a submanifold of
RY given by ! = ¢ = uy, 22 =yt = up, —2% =y = u3, —2! =3 = w4, 2 = us.
The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5}, where

Z1 = 2(3%1 + Oys + ylaz), oy = 2(8%2 + Jy1 + y26z),

Z3 = 2(—0x3 + Oys — y302), Zy =2(—0xy + Oys — y*02), Zs =V = 20z.
Hence RadTM = span{Zy,Z>} and S(TM) = span{Zs, Z4,V'}.

Now ltr(TM) is spanned by Ny = —0x1 + Oys — y'0z, Ny = Oz — Oyy + 320z
and S(T M) is spanned by Wy = 2(9z3 + Oy +y302), Wo = 2(dx4 + Oys +y*02).

It fOHOWS that (bZl = Zg, ¢Zg = Zl, ¢Z3 = —Z4, ¢Z4 = —Zg, ¢N1 = NQ,
¢N2 = ]\]17 gf)Wl = WQ and ¢W2 = Wl. Thus gbRadTM = I%CLdT’]\47 gf)D = D,
Pltr(TM) = ltr(TM) and ¢S(TML) = S(TM*1). Hence M is an invariant 2-
lightlike submanifold of R$.

THEOREM 3.1. Let (M, g,S(TM),S(TM™)) be an invariant lightlike subman-
ifold, tangent to the structure vector field V' of an indefinite para-Sasakian manifold
M. If the second fundamental forms k' and h® of M are parallel then M is totally
geodesic.

Proof. Suppose h' is parallel. Then (Vxh!)(Y,V) = 0,VX,Y € I'(TM), which
implies

Vxh'(Y,V) = h(VxY, V)= h(Y,VxV) =0, VX,Y € (TM). (3.4)

From (3.2) and (3.4), we get h/(Y,VxV) =0, VX,Y € ['(TM). Thus from above,

we have h!(Y, PX) = 0, VX,Y € T'(TM). Hence h! = 0. Similarly h* = 0. Thus
M is totally geodesic. m

THEOREM 3.2. Let (M, g, S(TM),S(TM™)) be a lightlike submanifold, tan-
gent to the structure vector field V of an indefinite para-Sasakian manifold M. If
M is totally umbilical then it is totally geodesic.
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Proof. Let M be a totally umbilical lightlike submanifold of an indefinite
para-Sasakian manifold M. Then, from (2.8), we have

VxV =VxV + (X, V) +h¥(X,V), VX €D (TM). (3.5)
From (2.5), (2.11) and (3.5), we get
PX + FX =VxV +h(X, V) +h¥(X,V), VX cT(TM). (3.6)
Equating transversal parts in (3.6), we get
RU(X,V)+h*(X,V) = FX. (3.7)
Replacing X by V in (3.7), we get
R(V,V)+h*(V,V) = FV. (3.8)
Now from (2.1), (2.11) and (3.8), we get
RI(V,V)=0 and h*(V,V)=0. (3.9)

From (2.14) and (3.9), we have H'g(V,V) = 0 and H*g(V,V) = 0.
Since V is non-null vector, we have H' = H* = 0. Thus from (2.14), we obtain
RY(X,Y) =0 and h*(X,Y) = 0. Hence, M is totally geodesic. m

THEOREM 3.3. Let (M, g,S(TM),S(TM™1)) be a lightlike submanifold of nul-
lity degree two of an indefinite para-Sasakian manifold M. Then, RadT M defines
a totally geodesic foliation on M.

Proof. Let M be a lightlike submanifold of an indefinite para-Sasakian mani-
fold M. By definition of lightlike submanifold, RadT M defines a totally geodesic
foliation if and only if g(VxY,Z) =0, VX,Y € I'(RadT M) and Z € I'(S(T'M)).

