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ON SOLVING PARABOLIC EQUATION WITH HOMOGENEOUS
BOUNDARY AND INTEGRAL INITIAL CONDITIONS

Mladen Ignjatović

Abstract. In this paper we consider the second order parabolic partial differential equa-
tion with constant coefficients subject to homogeneous Dirichlet boundary conditions and initial
condition containing nonlocal integral term. We derive first and second order finite difference
schemes for the parabolic problem, combining implicit and Crank-Nicolson methods with two
discretizations of the integral term. One numerical example is presented to test and illustrate the
proposed algorithm.

1. Introduction

The first paper devoted to partial differential equations with nonlocal inte-
gral condition goes back to J. R. Cannon [3]. For parabolic partial differential
equations with nonlocal condition the reader can see Bouziani [2], Dehghan [6],
Ionkin [8], Kamynin [10]. Problems related to elliptic equations were considered by
(among others) Ashyralyev [1], Gushin [7]. Deghan [5] and Pulkina [11] dealt with
hyperbolic equations. In this article, we consider parabolic differential equation
with homogeneous Dirichlet boundary conditions and nonlocal weighted integral
condition

∂u

∂t
=

∂2u

∂x2
+ f(x, t), (x, t) ∈ Ω, (1)

u(0, t) = u(1, t) = 0, 0 < t < T, (2)

u(x, 0) =
∫ T

0

α(s)u(x, s) ds + g(x), (3)

where g(x) and f(x, t) are given smooth functions on (0, 1) and Ω = [0, 1] × [0, T ]
respectively, under assumption

∫ T

0
|α(ρ)| dρ < 1, α(t) > 0 for t ∈ [0, T ].

The paper is organized as follows: In Section 2 we propose that a solution
of the problem (1)–(3) exists. In Sections 2 and 3, we present, respectively, first
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and second order of convergence Euler implicit scheme for solving this problem. In
Section 4, we prove stability and give error analysis of second order of convergence
Euler difference scheme. Numerical results that illustrate theoretical discussion are
presented in Section 5.

2. Existence of solution

Let us suppose that the functions f and g can be expressed in terms of their
Fourier sine series in Ω,

f(x, t) =
∞∑

k=1

φk(t) sin(kπx), g(x) =
∞∑

k=1

γk sin(kπx)

and search for a solution of the problem (1)–(3) in the form

u(x, t) =
∞∑

k=1

vk(t) sin(kπx). (4)

For any given n ∈ N, we define functions

fn(x, t) =
n∑

k=1

φk(t) sin(kπx), gn(x) =
n∑

k=1

γk sin(kπx)

and problem Pn,

∂un

∂t
=

∂2un

∂x2
+ fn(x, t), (x, t) ∈ Ω, (5)

un(0, t) = un(1, t) = 0, 0 < t < T,

un(x, 0) =
∫ T

0

α(s)un(x, s) ds + gn(x), x ∈ [0, 1]. (6)

We will try to find solution un of the problem Pn in the form

un(x, t) =
n∑

k=1

vk(t) sin(kπx). (7)

From (5) we have

n∑
k=1

(v′k(t) + k2π2vk) sin(kπx) =
n∑

k=1

φk(t) sin(kπx),

and since the set of functions {sin(kπx)}n
k=1 is linearly independent on [0, 1],

v′k(t) + k2π2vk = φk(t), k = 1, . . . , n, t ∈ [0, T ]. (8)

General solution to linear differential equations (8) is

vk(t) = e−k2π2t

(
Ck +

∫ t

0

φk(r)ek2π2r dr

)
, k = 1, . . . , n. (9)
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Now vk(0) = Ck. From (6) and (7) we have

un(x, 0) =
n∑

k=1

(∫ T

0

α(s)vk(s) ds + γk

)
sin(kπx),

un(x, 0) =
n∑

k=1

vk(0) sin(kπx) =
n∑

k=1

Ck sin(kπx),

that is

Ck =
∫ T

0

α(s)vk(s) ds + γk, k = 1, . . . , n.

