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GENERALIZED RELATIVE LOWER ORDER
OF ENTIRE FUNCTIONS

Sanjib Kumar Datta, Tanmay Biswas and Chinmay Biswas

Abstract. The basic properties of the generalized relative lower order of entire functions
are discussed in this paper. In fact, we improve here some results of Datta, Biswas and Biswas
[Casp. J. Appl. Math. Ecol. Econ., 1, 2 (2013), 3–18].

1. Introduction, definitions and notations

Let f and g be any two entire functions defined in the complex plane C and
Mf (r) = max{|f(z)| : |z| = r}, Mg(r) = max{|g(z)| : |z| = r}. Sato [9] defined the
generalized order ρ

[l]
f and generalized lower order λ

[l]
f of an entire function f for any

integer l ≥ 2, in the following way:

ρ
[l]
f = lim sup

r→∞
log[l] Mf (r)

log r
and λ

[l]
f = lim inf

r→∞
log[l] Mf (r)

log r
,

where log[k] x = log(log[k−1] x), k = 1, 2, 3, . . . and log[0] x = x.
When l = 2, the above definition coincides with the classical definition of order

and lower order, which are as follows:

ρf = lim sup
r→∞

log[2] Mf (r)
log r

and λf = lim inf
r→∞

log[2] Mf (r)
log r

.

If f is non-constant then Mf (r) is strictly increasing and continuous, and its
inverse Mf

−1 : (|f(0)|,∞) → (0,∞) exists and is such that lims→∞Mf
−1(s) = ∞.

Bernal ([1], see also [2]) introduced the definition of relative order of g with
respect to f , denoted by ρf (g) as follows :

ρg(f) = inf{µ > 0 : Mf (r) < Mg(rµ) for all r > r0(µ) > 0}

= lim sup
r→∞

log M−1
g Mf (r)
log r

.

The definition coincides with the classical one [10] if g(z) = exp z.

2010 Mathematics Subject Classification: 30D20, 30D30, 30D35
Keywords and phrases: Entire function; generalized relative lower order; Property (A).

143



144 Generalized relative lower order of entire functions

Similarly, one can define the relative lower order of g with respect to f , denoted
by λf (g) as follows

λg(f) = lim inf
r→∞

log M−1
g Mf (r)
log r

.

Extending this notion, Lahiri and Banerjee [7] gave a more generalized concept of
relative order which may be given in the following way.

Definition 1. [7] If l ≥ 1 is a positive integer, then the l-th generalized
relative order of f with respect to g, denoted by ρ

[l]
f (g), is defined by

ρ[l]
g (f) = inf{µ > 0 : Mf (r) < Mg(exp[l−1] rµ) for all r > r0(µ) > 0}

= lim sup
r→∞

log[l] M−1
g Mf (r)

log r
,

If l = 1 then ρ
[l]
g (f) = ρg(f). If l = 1, g(z) = exp z then ρ

[l]
g (f) = ρf , the classical

order of f (cf. [10]).
Analogously, one can define the l-th generalized relative lower order of g with

respect to f , denoted by λ
[l]
f (g) as follows

λ
[l]
f (g) = lim inf

r→∞
log[l] M−1

f Mg(r)
log r

.

During the past decades, several authors (see [4–7]) made close investigations
on the properties of relative order of entire functions. In this connection the fol-
lowing definition is relevant.

Definition 2. [2] A non-constant entire function f is said have the Property
(A) if for any σ > 1 and for all sufficiently large r, [Mf (r)]2 ≤ Mf (rσ) holds.