Since rank(RadT M) = 2, we can write X,Y € I'(RadT' M) as a linear combi-
nation of ¢ and ¢¢, that is X = A€ + B1¢€ and Y = Ayé + Bogé. Now since V is
a metric connection, using (2.8), we get

9(VxY,Z) = Xg(Y,Z) —g(Y,Vx Z)
= —g(Y,VxZ) = =g(Y,h'(X, 2))
= —G(As& + Bag&, h (A€ + B1¢€, 7))
= —A1A9(&, B, 2)) — B1Aag(§,h (8¢, Z)) — BaArg(9€, h' (€, Z))

— By Ayg(p€, W (¢, Z)), for all X,Y € RadTM and Z € T'(S(TM)).
(3.10)

From (2.12), (3.3) and (3.10), we get g(VxY, Z) = 0, which completes the proof. m
4. Slant lightlike submanifolds
At first, we state the following lemmas for later use:

LEMMA 4.1. Let M be an r-lightlike submanifold of an indefinite para-
Sasakian manifold M of index 2q with structure vector field tangent to M. Sup-
pose that ¢RadT M is a distibution on M such that RadTM N ¢RadTM = {0}.
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Then ¢ltr(TM) is a subbundle of the screen distribution S(TM) and ¢RadT M N
ltr(TM) = {0}.

LEMMA 4.2. Let M be a g-lightlike submanifold of an indefinite para-Sasakian
manifold M, of index 2q with structure vector field tangent to M. Suppose RadT M
is a distribution on M such that RadT M N ¢RadT M = {0}. Then any comple-
mentary distribution to ¢ltr(TM) @& ¢RadT M in S(TM) is Riemannian.

The proofs of Lemma 4.1 and Lemma 4.2 follow as in Lemma 3.1 and Lemma
3.2 respectively of [10], so we omit them.

DEFINITION 4.1. Let M be a lightlike submanifold of an indefinite para-
Sasakian manifold M with structure vector field tangent to M. Then we say that
M is slant lightlike submanifold of M if the following conditions are satisfied:

(i) RadT'M is a distribution on M such that ¢RadTM N RadT M = {0},

(ii) For each non-zero vector field X tangent to D at « € U C M, the angle
6(X) between ¢X and the vector space D, is constant, i.e. it is independent of
the choice of x € U C M and X € D,, where D is complementary distribution to
(¢pRadTM @ pltr(TM))L {V} in the screen distribution S(TM).

This constant angle 6(X) is called slant angle of distribution D. A slant
lightlike submanifold is said to be proper if D # {0} and 6 # 0, T.

From the above definition, we have the following decomposition
TM = RadTM 1 (¢pRadT M @ pltr(TM))LDL{V}. (4.1)

From Definition 4.1, we conclude that the class of slant lightlike submanifolds does
not include invariant lightlike submanifolds of an indefinite para-Sasakian manifold.

ExamMPLE 1. Let (R3,g,¢,7,V) be an indefinite para-Sasakian manifold,
where g is of signature (—,+,+,4+,—,+,+,+,+) with respect to the canonical
basis {Jz1,0xa, 0x3, xy, OYy1, OyY2, Oys, Oys, 0z}. Suppose M is a submanifold of
R given by —2! = y? = uy, 22 = ug, 2% = 0, 2* = uz, y' = w4, y> = ussinb,
y* = uscosf, z = ug, where 0 € (0, )

The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Zs }, where

71 = 2(—0x1 + Oya — y'02), Zy = 2(0xy + y?02), Z3 = 2(0x4 + y*02),

Zy = 20y1, Zs = 2(sin00ys + cos 00yy), Zg =V = 20z.

Hence RadTM = span{Z,} and S(TM) = span{Zs, Z3, Z4, Z5,V }.

Now ltr(TM) is spanned by N = dx + 0yz + y'0z and S(T M) is spanned
by W1 = 2(dx3+y30z), Wa = 2(cos 00ys —sin 00y,). 1t follows that ¢pZ; = 2(dxo —
Oy1 +y?0z) = Zo — Zy, N = g + Oy1 +y*0z = 5(Z2+ Z4) and g(¢Z1,¢N) = 1.
Thus ¢RadTM and @ltr(TM) are distributions on M and D = span{Zs, Z5}
is a slant distribution with slant angle 8. Thus TM = RadTM 1(¢RadTM @
oltr(TM))LD1 {V}. Hence M is a slant lightlike submanifold of RY.