Now substituting (9) into the last equation we have

Ck = Ck

∫ T

0

α(s)e−k2π2s ds +
∫ T

0

α(s)e−k2π2s

∫ s

0

φk(r)ek2π2r dr ds + γk,

k = 1, . . . , n, and finally

Ck =

∫ T

0
α(s)e−k2π2s

∫ s

0
φk(r)ek2π2r dr ds + γk

1− ∫ T

0
α(s)e−k2π2s ds

k = 1, . . . , n. (10)

In order to prove the convergence of the series (4) we will use a well known
result which says that if F (t) ∈ Cm[0, 1] then for its sine and cosine Fourier coeffi-
cients the following assessment stands:

|ak|, |bk| = o(k−m).

So if g(x) and f(x, t) are functions of class C2[0, 1], then

|γk| ≤ const
k2

and |φk| ≤ const
k2

.

Now using (10), |Ck| ≤ const
k2 which is a sufficient condition for convergence of the

sequence un(x, t) and thereby (4). Now we have shown that for any n ∈ N the
problem Pn has a solution un, so when n →∞, by construction, we conclude that
there exists a solution u to the problem (1)–(3).

3. First order of convergence finite difference scheme

Let us discretize the problem (1)–(3) with a first order Euler implicit scheme:
find U j

i , i = 0, . . . , N, j = 0, . . . ,M , such that

Uk+1
i − Uk

i

τ
− Uk+1

i+1 − 2Uk+1
i + Uk+1

i−1

h2
= f(ih, (k + 1)τ), (11)

1 ≤ i ≤ N − 1,
1
N

= h; 0 ≤ k ≤ M − 1,
T

M
= τ, i, k, M, N ∈ N,

with boundary conditions

Uk
0 = Uk

N = 0, 0 ≤ k ≤ M. (12)
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The integral condition is discretized by rectangular rule

U0(x) =
M∑

m=1
α(mτ)Um(x)τ + g(x), x = xi = ih, (13)

where U j
i represents numerical approximation of u(xi, tj), the value of the analytical

solution u at mesh-point (xi, tj) and xi = ih, tj = jτ .
The discretized problem (11)–(13) can be written in the matrix form

AUi+1 + BUi + AUi−1 = ϕi, i = 1, . . . , N − 1, (14)

where vector Ui contains approximated values on the different time levels on the
space point xi = ih:

Ui =




U0
i

U1
i
...

UM
i




(M+1)×1

, i = 0, 1, . . . , N. (15)

Note that, due to the boundary condition (12),

U0 = UN =




0
0
...
0




(M+1)×1

. (16)

The matrices A and B are defined as follows:

A =




0 0 0 . . . 0 0
0 − 1

h2 0 . . . 0 0
0 0 − 1

h2 . . . 0 0
...

...
...

...
. . .

...
0 0 0 . . . − 1

h2 0
0 0 0 . . . 0 − 1

h2




(M+1)2

B =




1 −τα(1τ) −τα(2τ) . . . −τα((M − 1)τ) −τα(Mτ)
− 1

τ
1
τ + 2

h2 0 . . . 0 0
0 − 1

τ
1
τ + 2

h2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . − 1

τ
1
τ + 2

h2




(M+1)2

.

Vector ϕi is defined in the following way:

ϕi =




gi

f1
i
...

fM
i




(M+1)×1

.
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The system of matrix equations (14) can be solved using the simplified form of
Gaussian elimination for tridiagonal systems of linear equations, known as tridi-
agonal matrix algorithm (or Thomas algorithm) adapted for solving tridiagonal
systems of linear matrix equations.

We will find unknown vectors Ui using the following formula:

Ui = αi+1Ui+1 + βi+1, i = N − 1, . . . , 1, (17)

while due to boundary conditions

UN = U0 =




0
0
...
0




(M+1)×1

, (18)

the coefficients αi and βi of dimension (M + 1)2 i (M + 1)× 1 are given by

αi+1 = −(B + Aαi)−1A (19)

βi+1 = (B + Aαi)−1(ϕi −Aβi), (20)

where α1 is the zero matrix and β1 is the vector with all zeros. The order of
algorithm complexity is O(M3N).

