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FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR A
SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS
DEFINED BY SĂLĂGEAN DIFFERENTIAL OPERATOR

Serap Bulut

Abstract. In this work, considering a subclass of analytic bi-univalent functions defined by
Sălăgean differential operator, we determine estimates for the general Taylor-Maclaurin coefficients
of the functions in this class. For this purpose, we use the Faber polynomial expansions. In certain
cases, our estimates improve some of existing coefficient bounds.

1. Introduction

Let A denote the class of all functions of the form

f(z) = z +
∞∑

n=2
anzn (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. We also
denote by S the class of all functions in the normalized analytic function class A
which are univalent in U.

For f ∈ A, Sălăgean [14] introduced the following operator:

D0f(z) = f(z), (1.2)

D1f(z) = zf ′(z) =: Df(z), (1.3)

Djf(z) = D(Dj−1f(z)), (j ∈ N := {1, 2, 3, . . . }). (1.4)

If f is given by (1.1), then from (1.3) and (1.4) we see that

Djf(z) = z +
∞∑

n=2
njanzn, (j ∈ N0 = N∪{0}), (1.5)

with Djf(0) = 0.
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It is well known that every function f ∈ S has an inverse f−1, which is defined
by f−1 (f (z)) = z (z ∈ U) and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) ≥ 1

4

)
.

In fact, the inverse function g = f−1 is given by

g (w) = f−1 (w)

= w − a2w
2 +

(
2a2

2 − a3

)
w3 − (

5a3
2 − 5a2a3 + a4

)
w4 + · · ·

=: w +
∞∑

n=2
Anwn. (1.6)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1.1). The class
of analytic bi-univalent functions was first introduced and studied by Lewin [11],
where it was proved that |a2| < 1.51. Brannan and Clunie [3] improved Lewin’s
result to |a2| ≤

√
2 and later Netanyahu [20] proved that |a2| ≤ 4/3. Brannan and

Taha [4] and Taha [16] also investigated certain subclasses of bi-univalent functions
and found non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2|
and |a3|. For a brief history and interesting examples of functions in the class Σ,
see [15] (see also [4]). In fact, the aforecited work of Srivastava et al. [15] essentially
revived the investigation of various subclasses of the bi-univalent function class Σ
in recent years; it was followed by such works as those by Frasin and Aouf [6], Xu
et al. [18,19], Hayami and Owa [8], Porwal and Darus [13] and others.

Not much is known about the bounds on the general coefficient |an| for n > 3.
This is because the bi-univalency requirement makes the behavior of the coefficients
of the function f and f−1 unpredictable. Here, in this paper, we use the Faber
polynomial expansions for a subclass of analytic bi-univalent functions to determine
estimates for the general coefficient bounds |an|.

In the literature, there are only a few works determining the general coeffi-
cient bounds |an| for the analytic bi-univalent functions given by (1.1) using Faber
polynomial expansions, [7,9,10].

2. The class HΣ(j,α, λ)

Firstly, we consider the class of analytic bi-univalent functions defined by Por-
wal and Darus [13].

Definition 1. [13] For λ ≥ 1, a function f ∈ Σ given by (1.1) is said to be in
the class HΣ (j, α, λ) if the following conditions are satisfied:

Re
(

(1− λ)
Djf (z)

z
+ λ

(Djf (z)
)′)

> α (2.1)

and

Re
(

(1− λ)
Djg (w)

w
+ λ

(Djg (w)
)′)

> α, (2.2)
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where 0 ≤ α < 1; j ∈ N0; z, w ∈ U; g = f−1 is defined by (1.6); and Dj is the
Sălăgean differential operator.

Remark 1. In the following special cases of Definition 1, we show how the
class of analytic bi-univalent functions HΣ (j, α, λ) for suitable choices of j and
λ lead to certain new as well as known classes of analytic bi-univalent functions
studied earlier in the literature.