THEOREM 4.3. Let M be a lightlike submanifold of an indefinite para-
Sasakian manifold M with structure vector field tangent to M such that ¢ RadT M N
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RadTM = {0}. Then M is slant lightlike submanifold if and only if there exists a
constant \ € [0,1] such that P2X = \(X —n(X)V), VX € I'(D).

_ Proof. Let M be alightlike submanifold of an indefinite para-Sasakian manifold
M. Suppose there exists a constant A, such that P2X = \(X — n(X)V) = A% X,
VX € I'(D). Now

96X, PX)  g(X,9PX) g(X,P?’X) g(X,$*X) | g(¢X,0X)

9(X) = - _ _ _ ,
cosbX) = ToXTPX] ~ [oXIPX]  [oX|IPX] " oX|PX| " [6X|[PX]

From above equation, we get
29

SO0(X) = A== 4.2
cos0(X) )\|PX\ (4.2)
Also |PX| = |¢pX]|cos0(X), which implies
PX|
cosf(X) = —. 4.3
)= o5 (43)

From (4.2) and (4.3), we get cos? 0(X) = A(constant). Hence, M is a slant lightlike
submanifold.

Conversely, suppose that M is a slant lightlike submanifold. Then cos? 8(X) =
A, where X is a constant. From (4.3), we have % = \. Now ¢g(PX,PX) =
Ag(¢ X, pX), which gives g(X, P2X) = A\g(X, ¢$*X). Thus g(X, (P? — \¢*)X) = 0.
Since X is non-null vector, we have (P? — \¢?)X = 0. Hence, P?X = \¢?’X =
AMX —n(X)V),vX eT'(D). =

COROLLARY 4.4. Let M be a slant lightlike submanifold of an indefinite para-
Sasakian manifold M with slant angle 6. Then
9(PX, PY) = cos?0(g(X,Y) = n(X)n(Y)), VX,Y € (D),
g(FX, FY) = sin 0(g(X,Y) — n(X)n(Y)), ¥X,Y € (D),

Proof. Since g(PX,PY) = g(X,P?Y) = g(X,\¢?Y) = A\g(X,¢%Y) =

Ag(0X,9Y), VX, Y € I'(D), we have
g(PX,PY) = cos? 0g(¢ X, 9Y), VX,Y € I'(D). (4.4)
Thus g(PX,PY)=cos?0(g(X,Y) —n(X)n(Y)), VX,Y e (D).

From (4.4), we obtain g(PX,PY) = (1 —sin?0)g(¢X,¢Y), VX,Y € T'(D),
which implies g(¢X, ¢Y) — g(PX, PY) = sin?g(¢X, ¢Y), VX,Y € I'(D), which
gives g(FX,FY) = sin” 0(g(X,Y) — n(X)n(Y)), VX,Y € I'(D). This completes
the proof. m

Now, we denote the projections on RadT M, ¢pRadT M, ¢ltr(TM) and D in
TM by Py, P, P3y and Py, respectively. Similarly, we denote the projections on
Iltr(TM) and S(TM*) by Q; and Q2, respectively. Then, we get

X =P X +PX+PX+PX+nX)V, VX ecD(TM). (4.5)
W =Q:1W + Q. W, VW eT(tr(TM)).
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Now applying ¢ to (4.5), we have

where fPyX (resp. FP;X) denotes the tangential (resp. screen transversal) com-
ponent of Py X. Thus we get

¢P1X € pRadTM, ¢P,X € T'(RadT M), ¢PsX € T(itr(TM)),
fPiX €T(D), FPyX € T(S(TM™)).

Applying ¢ to (4.6), we obtain ¢W = ¢@Q1W + BQaW + CQoW, where BQoW
(resp. CQ2W) denote the tangential (resp. transversal) component of ¢QoW.