4. Second order of convergence finite difference scheme

In this part we present the second order difference scheme. The Crank-Nicolson
[4] second order difference scheme for the problem (1)–(3) is given by: find U j

i ,
i = 0, . . . , N , j = 0, . . . , M , such that

Uk+1
i − Uk

i

τ
− 1

2
Uk+1

i+1 − 2Uk+1
i + Uk+1

i−1

h2
− 1

2
Uk

i+1 − 2Uk
i + Uk

i−1

h2

= f(ih, (k + 0.5)τ), (21)

1 ≤ i ≤ N − 1,
1
N

= h; 0 ≤ k ≤ M − 1,
T

M
= τ, i, k, M, N ∈ N,

with boundary conditions

Uk
0 = Uk

N = 0, 0 ≤ k ≤ M. (22)

For the integral condition approximation, we use the trapezoidal rule

U0(x) =
M∑

m=1

τ

2
(
α(mτ)Um(x) + α((m− 1)τ)Um−1(x)

)
+ g(x). (23)

Similarly as in the first order scheme, the second order difference scheme can be
written in the matrix form

AUi+1 + BUi + AUi−1 = ϕi, i = 1, . . . , N − 1.
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The vectors Ui, i = 0, 1, . . . , N are given in the same way as in (15) and (16), while
the matrices A and B are defined as follows

A =




0 0 0 . . . 0 0
− 1

2h2 − 1
2h2 0 . . . 0 0

0 − 1
2h2 − 1

2h2 . . . 0 0
...

...
...

...
. . .

...
0 0 0 . . . − 1

2h2 − 1
2h2




(M+1)2

B =




1− τ
2α(0) −τα(1τ) . . . −τα((M − 1)τ) − τ

2α(Mτ)
− 1

τ + 1
h2

1
τ + 1

h2 . . . 0 0
...

...
. . .

...
...

0 0 . . . − 1
τ + 1

h2
1
τ + 1

h2




(M+1)2

.

Vector ϕi is defined by

ϕi =




gi

f0.5
i
...

fM−0.5
i




(M+1)×1

.

This system of matrix equations can be solved using formulas (17)–(20). The order
of algorithm complexity is also O(M3N).

5. Stability and error analysis of the second order difference scheme

The following lemma proves stability of the difference scheme (21)–(23).

Lemma 5.1. Assume that g(x) and f(x, t) are given continuous functions on
[0, 1] and Ω = [0, 1] × [0, T ] respectively. Let α(t) also be a known function, such
that

∫ T

0
|α(ρ)| dρ < 1, α(t) > 0 and α′′(t) < ∞. Then the solution of the scheme

(21)–(23) satisfies the following stability estimate:

max
1≤k≤M

‖Uk‖2h ≤
2

1− C
‖g‖2h +

[
1 +

2C2

(1− C)2

]
τ

16

M−1∑
m=0

‖fm+0.5‖2h,

where the constant C depends only on
∫ T

0
|α(ρ)| dρ.

Proof. From
∫ T

0
|α(ρ)| dρ < 1 we get
∫ T

0

|α(ρ)| dρ = 1− δ, where δ ∈ (0, 1).

Using the error formula for trapezoidal rule we have
∣∣∣∣
∫ T

0

|α(ρ)| dρ− τ

2

M∑
m=1

[α(mτ) + α((m− 1)τ)]
∣∣∣∣ ≤

1
12

TDτ2, (24)
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where D stands for D = max0≤t≤T |α′′(t)|. If we choose τ so that

1
12

TDτ2 ≤ δ

2
,

that is τ ≤
√

6δ
TD , we have that

τ

2

M∑
m=1

[α(mτ) + α((m− 1)τ)]

=
∫ T

0

α(ρ) dρ +
τ

2

M∑
m=1

[α(mτ) + α((m− 1)τ)]−
∫ T

0

α(ρ) dρ

≤
∫ T

0

α(ρ) dρ +
∣∣∣τ
2

M∑
m=1

[α(mτ) + α((m− 1)τ)]−
∫ T

0

α(ρ) dρ
∣∣∣

≤ 1− δ +
δ

2
= 1− δ

2
= C < 1.

Approximating the integral term in initial condition using the trapezoidal rule we
have

U0(x) =
τ

2

M∑
m=1

[α(mτ)Um(x) + α((m− 1)τ)Um−1(x)] + g(x),

whereby it follows that

‖U0‖h ≤ C max
0≤k≤M

‖Uk‖h + ‖g‖h, (25)

where ‖·‖h is defined as ‖U i‖h = (
∑N

j=0 hU i
j
2)

1
2 . Using the inequality for stability of

weighted scheme, which can be found in [9] (for weight parameter θ = 0.5 weighted
scheme is Crank-Nicolson scheme).