For examples of functions with or without the Property (A), one may see [2].
It is well known that the order of the products and of the sums of two entire

functions is not greater than the maximal order of the two functions. Bernal [2]
and Lahiri and Banerjee [7] extended these results for relative order and generalized
relative order. Our aim in this paper is to study some parallel basic properties of
generalized relative lower order of entire functions. We do not explain the standard
definitions and notations in the theory of entire functions as those are available
in [11].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [2] Suppose f is a nonconstant entire function, α > 1, 0 < β < α,
s > 1, 0 < µ < λ and n is a positive integer. Then
(a) Mf (αr) > βMf (r).
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(b) There exists K = K(s, f) > 0 such that (Mf (r))s ≤ KMf (rs) for r > 0.

(c) lim
r→∞

Mf (rs)
Mf (r)

= ∞ = lim
r→∞

Mf (rλ)
Mf (rµ)

.

(d) If f is transcendental then

lim
r→∞

Mf (rs)
rnMf (r)

= ∞ = lim
r→∞

Mf (rλ)
rnMf (rµ)

.

Lemma 2. [2] Let f be an entire function satisfying the Property (A), and let
δ > 1 and n be a given positive integer. Then the inequality [Mf (r)]n ≤ Mf (rδ)
holds for r large enough.

Lemma 3. Let f, g and h are any three entire functions. If Mg(r) ≤ Mh(r)
for all sufficiently large values of r, then λ

[l]
h (f) ≤ λ

[l]
g (f), where l ≥ 1.

Proof. As Mg(r) ≤ Mh(r) and Mf (r) is an increasing function of r we get for
all sufficiently large values of r that

M−1
h (r) ≤ M−1

g (r)

i.e., M−1
h Mf (r) ≤ M−1

g Mf (r)

i.e., lim inf
r→∞

log[l] M−1
h Mf (r)

log r
≤ lim inf

r→∞
log[l] M−1

g Mf (r)
log r

i.e., λ
[l]
h (f) ≤ λ[l]

g (f).

This proves the lemma.

Lemma 4. [7] Every entire function f satisfying the Property (A) is transcen-
dental.

Lemma 5. [8, p. 21] Let f(z) be holomorphic in the circle |z| = 2eR (R > 0)
with f(0) = 1 and η be an arbitrary positive number not exceeding 3e

2 . Then inside
the circle |z| = R, but outside of a family of excluded circles the sum of whose radii
is not greater than 4ηR, we have

log |f(z)| > −T (η) log Mf (2eR),

for T (η) = 2 + log 3e
2η .

3. Results

In this section we present the main results of the paper.

Theorem 1. If f1, f2, . . . , fn (n ≥ 2) and g are entire functions, then

λ
[l]
f (g) ≥ λ

[l]
fi

(g),
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where l ≥ 1, f = f1 ±
∑n

k=2 fk and λ
[l]
fi

(g) = min{λ[l]
fk

(g) | k = 1, 2, . . . , n}. The

equality holds when λ
[l]
fi

(g) 6= λ
[l]
fk

(g) (k = 1, 2, . . . , n and k 6= i).

Proof. If λ
[l]
f (g) = ∞ then the result is obvious. So we suppose that λ

[l]
f (g) <

∞. We can clearly assume that λ
[l]
fi

(g) is finite. By hypothesis, λ
[l]
fi

(g) ≤ λ
[l]
fk

(g)

for all k = 1, 2, . . . , i, . . . , n. We can suppose λ
[l]
fi

(g) > 0 (the proof for the case

λ
[l]
fi

(g) = 0 is easier and left to the interested reader).
Now for any arbitrary ε > 0, we get for all sufficiently large values of r that

Mfk
[exp[l−1] r

(λ
[l]
fk

(g)−ε)] < Mg(r) where k = 1, 2, . . . , n

i.e., Mfk
(r) < Mg[(log[l−1] r)

1

(λ
[l]
fk

(g)−ε)
] where k = 1, 2, . . . , n , so

Mfk
(r) ≤ Mg[(log[l−1] r)

1

(λ
[l]
fk

(g)−ε)
] where k = 1, 2, . . . , n. (1)