Now, by using (2.4), (4.5) and (2.8)—(2.10) and equating tangential, lightlike
transversal and screen transversal components, we obtain

—§(¢X, ¢Y)V — U(Y)(bQX = Vx¢P1X + Vx(bPQX — A¢p3yX + vaP4Y
—Arp,y X —9PIVxY — 9P VxY
— fRVxY — ¢h'(X,Y) — Bh*(X,Y), (4.7)

RH(X,pPY) + W (X, pPY) + h'(X, fPyY) = =V ¢PsY — DY(X, FP,Y)
+oP3VxY,

R (X, oPY) + h*(X, ¢ PY) + h*(X, fPY) = —D*(X,¢P3Y) — VX FP,Y
L FP,VxY — Ch(X,Y). m

THEOREM 4.5. Let M be a proper slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field V' tangent to M. Then induced
connection V is never a metric connection.

Proof. Suppose that the induced connection is a metric connection. Then
Vx¢PY € T'(RadTM) and h'(X,Y) = 0. Thus for Y € ¢RadTM and X €
@ltr(T M), (4.7) becomes

—G(X,Y)V = VxoPoX — 6P,VxY — ¢PVxY — fPVxY — Bh*(X,Y).
Since TM = RadTM & ¢RadTM & ¢ltr(TM) @ D &V, from (4.8), we get
pPIVxY =0, VxoP,X + P VxY =0,
G(X,Y)V =0, fPVxY +Bh*(X,Y)=0. (4.9)
Now, taking X = ¢N and Y = ¢¢ in (4.9), we get Gg(N,&)V = 0. Thus V = 0,

which is a contradiction. Hence M does not have a metric connection. m

5. Screen slant lightlike submanifolds
At first, we state the following lemma for later use:

LEMMA 5.1. Let M be a 2q-lightlike submanifold of an indefinite para-Sasakian
manifold M, of index 2q such that 2q < dim(M) with structure vector field tangent
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to M. Then the screen distribution S(TM) of lightlike submanifold M is Riemann-
an.

The proof of above lemma follows as in Lemma 4.1 of [10], so we omit it.

DEFINITION 5.1. Let M be a 2g-lightlike submanifold of an indefinite para-
Sasakian manifold M of index 2¢ such that 2g < dim(M) with structure vector
field tangent to M. Then we say that M is screen slant lightlike submanifold of M
if following conditions are satisfied:

(i) RadT M is invariant with respect to ¢, i.e. ¢p(RadT M) = RadT M,

(ii) For each non-zero vector field X tangent to D at x € U C M, the angle
0(X) between ¢X and the vector space D, is constant, i.e. it is independent of
the choice of x € U C M and X € D,, where D is complementary nondegenerate
distribution to {V'} in S(T'M) such that S(TM) = DL {V}.

This constant angle (X)) is called the slant angle of distribution D. A screen
slant lightlike submanifold is said to be proper if D # {0} and 6 # 0, 7.

From the above definition, we have the following decomposition
TM = RadTM1LD1{V}. (5.1)

From Definitions 4.1 and 5.1, we conclude that the class of screen slant lightlike
submanifolds does not include slant lightlike submanifolds of an indefinite para-
Sasakian manifold and vice-versa.

THEOREM 5.2. Let M be a screen slant lightlike submanifold of M. Then M

is invariant (resp. screen real) if and only if 0 = 0( resp. 6 = 7).

Proof of the above theorem follows from Proposition 4.1 of [10].

ExXAMPLE 1. Let (R3,g,¢4,7,V) be an indefinite para-Sasakian manifold,
where g is of signature (—,+,+,+,—,+,+,+,+) with respect to the canonical
basis {0x1, 0%, 0x3, Oxy, Y1, Y2, Oys, Oys, 0z}. Suppose M is a submanifold of
RY given by o' = 4% = uy, 22 = y' = ug, 2° = ugcosd, x* = uzsinf, y> = uy sin,
yt = ugcosb, z = us.

The local frame of TM is given by {Z1, Za, Z3, Z4, Z5}, where

Z1 = 2(0x1 + Oys + y'02), Zy = 2(0xo + Oy + y202),

Z3 = 2(cos 00x3 + sin 00x4 + > cos 00z + y* sin 00z),

Zy = 2(sin00ys3 + cos 00y,), Zs =V = 20z.

Hence RadT'M = span{Z1,Z>} and S(T'M) = span{Zs, Z4,V'}.

