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KOROVKIN TYPE APPROXIMATION THEOREM
IN AZ-STATISTICAL SENSE

Sudipta Dutta and Pratulananda Das

Abstract. In this paper we consider the notion of A%—statistical convergence for real double

sequences which is an extension of the notion of AZ-statistical convergence for real single sequences
introduced by Savas, Das and Dutta. We primarily apply this new notion to prove a Korovkin
type approximation theorem. In the last section, we study the rate of A%-statistical convergence.

1. Introduction and background

Throughout the paper N will denote the set of all positive integers. Approxima-
tion theory has important applications in the theory of polynomial approximation
in various areas of functional analysis. For a sequence {7, }nen of positive linear
operators on C(X), the space of real valued continuous functions on a compact
subset X of real numbers, Korovkin [20] first established the necessary and suffi-
cient conditions for the uniform convergence of {7}, f }nen to a function f by using
the test functions eg = 1, e; = , es = 22 [1]. The study of the Korovkin type
approximation theory has a long history and is a well-established area of research.
As is mentioned in [12] in particular, the matrix summability methods of Cesédro
type are strong enough to correct the lack of convergence of various sequences of
positive linear operators such as the interpolation operators of Hermite-Fejér [6]. In
recent years, using the concept of uniform statistical convergence various statistical
approximation results have been proved [9,10]. Erkug and Duman [15] studied a
Korovkin type approximation theorem via A-statistical convergence in the space
H,,(I%) where I? = [0, 00) x [0, 00) which was extended for double sequences of pos-
itive linear operators of two variables in A-statistical sense by Demirci and Dirik
in [12]. Our primary interest in this paper is to obtain a general Korovkin type
approximation theorem for double sequences of positive linear operators of two
variables from H,,(K) to C(K) where K = [0, 4] x [0, B], A, B € (0,1), in the sense
of AZ-statistical convergence.
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The concept of convergence of a sequence of real numbers was extended to
statistical convergence by Fast [17]. Further investigations started in this area after
the pioneering works of Saldt [31] and Fridy [18]. The notion of Z-convergence of
real sequences was introduced by Kostyrko et al. [23] as a generalization of statistical
convergence using the notion of ideals (see [3,4,5] for further references). Later the
idea of Z-convergence was also studied in topological spaces in [24]. On the other
hand statistical convergence was generalized to A-statistical convergence by Kolk
[21,22]. Later a lot of works have been done on matrix summability and A-statistical
convergence (see [2,7,8,11,16,19,21,22,25,29]). In particular, very recently in [33]
and [34] the two above mentioned approaches were unified and the very general
notion of AZ-statistical convergence was introduced and studied. In this paper
we consider an extension of this notion to double sequences, namely AZ-statistical
convergence.

A real double sequence {Zyn}m.nen is said to be convergent to L in Pring-
sheim’s sense if for every ¢ > 0 there exists N(g) € N such that |z, —L| < ¢ for all
m,n > N(e) and denoted by lim,,, , Zmsn = L. A double sequence is called bounded
if there exists a positive number M such that |z,,,| < M for all (m,n) € NxN. A
real double sequence {@n }m.nen is statistically convergent to L if for every € > 0,

hm|{m§j,n§ki‘1‘mn—L|Zf}| —0
g:k Jk

[27,28].

Recall that a family Z C 2Y of subsets of a nonempty set Y is said to be an ideal
inY if ({)A,B € 7 implies AU B € Z;(ii)A € Z,B C A implies B € Z, while an
admissible ideal Z of Y further satisfies {x} € 7 for each x € Y. If 7 is a non-trivial
proper ideal in Y (i.e. Y ¢ Z,7 # {0}) then the family of sets F(Z) = {M C Y :
there exists A € ZT: M =Y\ A} is afilter in Y. It is called the filter associated with
the ideal Z. A non-trivial ideal Z of N x N is called strongly admissible if {i} x N
and N x {i} belong to Z for each i € N. It is evident that a strongly admissible ideal
is admissible also. Let Zp = {4 C N x N:3 m(A) € N such that 7,5 > m(A4A) =
(i,7) ¢ A}. Then I is a non-trivial strongly admissible ideal [14]. Let A = (ank)
be a non-negative regular matrix. For an ideal Z of N a sequence {z, }nen is said
to be AT-statistically convergent to L if for any € > 0 and ¢ > 0,

{nEN: Z ankzé}EI,

keK (e)
where K(¢) = {k € N: |z, — L| > ¢} [33,34].
Let A = (ajgmn) be a four dimensional summability matrix. For a given double

sequence {Tmn tm, nen, the A-transform of z, denoted by Az := ((Ax);r), is given
by

(Ax)Jk = Z AjkmnTmn
(m,n)EN?

provided the double series converges in Pringsheim sense for every (j,k) € N2
In 1926, Robison [30] presented a four dimensional analog of the regularity by
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considering an additional assumption of boundedness. This assumption was made
because a convergent double sequence is not necessarily bounded.