Now for all sufficiently large values of r,

Mf (r) <
n∑

k=1

Mfk
(r)

i.e., Mf (r) <
n∑

k=1

Mg[(log[l−1] r)
1

(λ
[l]
fk

(g)−ε)
]

i.e., Mf (r) < nMg[(log[l−1] r)
1

(λ
[l]
fi

(g)−ε) ]. (2)

Now in view of the first part of Lemma 1, we obtain from (2) for all sufficiently
large values of r that

Mf (r) < Mg[(n + 1)(log[l−1] r)
1

(λ
[l]
fi

(g)−ε) ]

i.e., Mf [exp[l−1](
r

n + 1
)(λ

[l]
fi

(g)−ε)] < Mg(r)

i.e., exp[l−1](
r

n + 1
)(λ

[l]
fi

(g)−ε)
< M−1

f Mg(r)

i.e., (λ[l]
fi

(g)− ε) log(
r

n + 1
) < log[l] M−1

f Mg(r)

i.e., λ
[l]
fi

(g)− ε <
log[l] M−1

f Mg(r)
log r + O(1)

i.e.,
log[l] M−1

f Mg(r)
log r + O(1)

> λ
[l]
fi

(g)− ε.

So

λ
[l]
f (g) = lim inf

r→∞
log[l] M−1

f Mg(r)
log r + O(1)

≥ λ
[l]
fi

(g)− ε.
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Since ε > 0 is arbitrary,
λ

[l]
f (g) ≥ λ

[l]
fi

(g). (3)

Next let λ
[l]
fi

(g) < λ
[l]
fk

(g) where k = 1, 2, . . . , n and k 6= i. As ε(> 0) is
arbitrary, from the definition of generalized lower order it follows for a sequence of
values of r tending to infinity that

Mg(r) < Mfi [exp[l−1] r
(λ

[l]
fi

(g)+ε)]

i.e., Mg[(log[l−1] r)
1

(λ
[l]
fi

(g)+ε) ] < Mfi(r). (4)

Since λ
[l]
fi

(g) < λ
[l]
fk

(g) where k = 1, 2, . . . , n and k 6= i, then in view of the third
part of Lemma 1 we obtain that

lim
r→∞

Mg[(log[l−1] r)
1

(λ
[l]
fi

(g)+ε) ]

Mg[(log[l−1] r)
1

(λ
[l]
fk

(g)−ε)
]

= ∞ where k = 1, 2, . . . , n and k 6= i. (5)

Therefore from (5) we obtain for all sufficiently large values of r that

Mg[(log[l−1] r)
1

(λ
[l]
fi

(g)+ε) ] > nMg[(log[l−1] r)
1

(λ
[l]
fk

(g)−ε)
], (6)

for all k ∈ {1, 2, . . . , n}\{i}.
Thus from (1), (4) and (6) we get for a sequence of values of r tending to

infinity that

Mfi(r) > Mg[(log[l−1] r)
1

(λ
[l]
fi

(g)+ε) ]

i.e., Mfi(r) > nMg[(log[l−1] r)
1

(λ
[l]
fk

(g)−ε)
]

i.e., Mfi(r) > nMfk
(r) for all k = 1, 2, . . . , n with k 6= i. (7)

So from (4) and (7) and in view of the first part of Lemma 1 it follows for a sequence
of values of r tending to infinity that

Mf (r) ≥ Mfi(r)−
n∑

k=1
k 6=i

Mfk
(r)

i.e., Mf (r) ≥ Mfi(r)−
1
n

n∑
k=1
k 6=i

Mfi(r)

i.e., Mf (r) > Mfi(r)− (
n− 1

n
)Mfi(r)

i.e., Mf (r) > (
1
n

)Mfi(r)

i.e., Mf (r) > (
1
n

)Mg[(log[l−1] r)
1

(λ
[l]
fi

(g)+ε) ]
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i.e., Mf (r) > Mg[
(log[l−1] r)

1

(λ
[l]
fi

(g)+ε)

n + 1
] .