(i) For j = 0, we obtain the bi-univalent function class

HΣ (0, α, λ) = BΣ (α, λ)

introduced by Frasin and Aouf [6]. This class consists of functions f ∈ Σ satisfying

Re
(

(1− λ)
f (z)

z
+ λf ′ (z)

)
> α

and

Re
(

(1− λ)
g (w)

w
+ λg′ (w)

)
> α

where 0 ≤ α < 1; λ ≥ 1; z, w ∈ U and g = f−1 is defined by (1.6).
(ii) For j = 0 and λ = 1, we have the bi-univalent function class

HΣ (0, α, 1) = HΣ (α)

introduced by Srivastava et al. [15]. This class consists of functions f ∈ Σ satisfying
Re (f ′ (z)) > α and Re (g′ (w)) > α, where 0 ≤ α < 1; z, w ∈ U and g = f−1 is
defined by (1.6).

3. Coefficient estimates

Using the Faber polynomial expansion of functions f ∈ A of the form (1.1),
the coefficients of its inverse map g = f−1 may be expressed as [1]:

g (w) = f−1 (w) = w +
∞∑

n=2

1
n

K−n
n−1 (a2, a3, . . . )wn, (3.1)

where

K−n
n−1 =

(−n)!
(−2n + 1)! (n− 1)!

an−1
2 +

(−n)!
(2 (−n + 1))! (n− 3)!

an−3
2 a3

+
(−n)!

(−2n + 3)! (n− 4)!
an−4
2 a4

+
(−n)!

(2 (−n + 2))! (n− 5)!
an−5
2

[
a5 + (−n + 2) a2

3

]

+
(−n)!

(−2n + 5)! (n− 6)!
an−6
2 [a6 + (−2n + 5) a3a4] +

∑
k≥7

an−k
2 Vk,

(3.2)
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such that Vk with 7 ≤ k ≤ n is a homogeneous polynomial in the variables
a2, a3, . . . , an, [2]. In particular, the first three terms of K−n

n−1 are

K−2
1 = −2a2,

K−3
2 = 3

(
2a2

2 − a3

)
,

K−4
3 = −4

(
5a3

2 − 5a2a3 + a4

)
. (3.3)

In general, for any p ∈ N, an expansion of Kp
n is as, [1],

Kp
n = pan +

p (p− 1)
2

D2
n +

p!
(p− 3)! 3!

D3
n + · · ·+ p!

(p− n)! n!
Dn

n, (3.4)

where Dp
n = Dp

n (a2, a3, . . . ), and by [17],

Dm
n (a1, a2, . . . , an) =

∞∑
n=1

m!
i1! . . . in!

ai1
1 . . . ain

n

while a1 = 1, and the sum is taken over all non-negative integers i1, . . . , in satisfying

i1 + i2 + · · ·+ in = m, i1 + 2i2 + · · ·+ nin = n.

It is clear that Dn
n (a1, a2, . . . , an) = an

1 .
Consequently, for functions f ∈ HΣ (j, α, λ) of the form (1.1), we can write:

(1− λ)
Djf (z)

z
+ λ

(Djf (z)
)′

= 1 +
∞∑

n=2
Fn−1 (a2, a3, . . . , an) zn−1, (3.5)

where
F1 = (1 + λ) 2ja2, F2 = (1 + 2λ) 3ja3, F3 = (1 + 3λ) 4ja4.

In general, we have

Fn−1 (a2, a3, . . . , an) = [1 + (n− 1) λ]njan. (3.6)

Our first theorem introduces an upper bound for the coefficients |an| of analytic
bi-univalent functions in the class HΣ (j, α, λ).

Theorem 1. For λ ≥ 1, 0 ≤ α < 1 and j ∈ N0, let the function f ∈
HΣ (j, α, λ) be given by (1.1). If ak = 0 (2 ≤ k ≤ n− 1), then

|an| ≤ 2 (1− α)
[1 + (n− 1) λ]nj

(n ≥ 4) .