max
0≤k≤M

‖Uk‖2h ≤ ‖U0‖2h +
τ

16

M−1∑
m=0

‖fm+0.5‖2h, (26)

and the well-known inequality
√

a + b ≤ √
a +

√
b, a, b ≥ 0 we obtain

max
0≤k≤M

‖Uk‖h ≤ ‖U0‖h +

√
τ

16

M−1∑
m=0

‖fm+0.5‖2h. (27)

From inequalities (25), (27) we get

‖U0‖h ≤ C‖U0‖h + C

√
τ

16

M−1∑
m=0

‖fm+0.5‖2h + ‖g‖h,

and the final estimate for ‖U0‖h

‖U0‖h ≤ C

1− C

√
τ

16

M−1∑
m=0

‖fm+0.5‖2h +
1

1− C
‖g‖h.
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After substitution in (26) and using the obvious inequality 2ab ≤ a2 + b2, we get

max
1≤k≤M

‖Uk‖2h ≤
2

1− C
‖g‖2h +

[
1 +

2C2

(1− C)2

]
τ

16

M−1∑
m=0

‖fm+0.5‖2h,

which proves stability of the algorithm for sufficiently small τ .
Now we will analyze the error of the finite difference scheme (21)–(23) proposed

for solution of the problem (1)–(3). In order to do that, let us first define the global
error

zj
i = uj

i − U j
i ,

for i = 0, . . . , N , j = 0, . . . , M , where uj
i = u(xi, tj). It can easily be seen that the

global error satisfies the finite difference scheme of the form

zk+1
i − zk

i

τ
− 1

2
zk+1
i+1 − 2zk+1

i + zk+1
i−1

h2
− 1

2
zk
i+1 − 2zk

i + zk
i−1

h2
= ψ

k+ 1
2

i ,

i = 1, . . . , N − 1, : k = 0, . . . , M − 1, (28)

zk
0 = zk

N = 0, 0 ≤ k ≤ M.

z0
i =

M∑
m=1

τ
2

(
α(mτ)zm

i + α((m− 1)τ)zm−1
i

)
+ χi, 0 ≤ i ≤ N (29)

where the terms ψ
k+ 1

2
i and χi will be determined later. So, according to Lemma

5.1,

max
1≤k≤M

‖zk‖2h ≤
2

1− C
‖χi‖2h +

[
1 +

2C2

(1− C)2

]
τ

16

M−1∑
m=0

‖ψm+ 1
2

i ‖2h. (30)

In order to estimate the global error, we need to estimate ‖ψm+ 1
2

i ‖h. If we
substitute (30) into (28), we have

ψ
k+ 1

2
i =

uk+1
i − uk

i

τ
− 1

2
uk+1

i+1 − 2uk+1
i + uk+1

i−1

h2
− 1

2
uk

i+1 − 2uk
i + uk

i−1

h2

−
(

Uk+1
i − Uk

i

τ
− 1

2
Uk+1

i+1 − 2Uk+1
i + Uk+1

i−1

h2
− 1

2
Uk

i+1 − 2Uk
i + Uk

i−1

h2

)
. (31)

According to (21) the part of the right-hand side between the brackets of the last
equation, is equal to f(xi, tk+ 1

2
) that is, taking (11) into account, further equal to

∂u
∂t (xi, tk+ 1

2
)− ∂2u

∂x2 (xi, tk+ 1
2
), so

ψ
k+ 1

2
i =

[
uk+1

i − uk
i

τ
− ∂u

∂t
(xi, tk+ 1

2
)

]
+

[
∂2u

∂x2
(xi, tk+ 1

2
)− 1

2

(
uk+1

i+1 − 2uk+1
i + uk+1

i−1

h2
+

uk
i+1 − 2uk

i + uk
i−1

h2

)]
. (32)
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If we now expand function u in a Taylor series about the point (xi, tk+ 1
2
) in t-

direction we have

uk+1
i − uk

i

τ
=

∂u

∂t
(xi, tk+ 1

2
) +

τ2

24
∂3u

∂t3
(xi, tk+ 1

2
) + · · · .