Now ltr(TM) is spanned by Ny = —0x1 + Oyz — y 0z, Ny = Ozo — Oy1 + 3202
and S(TM™) is spanned by

W1 = 2(—sin 003 + cos 00x4 — y> sin 00z + y* cos 00z),

Wy = 2(cos 00ys — sin 00y,).

It follows that ¢pZ; = Zs, ¢pZs = Z1, which implies that RadT M is invariant, i.e.,
¢RadT M = RadT M. On other hand, we can see that D = span {Z3, Z,} is a slant
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distribution with slant angle 20. Hence M is screen slant 2-lightlike submanifold
of RY.

Now, we denote the projections on RadTM and D in TM by P, and P,
respectively. Similarly, we denote the projections on ltr(TM) and S(TM*) by Qy
and Qo respectively. Then, we get

X =P X +PX +n(X)V, VX eD(TM). (5.2)
Now applying ¢ to (5.2), we have ¢pX = ¢P; X + ¢pPo X, which gives
X = ¢PLX + fPX + FPX, VX € T(TM), (5.3)

where fP, X (resp. FP,X) denotes the tangential (resp. transversal) component of
#P,X. Thus we get P X € RadTM, fP,X € T(D), FP,X € T'(S(TM*1)). Also,

we have

W =W +Q.W, YW e D(tr(TM)). (5.4)
Applying ¢ to (5.4), we obtain
W = Q1 W + ¢Q2W, (5.5)
which gives
W = ¢ W + BQ2W + CQ2W, (5.6)

where BQoW (resp. CQ2W) denotes the tangential (resp. transversal) component
of ¢Q2W

Now, by using (2.4), (5.3), (5.6) and (2.8)—(2.10) and equating tangential,
lightlike transversal and screen transversal components, we obtain
—G(¢X,0Y)V —n(Y)¢? X = VxdpPY + VxfPY — App,y X
— P VXY — fP,VxY + Bh¥(X,Y),
(5.7)
WX, ¢PY) + h(X, fPY) = ¢h'(X,Y) - D'(X, FPY),
(X, 0P 1Y)+ (X, fRY)=Ch(X,Y) - VX FPY — FP,VxY.
(5.8)

THEOREM 5.3. Let M be a 2q-lightlike submanifold of an indefinite para-
Sasakian manifold M with structure vector field tangent to M. Then M is screen
slant lightlike submanifold if and only if

(i) the lightlike transversal vector bundle ltr(TM) is invariant with respect to ¢,
(ii) there exists a constant X € [0,1] such that P?X = A\(X —n(X)V), VX € ['(D).

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M. Then its radical distribution RadTM is invariant with re-
spect to ¢, i.e., X = X VX € ’'RadT M.

Now, for N € Tltr(TM) and X € T'D, using (2.3) and (5.3), we obtain
g(oN,X) =g(N,¢X) =g(N, fX + FX) =g(N, fX) +g(N, FX) =0.
Thus ¢N does not belong to T'(D).
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For N € Tltr(TM) and W € T'S(TM), from (2.3) and (5.6), we have

G(@N, W) =G(N,¢W) =g(N,BW + CW) =g(N,BW) + g(N,CW) = 0.
Hence we conclude that ¢ N does not belong to I'S(TM™).

Now, suppose that N € T'(RadTM). Then ¢(¢pN) = ¢?N = —N +n(N)V €

T(itrTM)® span {V'}, which contradicts that RadT M is invariant. Hence ltr(T M)
is invariant with respect to ¢.

Since |PX| = [¢pX|cos(X), VX € T'(D), we have
_ |PX]

cosf(X) = oxX|"

(5.9)
2 2
In view of (5.9), we get cos? §(X) = I\Z))gIIZ = gg((iﬁig))(()) = Z((i((:iz))g))’ which gives
g(X, P?X) = cos? g(X, ¢* X). (5.10)
Since M is screen slant lightlike submanifold, cos? (X ) = A(constant) € [0, 1].