Proof. For the function f ∈ HΣ (j, α, λ) of the form (1.1), we have the expan-
sion (3.5) and for the inverse map g = f−1, considering (1.6), we obtain

(1− λ)
Djg (w)

w
+ λ

(Djg (w)
)′

= 1 +
∞∑

n=2
Fn−1 (A2, A3, . . . , An)wn−1, (3.7)
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with
An =

1
n

K−n
n−1 (a2, a3, . . . , an) . (3.8)

On the other hand, since f ∈ HΣ (j, α, λ) and g = f−1 ∈ HΣ (j, α, λ), by definition,
there exist two positive real part functions

p (z) = 1 +
∞∑

n=1
cnzn ∈ A

and
q (w) = 1 +

∞∑
n=1

dnwn ∈ A,

where Re {p (z)} > 0 and Re {q (w)} > 0 in U so that

(1− λ)
Djf (z)

z
+ λ

(Djf (z)
)′

= α + (1− α) p (z)

= 1 + (1− α)
∞∑

n=1
K1

n (c1, c2, . . . , cn) zn

(3.9)

and

(1− λ)
Djg (w)

w
+ λ

(Djg (w)
)′

= α + (1− α) q (w)

= 1 + (1− α)
∞∑

n=1
K1

n (d1, d2, . . . , dn)wn.
(3.10)

Note that, by the Caratheodory Lemma (e.g., [5]),

|cn| ≤ 2 and |dn| ≤ 2 (n ∈ N) .

Comparing the corresponding coefficients of (3.5) and (3.9), for any n ≥ 2, yields

Fn−1 (a2, a3, . . . , an) = (1− α) K1
n−1 (c1, c2, . . . , cn−1) , (3.11)

and similarly, from (3.7) and (3.10) we find

Fn−1 (A2, A3, . . . , An) = (1− α)K1
n−1 (d1, d2, . . . , dn−1) . (3.12)

Note that for ak = 0 (2 ≤ k ≤ n− 1), we have An = −an and so

[1 + (n− 1) λ]njan = (1− α) cn−1,

− [1 + (n− 1) λ]njan = (1− α) dn−1.

Taking the absolute values of the above equalities, we obtain

|an| = (1− α) |cn−1|
[1 + (n− 1)λ] nj

=
(1− α) |dn−1|

[1 + (n− 1)λ] nj
≤ 2 (1− α)

[1 + (n− 1)λ] nj
,

which completes the proof of Theorem 1.
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The following corollary is an immediate consequence of the above theorem.

Corollary 1. [9] For λ ≥ 1 and 0 ≤ α < 1, let the function f ∈ BΣ (α, λ) be
given by (1.1). If ak = 0 (2 ≤ k ≤ n− 1), then

|an| ≤ 2 (1− α)
1 + (n− 1)λ

(n ≥ 4) .

Relaxing the coefficient restrictions imposed in Theorem 1, we see the un-
predictable behavior of the initial Taylor-Maclaurin coefficients of functions f ∈
HΣ (j, α, λ) illustrated in the following theorem.

Theorem 2. For λ ≥ 1, 0 ≤ α < 1 and j ∈ N0, let the function f ∈
HΣ (j, α, λ) be given by (1.1). Then one has the following

|a2| ≤ min

{√
2 (1− α)

(1 + 2λ) 3j
,

2 (1− α)
(1 + λ) 2j

}
, (3.13)

|a3| ≤ 2 (1− α)
(1 + 2λ) 3j

(3.14)

∣∣a3 − 2a2
2

∣∣ ≤ 2 (1− α)
(1 + 2λ) 3j

.

Proof. If we set n = 2 and n = 3 in (3.11) and (3.12), respectively, we get

(1 + λ) 2ja2 = (1− α) c1, (3.15)

(1 + 2λ) 3ja3 = (1− α) c2, (3.16)

− (1 + λ) 2ja2 = (1− α) d1, (3.17)

(1 + 2λ) 3j
(
2a2

2 − a3

)
= (1− α) d2. (3.18)

From (3.15) and (3.17), we find (by the Caratheodory Lemma)

|a2| = (1− α) |c1|
(1 + λ) 2j

=
(1− α) |d1|
(1 + λ) 2j

≤ 2 (1− α)
(1 + λ) 2j

. (3.19)