By expanding function u in a Taylor series first about the point (xi, tk+ 1
2
) in x-

direction and then expanding that again about the point (xi, tk+ 1
2
) in t-direction

yields

uk+1
i+1 − 2uk+1

i + uk+1
i−1

h2
=

(
∂2u

∂x2
(xi, tk+ 1

2
) +

1
12

h2 ∂4u

∂x4
(xi, tk+ 1

2
) + · · ·

)

+
τ

2

(
∂3u

∂x2∂t
(xi, tk+ 1

2
) +

1
12

h2 ∂5u

∂x4∂t
(xi, tk+ 1

2
) + · · ·

)

+
1
2

(τ

2

)2
(

∂4u

∂x2∂t2
(xi, tk+ 1

2
) +

1
12

h2 ∂6u

∂x4∂t2
(xi, tk+ 1

2
) + · · ·

)
+ · · ·

There is a similar expansion for uk
i+1−2uk

i +uk
i−1

h2

uk
i+1 − 2uk

i + uk
i−1

h2
=

(
∂2u

∂x2
(xi, tk+ 1

2
) +

1
12

h2 ∂4u

∂x4
(xi, tk+ 1

2
) + · · ·

)

− τ

2

(
∂3u

∂x2∂t
(xi, tk+ 1

2
) +

1
12

h2 ∂5u

∂x4∂t
(xi, tk+ 1

2
) + · · ·

)

+
1
2

(τ

2

)2
(

∂4u

∂x2∂t2
(xi, tk+ 1

2
) +

1
12

h2 ∂6u

∂x4∂t2
(xi, tk+ 1

2
) + · · ·

)
+ · · ·

Now substituting the last three equations in (32) gives us

ψ
k+ 1

2
i =

τ2

24
∂3u

∂t3
(xi, tk+ 1

2
) + · · · − 1

12
h2 ∂4u

∂x4
(xi, tk+ 1

2
)− τ2

8
∂4u

∂x2∂t2
(xi, tk+ 1

2
) + · · · ,

(33)

and the final estimate for ψ
k + 1

2
i

|ψk+ 1
2

i | ≤ h2

12
M4x +

τ2

24
(3M2x2t + M3t) + H.O.T.

where H.O.T. signifies terms of higher order than h2 and τ2 and

Mmxnt = max
(x,t)∈Ω

∣∣∣∣
∂m+n

∂xm∂tn
u(x, t)

∣∣∣∣ .

In order to give final estimate for the global error, we also need to estimate χi.
From (29), (23) and (13),

χi =
∫ T

0

α(s)u(xi, s) ds− τ

2

M∑
m=1

[α(mτ)um(x) + α((m− 1)τ)um−1(x)].
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So using (24) we have that

|χi| ≤ 1
12

TDτ2. (34)

Now if we substitute (34), (33) into (30) we get the final error estimate of the
Crank-Nicolson scheme

max
1≤k≤M

‖uk − Uk‖2h ≤ c(τ2 + h2),

where c is a positive constant, independent of h and τ . Thus, we deduce that Crank-
Nicolson scheme unconditionally converges in the norm ‖ ·‖h, with the convergence
rate O(τ2 + h2).

6. Numerical results

Let us observe the equation

∂u

∂t
=

∂2u

∂x2
+ 2et sinx (35)

in the area [0, π]× [0, 1], with boundary conditions

u(0, t) = u(π, t) = 0, (36)

and an initial condition

u(x, 0) =
∫ 1

0

e−su(x, s) ds. (37)

The analytical solution of given problem (35)–(37) is

u(x, t) = et sin x.

Errors for the first and second order scheme are given in Tables 1 and 2, respectively.
Note that errors ε2 and εmax are determined, respectively, by formulas:

ε2 =

(∑N
i=0

∑M
j=0(U

j
i − u(ih, jτ))2

MN

) 1
2

,

εmax = max
0≤i≤N
0≤j≤M

|U j
i − u(ih, jτ)|.

N, M ε2 εmax

N = M = 10 4.3308e− 2 8.7449e− 2
N = M = 20 1.8524e− 2 3.8582e− 2
N = M = 40 8.5570e− 3 1.8108e− 2
N = M = 80 4.1111e− 3 8.7704e− 3

Table 1. Errors of the first order scheme
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N, M ε2 εmax

N = M = 10 4.8817e− 3 9.8572e− 3
N = M = 20 1.1249e− 3 2.3429e− 3
N = M = 40 2.6992e− 4 5.7120e− 4
N = M = 80 6.6104e− 5 1.4102e− 4

Table 2. Errors of the second order scheme

Overall, it can be concluded that the proposed finite difference schemes for
solving this problem are stable and that they satisfy the given order of convergence.
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