Therefore from (5.10), we get g(X, P2X) = \g(X, $*X) = g(X, \¢p>X), which
implies g(X, (P?—A¢?)X) = 0. Since X is non-null vector, we have (P? —\¢?) X =
0, which implies

P2X = \¢*X = \X —n(X)V), VX eT(D).
This proves (ii).
Conversely suppose that conditions (i) and (ii) are satisfied. We can show that
RadT M is invariant in similar way that ltr(TM) is invariant. From (ii) we have
P2X = \¢?X, VX € T(D) , where A(constant) € [0,1] .

_ 9(X,PX) _ g(X,¢PX) _ g(X,P’X) _ yg(X,¢°X) _ y g(6X,8X)
Now, cos0(X) = J557px1 = Toxipx = TexiPx| = Moxiipx] = Mox|px
From the above equation, we get

29
0(X) === 5.11
cos0(x) = A [0 (.11)
Therefore (5.9) and (5.11) give cos® §(X) = A(constant). Hence M is a screen slant
lightlike submanifold. m

COROLLARY 5.4 Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with slant angle 8, then

g(PX,PY) = cos®0(g(X,Y) —n(X)n(Y)), VXY eT(D),
g(FX,FY)=sin?0(g(X,Y) —n(X)n(Y)), VX,Y e(D). (5.12)

The proof of above corollary follows using the steps as in proof of Corollary
3.2 of [9].

LEMMA 5.5. Let M be a lightlike submanifold of an indefinite para-Sasakian
manifold M. Then we have
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(i) g(VxY, V) =—g(Y,¢X), VXY e (TM)—{V},
(i) g([X,Y],V)=0, VX,Y eD(TM)—{V}.

~ Proof. Let M be alightlike submanifold of an indefinite para-Sasakian manifold
M. Then from (2.8), we have

g(VxY,V)=g(VxY,V), VXY e (TM)—{V}. (5.13)
Since V is a metric connection, from (5.13) we get
g(VxY,V)=—g(Y,VxV), VX, Y eD(TM)-{V}. (5.14)
From (2.5) and (5.14), we obtain
G(VxY,V) = —g(¥,6X), VX,Y e T(TM) - {V}. (5.15)
On interchanging X and Y in (5.15), we get
g(VyX,V) = —g(X,eY), VX,Y e D(TM)—{V}. (5.16)
From (2.3), (5.15) and (5.16), we have
9([X,Y],V)=0, VX, YeTI'(TM)—-{V}. = (5.17)

THEOREM 5.6. Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field tangent to M. Then

(i) the radical distribution RadTM is integrable if and only if h*(Y,¢X)
h*(X, oY) and (VxoP)Y = (VyoP)X, VX,Y € [(RadT M),

(i) the distribution D is integrable if and only if PA(VxfY — VyfX)
Pl(AFyX — AF)(Y), VX,Y € F(D)

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M. From (5.8), we get

(X, 0Y)=Ch*(X,Y) - FPVxY, VXY € '(RadTM). (5.18)
Interchanging X and Y in (5.18), we get

he(Y,X) = Ch*(Y, X) — FP,Vy X, VX,Y € [(RadTM). (5.19)
From (5.18) and (5.19), we get

(Y, 9X) —h*(X,9Y) = FP(VxY — VyX) = FP[X,Y]. (5.20)

From (5.7), we have
Vx¢PY — P VxY — fRVxY +BR*(X,Y) =0, VX,Y € [(RadTM). (5.21)
On interchanging X and Y in (5.21), we get
VyoPi X — 6P \Vy X — fPVy X +Bh*(Y,X) =0, VX,Y € [(RadTM). (5.22)
From (5.21) and (5.22), we have
(VxoP)Y — (Vy¢P)X = fP([X,Y]), VX,Y €T(RadTM). (5.23)
Proof of (i) follows from (5.17), (5.20) and (5.23).
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Now from (5.7) and (2.2), we obtain

G(6X,0Y)V+VxfY —Apy X = ¢PVxY+fP,VxY —Bh*(X,Y), VX,Y € (D).
(5.24)
Interchanging X and Y in (5.24), we have

(oY, 6 X)V4Vy fX—ApxY = ¢PVy X+ fP,Vy X —Bh*(Y, X), VX,Y € (D).