This gives for a sequence of values of r tending to infinity that

Mf [exp[l−1]{(n + 1)r}(λ
[l]
fi

(g)+ε)] > Mg(r)

i.e., {(n + 1)r}(λ
[l]
fi

(g)+ε)
> log[l−1] M−1

f Mg(r)

i.e., λ
[l]
fi

(g) + ε >
log[l] M−1

f Mg(r)
log((n + 1)r)

i.e., λ
[l]
fi

(g) + ε >
log[l] M−1

f Mg(r)
log r + O(1)

i.e., λ
[l]
fi

(g) ≥ lim inf
r→∞

log[l] M−1
f Mg(r)

log r + O(1)

i.e., λ
[l]
f (g) = lim inf

r→∞
log[l] M−1

f Mg(r)
log r

≤ λfi
(g). (8)

So from (3) and (8), we finally obtain that

λ
[l]
f (g) = λ

[l]
fi

(g),

whenever λ
[l]
fi

(g) 6= λ
[l]
fk

(g) for all k ∈ {1, 2, . . . , n}\{i}.
Theorem 2. Let n, l be two positive integers with n, l ≥ 2. Then

1
n

λ
[l]
f (g) ≤ λ

[l]
fn(g) ≤ λ

[l]
f (g).

Proof. From the first and second parts of Lemma 1, we obtain that

{Mf (r)}n ≤ KMf (rn) < Mf ((K + 1)rn), n > 1 and r > 0 (9)

where K = K(n, f) > 0. Therefore from (9) we obtain that

M−1
f (rn) < (K + 1){M−1

f (r)}n

So

λ
[l]
fn(g) ≥

log[l] 1
(K+1)M

−1
f Mg(rn)

log rn

i.e., λ
[l]
fn(g) ≥ 1

n
λ

[l]
f (g). (10)

On the other hand since {Mf (r)}n > Mf (r) for all sufficiently large values of r, we
have by Lemma 3

λ
[l]
fn(g) ≤ λ

[l]
f (g). (11)

Thus the theorem follows from (10) and (11).



S. K. Datta, T. Biswas, C. Biswas 149

Proposition 1. Let n, l be two positive integers with n, l ≥ 2. Then

1
n

ρ
[l]
f (g) ≤ ρ

[l]
fn(g) ≤ ρ

[l]
f (g).

The proof is omitted as it can be carried out under the lines of Theorem 2.

Theorem 3. Let P be a polynomial. If f is transcendental then λ
[l]
Pf (g) =

λ
[l]
f (g), and if g is transcendental, then λ

[l]
f (Pg) = λ

[l]
f (g). If f and g are both

transcendental then λ
[l]
Pf (g) = λ

[l]
f (Pg) = λ

[l]
f (g) = λ

[l]
Pf (Pg). Here Pf and Pg

denote the ordinary product of P with f and g respectively and l ≥ 1.

Proof. Let m be the degree of P (z). Then there exists α such that 0 < α < 1
and a positive integer n(> m) for which

2α ≤ |P (z)| ≤ rn

holds on |z| = r for all sufficiently large values of r. Now by the first part of Lemma
1 we obtain that Mg( 1

α · αr) > 1
2αMg(αr), i.e.,

Mg(αr) < 2αMg(r). (12)

Now let us consider h(z) = P (z) · f(z). Then from (2) and in view of the fourth
part of Lemma 1 we get for any s(> 1) and for all sufficiently large values of r that

Mg(αr) < 2αMg(r) ≤ Mh(r) ≤ rnMg(r) < Mg(rs).