Recall that a four dimensional matrix A = (¢jkmn) is said to be RH-regular
if it maps every bounded convergent double sequence into a convergent double
sequence with the same limit. The Robison-Hamilton conditions state that a four
dimensional matrix A = (@;kmn) is RH-regular if and only if

(i) lim; g @jkmn = 0 for each (m,n) € N2,
hmj7k Z(m,n)EN2ajkmn =1,

limj x>, cnl@jkmn| = 0 for each n € N,

2 (mm)enz | @jkmn| 18 convergent,
there exist finite positive integers My and Ny such that Zm)n> No |@jkmn| < Mo
holds for every (j, k) € N2.

Let A = (ajkmn) be a non-negative RH-regular summability matrix and let
K C N2. Then the A-density of K is given by

I (m,n)eEK

)
)
iv) limy x>, cnl@jkmn| = 0 for each m € N,
)
)

provided the limit exists. A real double sequence © = {Zn}m.nen is said to be
A-statistically convergent to a number L if for every € > 0

51(42){(’”7””) eN?: |Tpmn — L] > e} = 0.

We denote Zy) = {C’ C N2 51(42){0} = 0} which is an admissible ideal in N x N.

A
Throughout we use Z as a non-trivial strongly admissible ideal on N x N.

2. A Korovkin type approximation theorem

Recently the concept of Z-statistical convergence for real single sequences has
been introduced by Das and Savas as a notion of convergence which is strictly
weaker than the notion of statistical convergence (see [32] for details). Consequently
this notion has been further investigated in [13]. Very recently it has been further
generalized by using a summability matrix A into AZ-statistical convergence for
real single sequences by Savas, Das and Dutta [33,34]. In this paper we consider
the following natural extension of these convergence for real double sequences.

The following definition is due to E. Savas (who has informed about it in a
personal communication).

DEFINITION 2.1. A real double sequence {Zy,n}mnen is said to be Zo-
statistically convergent to L if for each € > 0 and ¢ > 0,

{(j,k) eN?: L{{m < jn <k |omn — L| > €} 25} el

We now introduce the main definition of this paper.



Korovkin type approximation 291

DEFINITION 2.2. Let A = (ajkmn) be a non-negative RH-regular summability
matrix. Then a real double sequence {Zmn}mnen is said to be A%—statistically
convergent to a number L if for every € > 0 and § > 0,

{(j,k) EN*: > ajpmn > 5} €1,
(m,n)eKs3(g)
where Ky(¢) = {(m,n) € N*> : |2, — L| > ¢}. In this case, we write AZ-st-
limy, », Zmpn = L.

It should be noted that, if we take A = C(1,1), the double Cesdro matrix [26]

defined as follows L )
‘ _{jk for m < j,n < k;
Ggkmn 0  otherwise,

then AZ-statistical convergence coincides with the notion of Z,-statistical conver-
gence. Again if we replace the matrix A by the identity matrix for four dimensional
matrices and Z = T, then AZ-statistical convergence reduces to the Pringsheim
convergence for double sequences. For the ideal Z = 7y, AZ-statistical convergence
implies A-statistical convergence for double sequences. The basic properties of AZ-
statistically convergent double sequences are similar to AZ-statistical convergent
single sequences and can be obtained analogously as in [32,33]. So our main aim
here is to present an application of this notion in approximation theory.

Throughout this section, let I = [0, A] x [0, B] A,B € (0,1) and denote the
space of all real valued continuous functions on K by C'(K). This space is endowed
with the supremum norm || f|| = sup, ,yex|f(2, )|, f € C(K). Consider the space
H,,(K) of real valued functions f on K satisfying

m x v Y

_ < . _ 2 _ 2)
) = 1)l < w(f [ - 7+ (0 - 1)
where w is the modulus of continuity for § > 0 given by

w(f;6) = sup{| f(u,v) = f(z,9)| : (u,0), (2,9) €K, V/(u—2)?+ (v—y)* <3}

Then it is clear that any function in H,(K) is continuous and bounded on K.

We will use the following test functions fo(z,y) = 1, fi(z,y) = %5, fo = ﬁ,

fa(@,y) = ()% + (ﬁ)2 and we denote the value of Tf at a point (u,v) € K by
T(f;u,v).

Now we establish the Korovkin type approximation theorem in AZ-statistical
sense.