(5.25)
From (5.24) and (5.25), we get
VxfY —VyfX + ApxY — Apy X
= 6PV xY — ¢P\Vy X + fPyVxY — fPyVy X
= ¢PI[X,Y]+ fP[X,Y], VX,Y eT(D). (5.26)

The equation (5.26) implies
PUVxfY —VyfX)+P(ApxY — Apy X) = ¢PI[X,Y], VX,Y € T(D). (5.27)
Proof of (ii) follows from (5.17) and (5.27). m
THEOREM 5.7. Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field tangent to M. Then S(TM)

defines a totally geodesic foliation if and only if Vx fY — Apy X has no component
in RadTM, VXY € T'(D).

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M. From (2.2) and (2.8), we get
G(VxY,N)=g(—(Vxo)Y + VxoY,¢N), VX, Y €I'(D) and N €litr(TM).
Using (2.4) in above equation, we get

9(VxY,N) = G(g(6X, 6Y)V +0(Y)6*X + Vx oY, 6N). (5.28)

From (2.1) and (5.28), we obtain

G(VxY,N)=g(VxoY,¢N), VX,Y €T(D) and N € ltr(TM). (5.29)
From (2.8), (2.10), (5.3) and (5.29), we get
9(VxY,N) = g(Vx fY+h (X, fY)+h*(X, fy)—Apy X+V5 FY +D'(X, FY),¢N).
From the above equation, we get

J(VxY,N)=9(VxfY —Apy X,¢N), VXY €I'(D) and N € ltr(TM).

which completes the proof. m

THEOREM 5.8. Let M be a screen slant lightlike submanifold of an indefinite
para-Sasakian manifold M with structure vector field tangent to M. If Bh*(X,Y) =
0, VX e T(TM) and Y € T'(RadT M) then the induced connection V is a metric
connection.

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-
Sasakian manifold M. Then the induced connection V on M is a metric connec-
tion if and only if RadT'M is parallel distribution with respect to V ([3]). Since



Lightlike submanifolds of indefinite para-Sasakian manifolds 385
Br*(X,Y)=0,VX e T'(TM) and Y € T'(RadT M), we have g(Bh*(X,Y), Z) = 0,
VX,Z eT(TM) and Y € T'(RadTM). Thus from (5.5) and (5.6), we obtain

G(oh*(X,Y),Z) =0, VX,ZeD(TM) and Y €D(RadTM).  (5.30)
Using (2.3) and (5.3) in (5.30), we get
G(h(X,Y),FPZ) =0, VYX,ZeT(TM) and Y €T(RadTM). (5.31)
Now from (2.8), we get
GFPVXY,¢h*(X,Y)) = G(FPVxY,¢VxY — ¢VxY — ¢h!'(X,Y)),
VX eT(TM) and Y €T(RadTM). (5.32)
Since ltr(T'M) is invariant, from (2.4), (5.3) and (5.32), we get
GFPVXY, ¢h*(X,Y)) = g(FP,VxY,Vx¢Y) —g(FP,VxY,FP,VxY). (5.33)
From (2.8) and (5.33), we obtain

G(FPVxY,0h%(X,Y)) = GFPyVxY, h*(X,6Y)) — G(FP,VxY, FR,VxY).
(5.34)
From (5.12), (5.31) and (5.34), we get

G(FP,VxY,ph(X,Y)) =sin?g(P,VxY, P,VxY),
VX € (M) and Y € D(RadTM). (5.35)
Now from (2.2) and (5.3), we have
9(fPVxY,0h*(X,Y)) = g(FP,VxY, ¢h>(X,Y)),
VX € (M) and Y € D(RadTM). (5.36)
The equations (5.30) and (5.36) imply
G(FP,VxY,6h*(X,Y)) =0, VX € (TM) and Y € I(RadTM). (5.37)
From (5.35) and (5.37), we get
sin20g(P,VxY,P,VxY) =0, VX eT(TM) and Y €T(RadTM).

Since M is proper screen slant lightlike submanifold and D is Riemannian, we
get P,VxY = 0. Hence VxY € I'(RadT M), i.e., radical distribution RadT M is
parallel, which completes the proof. m
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