So

lim inf
r→∞

log[l] M−1
f Mg(αr)
log r

≤ lim inf
r→∞

log[l] M−1
f Mh(r)

log r
≤ lim inf

r→∞
log[l] M−1

f Mg(rs)
log r

i.e.

lim inf
r→∞

log[l] M−1
f Mg(αr)

log(αr) + O(1)
≤ lim inf

r→∞
log[l] M−1

f Mh(r)
log r

≤ lim inf
r→∞

log[l] M−1
f Mg(rs)

log rs
· s

i.e., λ
[l]
f (g) ≤ λ

[l]
h (g) ≤ s · λ[l]

f (g),

and letting s → 1+ we get
λ

[l]
Pf (g) = λ

[l]
f (g). (13)

Similarly, when g is transcendental one can easily prove that

λ
[l]
f (Pg) = λ

[l]
f (g). (14)

If f and g are both transcendental then the conclusion of the theorem can easily
be obtained by combining (13) and (14), and the theorem follows.
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Theorem 4. If f1, f2, . . . , fn (n ≥ 2), g are entire functions and g has the
Property (A), then

λ
[l]
f (g) ≥ λ

[l]
fi

(g)

where f =
∏n

k=1 fk and λ
[l]
fi

(g) = min{λ[l]
fk

(g) | k = 1, 2, . . . , n}. The equality

holds when λ
[l]
fi

(g) 6= λ
[l]
fk

(g) (k = 1, 2, . . . , n and k 6= i). Finally, assume that F1

and F2 are entire functions such that f := F1
F2

is also an entire function. Then

λ
[l]
f (g) = min{λ[l]

F1
(g), λ[l]

F2
(g)} .

Proof. By Lemma 4, g is transcendental. Suppose that λ
[l]
f (g) < ∞. Otherwise

if λ
[l]
f (g) = ∞ then the result is obvious. We can clearly assume that λ

[l]
fi

(g) is finite.

Also suppose that λ
[l]
fi

(g) ≤ λ
[l]
fk

(g) where k = 1, 2, . . . , n. We can suppose λ
[l]
fi

(g) > 0

(the proof for the case λ
[l]
fi

(g) = 0 is easier and left to the interested reader).

Now for any arbitrary ε > 0, with ε < λ
[l]
fi

(g), we have for all sufficiently large
values of r that

Mfk
[exp[l−1] r

(λ
[l]
fk

(g)− ε
2 )] < Mg(r) where k = 1, 2, . . . , n

i.e., Mfk
(r) < Mg[(log[l−1] r)

1

(λ
[l]
fk

(g)− ε
2 )

] where k = 1, 2, . . . , n, so

Mfk
(r) ≤ Mg[(log[l−1] r)

1

(λ
[l]
fi

(g)− ε
2 ) ] for k = 1, 2, . . . , n. (15)

From (15) we have for all sufficiently large values of r that

Mf (r) <
n∏

k=1

Mfk
(r),

i.e., Mf (r) <
n∏

k=1

Mg[(log[l−1] r)
1

(λ
[l]
fk

(g)− ε
2 )

]

i.e., Mf (r) < [Mg[(log[l−1] r)
1

(λ
[l]
fi

(g)− ε
2 ) ]]n. (16)

Observe that

δ :=
λ

[l]
fi

(g)− ε
2

λ
[l]
fi

(g)− ε
> 1. (17)

Since g has the Property (A), in view of Lemma 2 and (17) we obtain from (16)
for all sufficiently large values of r that

Mf (r) < Mg(log[l−1] r)
δ

(λ
[l]
fi

(g)− ε
2 ) = Mg[(log[l−1] r)

1

(λ
[l]
fi

(g)−ε) ]

i.e., Mf [exp[l−1] r
(λ

[l]
fi

(g)−ε)] < Mg(r)

i.e., r
(λ

[l]
fi

(g)−ε)
< log[l−1] M−1

f Mg(r)
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i.e., (λ[l]
fi

(g)− ε) log r < log[l] M−1
f Mg(r)

i.e., λ
[l]
fi

(g)− ε <
log[l] M−1

f Mg(r)
log r

So

λ
[l]
f (g) = lim inf

r→∞
log[l] M−1

f Mg(r)
log r

≥ λ
[l]
fi

(g)− ε.