Also from (3.16) and (3.18), we obtain

2 (1 + 2λ) 3ja2
2 = (1− α) (c2 + d2) . (3.20)

Using the Caratheodory Lemma, we get

|a2| ≤
√

2 (1− α)
(1 + 2λ) 3j

,

and combining this with the inequality (3.19), we obtain the desired estimate on
the coefficient |a2| as asserted in (3.13).
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Next, in order to find the bound on the coefficient |a3|, we subtract (3.18) from
(3.16). We thus get

(1 + 2λ) 3j
(−2a2

2 + 2a3

)
= (1− α) (c2 − d2)

or

a3 = a2
2 +

(1− α) (c2 − d2)
2 (1 + 2λ) 3j

. (3.21)

Upon substituting the value of a2
2 from (3.15) into (3.21), it follows that

a3 =
(1− α)2 c2

1

(1 + λ)2 22j
+

(1− α) (c2 − d2)
2 (1 + 2λ) 3j

.

We thus find (by the Caratheodory Lemma) that

|a3| ≤ 4 (1− α)2

(1 + λ)2 22j
+

2 (1− α)
(1 + 2λ) 3j

. (3.22)

On the other hand, upon substituting the value of a2
2 from (3.20) into (3.21), it

follows that

a3 =
(1− α) c2

(1 + 2λ) 3j
.

Consequently, (by the Caratheodory Lemma) we have

|a3| ≤ 2 (1− α)
(1 + 2λ) 3j

. (3.23)

Combining (3.22) and (3.23), we get the desired estimate on the coefficient |a3| as
asserted in (3.14).

Finally, from (3.18), we deduce (by the Caratheodory Lemma) that

∣∣a3 − 2a2
2

∣∣ =
(1− α) |d2|
(1 + 2λ) 3j

≤ 2 (1− α)
(1 + 2λ) 3j

.

This evidently completes the proof of Theorem 2.
Remark 2. The above estimates for |a2| and |a3| show that Theorem 2 is an

improvement of the estimates obtained by Porwal and Darus [13].

Corollary 2. [13] For λ ≥ 1, 0 ≤ α < 1 and j ∈ N0, let the function
f ∈ HΣ (j, α, λ) be given by (1.1). Then one has the following

|a2| ≤
√

2 (1− α)
(1 + 2λ) 3j

and

|a3| ≤ 4 (1− α)2

(1 + λ)2 22j
+

2 (1− α)
(1 + 2λ) 3j

.
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By setting j = 0 in Theorem 2, we obtain the following consequence which is
an improvement of the estimates obtained by Frasin and Aouf [12].

Corollary 3. [9] For λ ≥ 1 and 0 ≤ α < 1, let the function f ∈ BΣ (α, λ) be
given by (1.1). Then one has the following

|a2| ≤




√
2(1−α)
1+2λ , 0 ≤ α < 1+2λ−λ2

2(1+2λ)

2(1−α)
1+λ , 1+2λ−λ2

2(1+2λ) ≤ α < 1,

|a3| ≤ 2 (1− α)
1 + 2λ

and
∣∣a3 − 2a2

2

∣∣ ≤ 2 (1− α)
1 + 2λ

.

By setting j = 0 and λ = 1 in Theorem 2, we obtain the following consequence.

Corollary 4. For 0 ≤ α < 1, let the function f ∈ HΣ (α) be given by (1.1).
Then one has the following

|a2| ≤
{ √

2(1−α)
3 , 0 ≤ α < 1

3

1− α, 1
3 ≤ α < 1

and |a3| ≤ 2 (1− α)
3

.

Remark 3. The above estimates for |a2| and |a3| show that Corollary 4 is an
improvement of the estimates obtained by Srivastava et al. [15].

Corollary 5. [15] For 0 ≤ α < 1, let the function f ∈ HΣ (α) be given by
(1.1). Then one has the following

|a2| ≤
√

2 (1− α)
3

and |a3| ≤ (1− α) (5− 3α)
3

.
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