THEOREM 2.1. Let {Tin }m.nen be a sequence of positive linear operators from
H,(K) into C(K) and let A = (ajkmn) be a non-negative RH-regular summability
matriz. Then for any f € H,(K),

A%‘St’}rilnﬁ ”Tmnf - f” =0 (1)

is satisfied if the following holds
A -st-lim | Tnfi — fil| =0, i =0,1,2,3. (2)
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Proof. Assume that (2) holds. Let f € H,(K). Our objective is to show that
for given € > 0 there exist constants Cy, C1, Ca, C3 (depending on £ > 0) such
that

”Tmnf - f” <e+ CSHTmnfS - fBH + CQHTman - f2||
+ Cil|Ton fr = fill + Col|Tinn fo — fol-

If this is done then our hypothesis implies that for any € > 0, § > 0,

{umew: ¥ apmzs}er
(m,n)€K>(e)
where Ks(e) = {(m,n) € N*: || Tounf — fl| > e}
To this end, start by observing that for each (u,v) € K the function 0 <
Guv € Hw(lc) defined by guv(svt) = (185 - ﬁ)z + (1it - 1EU)2 satisfies Juv =
(155 + (1) — 2 15 — 25 15 +(725)2 +(125)°. Since each Ty, is a positive
operator, Tynguy is a positive function. In particular, we have for each (u,v) € K,

U

1—u

0 < TrnGuw (u, )
= [Ton((£%55)° + (i5)° — 255 — 2525 + (297 + (£2)5u,v)]

-y l-ul—zx 1—v1—y 1w
= Lon(125)° + (72)"1w.0) = (29 = (125)°]
— 2 [T (Z50,0) = 5] = 25 Do (253 0,0) - 5]

+ {(ﬁ)z + (ﬁ)Q}[T'rnnfO - fO]
<N Tmnfs — fsll + 2 Tonn 1 — £
+ 2 | Tounfz = foll + {(£25) + (25) " | Tonn fo — foll-

Let M = ||f|| and € > 0. By the uniform continuity of f on K there exists a
d > 0 such that —e < f(s,t) — f(u,v) < € holds whenever

\/< SRR Y Y

1—-s 1—u 1-t 1—v

(s,t), (u,v) € K. Next observe that

oMls o w Nt
T VU ss 1-u -1 1-wv

< f(s,t) = flu,v)
() () o

Indeed, if \/(1%5 = 75)° + (15 — 1%5)7 < 8 then (3) follows from

—e < f(s,t) = f(u,v) < e.
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On the other hand, if \/( - “)2 + (155 — %)% = 0 then (3) follows from

1—s 1-u 1—v

oM frs o w NPt v Y
T YU Ss 1-u 1—¢ 1-wv

< —2M < f(s,t) — f(u,v) <2M

<+% s u2+t_v2
SET e V1o s  1-u -t 1-v) ("

Since each T, is positive and linear it follows from (3) that

2M 2M

_ETmnfO - ?Tmnguv < Tmn.f - f(uav)TmnfO < ETmnfO + ?Tmnguv-

Therefore
|Tmn(f; U, U) - f(u, U)Tmn(fO; u, U)|

2M
Sete [Tmﬂ(f();u7v) - fO(u7U)] + 72Tmnguv
2M

5
<e+el|Tmnfo— foll + 5z Tmnguv
In particular, note that
T (f3u,0) = f(u,v)]

< T (f5u,0) = f(w,0) T (fo3 w, v)| =+ [f (1, 0)[ [ Tonn (fos u, v) = fo(u,v)]

< e (M + )T fo — ol + o Truni
which implies

|Tonf = fIl < €+ Csl|Tinnf3 — f3l| + Co||Tinn f2 — fo]
+ Cil|Ton f1 = fill + Col|Tinn fo — foll,

where Cy = [25—]\24 (%)2 + (%)2}—1—]\4—1—5}, Cy = 45—1\24%, Cy = %% and

2M s
Cg = 32> 1.e.,

3
i=0
where C' = max{Cy, Cy, Cs, Cs}.
For a given v > 0, choose € > 0 such that ¢ < . Now let
U= {(m,n): |Tnnf - fll =7}
and

Ui = {(m?n) : ||Tmnfz _sz > 74—6:6}5 Z.:Oa17273'

It follows that U C U?:o U; and consequently for all (j, k) € N?

3
Z Ajkmn < Z Z Ajkmn

(m,n)eU =0 (m,n)eU;
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which implies that for any o > 0 and (m,n) € U,

3

{(j,k‘)eNQ: > ajkmn>U}CU{(j7/€)€N21 3 ajkmn>‘;}.