Since ε > 0 is arbitrary,
λ

[l]
f (g) ≥ λ

[l]
fi

(g). (18)

Next, let λ
[l]
fi

(g) < λ
[l]
fk

(g) where k = 1, 2, . . . , n and k 6= i. Fix ε > 0 with

ε < 1
4 min{λ[l]

fk
(g)−λ

[l]
fi

(g) : k ∈ {1, . . . , n}\{i}}. Without loss of any generality, we
may assume that fk(0) = 1 where k = 1, 2, . . . , n and k 6= i.

Now from the definition of relative lower order we obtain for a sequence of
values of R tending to infinity that

Mg(R) < Mfi [exp[l−1] R
(λ

[l]
fi

(g)+ε)]

i.e., Mfi(R) > Mg[(log[l−1] R)
1

(λ
[l]
fi

(g)+ε) ] . (19)

Also for all sufficiently large values of r we get that

Mfk
[exp[l−1] r

(λ
[l]
fk

(g)−ε)] < Mg(r) where k = 1, 2, . . . , n and k 6= i

i.e., Mfk
(r) < Mg[(log[l−1] r)

1

(λ
[l]
fk

(g)−ε)
] where k = 1, 2, . . . , n and k 6= i.

Since λ
[l]
fi

(g) < λ
[l]
fk

(g), we get from above that

Mfk
(r) < Mg[(log[l−1] r)

1

(λ
[l]
fi

(g)−ε) ] (20)

where k = 1, 2, . . . , n and k 6= i.
Now in view of Lemma 5, taking fk(z) for f(z), η = 1

16 and 2R for R, it follows
for the values of z specified in the lemma that

log |fk(z)| > −T (η) log Mfk
(2e · 2R),

where
T (η) = 2 + log(

3e

2 · 1
16

) = 2 + log(24e).

Therefore
log |fk(z)| > −(2 + log(24e)) log Mfk

(4eR)

holds within and on |z| = 2R but outside a family of excluded circles the sum of
whose radii is not greater than 4 · 1

16 · 2R = R
2 . If r ∈ (R, 2R) then on |z| = r

log |fk(z)| > −7 log Mfk
(4e ·R). (21)
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Since r > R, we have from above and (19) for a sequence of values of r tending to
infinity that

Mfi(r) > Mfi(R) > Mg[(log[l−1] R)
1

(λ
[l]
fi

(g)+ε) ] > Mg[(log[l−1] r

2
)

1

(λ
[l]
fi

(g)+ε) ]. (22)

Let zr be a point on |z| = r such that Mfi(r) = |fi(zr)|. Therefore as r > R,
from (20), (21) and (22) it follows for a sequence of values of r tending to infinity
that

Mf (r) = max{|f(z)| : |z| = r} = max{
n∏

k=1

|fk(z)| : |z| = r}, so

Mf (r) ≥
n∏

k=1
k 6=i

|fk(zr)||fi(zr)|

i.e., Mf (r) ≥
n∏

k=1
k 6=i

|fk(zr)|Mfi(r)

i.e., Mf (r) ≥
n∏

k=1
k 6=i

[Mfk
(4eR)]−7Mg[(log[l−1]( r

2 ))
1

(λ
[l]
fi

(g)+ε) ]

≥
n∏

k=1
k 6=i

[Mg[(log[l−1](4eR))
1

(λ
[l]
fk

(g)−ε)
]]−7Mg[(log[l−1]( r

2 ))
1

(λ
[l]
fi

(g)+ε) ]

=
n∏

k=1
k 6=i

[Mg[(log[l−1](4eR))
1

(λ
[l]
fk

(g)−ε)
]]−7Mg[(log[l−1]( 4er

8e ))
1

(λ
[l]
fi

(g)+ε) ],

hence

Mf (r) ≥
n∏

k=1
k 6=i

[Mg[(log[l−1] 4er)
1

(λ
[l]
fk

(g)−ε) ]]−7Mg[(log[l−1] 4er
8e )

1

(λ
[l]
fi

(g)+ε) ]. (23)

On the other hand, we have (log[l−1]( 4er
8e ))

1

(λ
[l]
fi

(g)+ε) ≥ (log[l−1](4er))
1

(λ
[l]
fi

(g)+2ε)

asymptotically. By using this fact together with Lemma 2 (with n = 2 and

δ :=
λ

[l]
fi

(g)+3ε

λ
[l]
fi

(g)+2ε
> 1) we get for r large enough that

Mg[(log[l−1](
4er

8e
))

1

(λ
[l]
fi

(g)+ε) ] ≥ Mg[{(log[l−1](4er))
1

(λ
[l]
fi

(g)+3ε) }2]. (24)

Let L := min{λ[l]
fk

(g) : k 6= i}. Now, by choosing this time δ := L−ε

λ
[l]
fi

(g)+3ε
(which is

> 1 due to our selection of ε), a further application of Lemma 2 yields

Mg[(log[l−1](4er))
1

λ
[l]
fi

(g)+3ε ] ≥ Mg[(log[l−1](4er))
1

L−ε ]7n

≥
n∏

k=1
k 6=i

Mg[[(log[l−1](4er))
1

λ
[l]
fk

(g)−ε
]]7 (25)
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for r large enough. Now from (23), (24) and (25), it follows for a sequence of values
of r tending to infinity that

Mf (r) ≥ Mg[(log[l−1](4er))
1

(λ
[l]
fi

(g)+3ε) ]

i.e., Mf [exp[l−1] r
(λ

[l]
fi

(g)+3ε)] ≥ Mg(4er)

i.e., r
(λ

[l]
fi

(g)+3ε) ≥ log[l−1] M−1
f Mg(4er)

i.e., (λ[l]
fi

(g) + 3ε) log r ≥ log[l] M−1
f Mg(4er)

i.e., λ
[l]
fi

(g) + 3ε ≥ log[l] M−1
f Mg(4er)

log(4er) + O(1)

If we let ε → 0+ then we get

λ
[l]
fi

(g) ≥ lim inf
r→∞

log[l] M−1
f Mg(4er)

log(4er) + O(1)
.

Therefore

λ
[l]
f (g) = lim inf

r→∞
log[l] M−1

f Mg(r)
log r

≤ λ
[l]
fi

(g). (26)

So from (18) and (26) we finally obtain that

λ
[l]
f (g) = λ

[l]
fi

(g),

if one assumes that λ
[l]
fi

(g) 6= λ
[l]
fk

(g) for all k ∈ {1, 2, . . . , n}\{i}.
Let now f = F1

F2
with F1, F2, f entire, and suppose λ

[l]
F1

(g) ≥ λ
[l]
F2

(g). We

have F1 = f.F2 . Thus λ
[l]
F1

(g) = λ
[l]
f (g) if λ

[l]
f (g) < λ

[l]
F2

(g). So it follows that

λ
[l]
F1

(g) < λ
[l]
F2

(g), which contradicts the hypothesis “λ
[l]
F1

(g) ≥ λ
[l]
F2

(g)”. Hence

λ
[l]
f (g) = λ

[l]
F1
F2

(g) ≥ λ
[l]
F2

(g) = min{λ[l]
F1

(g), λ[l]
F2

(g)}. Also suppose that λ
[l]
F1

(g) >

λ
[l]
F2

(g). Then λ
[l]
F1

(g) = min{λ[l]
f (g), λ[l]

F2
(g)} = λ

[l]
F2

(g), if λ
[l]
f (g) > λ

[l]
F2

(g), which

also a contradiction. Thus λ
[l]
f (g) = λ

[l]
F1
F2

(g) = min{λ[l]
F1

(g), λ[l]
F2

(g)}. This proves

the theorem.
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