(m,n)eU =0 (m,n)eU;

Therefore from hypothesis, {(j,k) € N? : >
pletes the proof of the theorem. m

mnyer Gikmn = o} € Z. This com-

We now show that our theorem is stronger than the A-statistical version [12]
(and so the classical version). Let Z be a non-trivial strongly admissible ideal of
N x N. Choose an infinite subset C = {(p;, ;) : © € N}, from Z such that p; # ¢;
for all 4, p1 <p2 <--- and ¢1 < g2 < ---. Let {tmn}m.nen be given by

{ 1 m,n are even
Umn = .
0 otherwise.
Let A = (ajkmn) be given by
1 if j =p;, k= q;,m =2p;,n = 2q; for some i € N
Ajkmn = 1 if (j, k) # (pi, qi), for any i,m =2j +1,n =2k +1
0 otherwise.
Now for 0 < ¢ < 1, Ka(e) = {(m,n) € NXN : |up, — 0] > e} = {(m,n) :
m,n are even}. Observe that
Z {1 if j = p;, k = q; for some i € N
Ajkmn = . A .
(m.m)eKa(e) 0 if (j, k) # (pi,q), for any i € N.
Thus for any § > 0,
{(j,k)eNxN: > ajkmn>5}:C€I,
(m,n)eK2(¢g)

which shows that {wmn }m.nen is AZ-statistically convergent to 0. Evidently this
sequence is not A-statistically convergent to 0.

Consider the following Meyer-Kénig and Zeler operators

My (f2,y) = (1 —2)" (1 — y)"

o — k l m+k\ (n+1\ .
xZZf(k—km—i—l’H—m—i—l)( k )( z )“’

k=0 1=0

where f € H,(K) and K = [0, 4] x [0,B], A,B € (0,1). Then Mp,,(fo;z,y) =

fO(-ray)v an(flyxay) = ﬁv an(f%xvy) = ﬁ and

m 4+ 2 T 2 1 T n -+ 2 Y 2 1 Y
Mon 3 L, = .
(fi2,y) m+1<1—x> +m+11—x+n+1<1—y> a1y

Then limy, ,, | Mmnf — f]] = 0.
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Now consider the following positive linear operator T, on H,,(K) defined by

Ton(f32,9) = (1 4 wmn) Mmn(f;2,y). It is easy to observe that || T fi — fill =
U for @ = 0,1,2 which imply that AZ-st-limy, , |Twnfi — fil =0, i = 0,1,2.

Again,
m+2, x \2 1 x n+2/ y \?
| f3— fsll (14w )m+1 1—x m+1l—2z n+1

i) ) -G
n+1ll—y 1—2 1—y

2 2 3 3
<Dl —* 4 +umnﬂ+umni ,
m+1 n+1 m+1 n+1

where D = max { (25)% (:25)% (+25), (125) - Therefore
-a)\1=p)" i=2), (122

{(m,n) € N?: | Tonn(f3) = fall > f}
g{(m,n)€N2:mil n—i—l_i)}
U{(m,n)ENQ:umn 1i’+ ni 6D}
Q{(m,n)ENQ:mil—i—ni1>4D
U{(m,n)eN umn+m7i+n+? 2\/;}
c{(m,n)eNz:ir1 n+1D} { ln 2 Qi)}
U{(m,n)€N2 Zi? Zi? \/>}
g{(m,n)eNQ:mil 6D} { Flmn 2 2;}
U{(m’n)ENQ:mi-l—i_n—l—lzfli\/;}

m n 1 €
U S > /=
{(m’”)e mtl nrlc 2 QD}’

which implies that Ag—st-limmm | Tonnf5 — f3]| = 0. Hence from previous theorem
it follows that AZ-st-lim,,,, ||Tmnf — f|| = 0 for any f € H,(K). But since
{Umn }mnen is not A-statistically convergent so the sequence {T,,(f;Z,y)}m nen
considered above does not converge A-statistically to the function f € H,,(K).

3. Rate of AZ-statistical convergence

In this section we present a way to compute the rate of AZ-statistical conver-
gence in Theorem 2.1. We will need the following definitions.
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DEFINITION 3.1. Let A = (ajkmn) be a non-negative RH-regular summability
matrix and let {umn }m,nen be a positive non-increasing double sequence. Then
a real double sequence {Zyn }m nen is said to be A%—Statistically convergent to a
number L with the rate of o(a;,y) if for every € > 0 and ¢ > 0,

1
{(j,k) eN?: — Y Gk = 5} €z,
I8 (mon)eKa(e)

where Ks(e) = {(m,n) € N? : |z, — L| > e}. In this case, we write
AZ-st-o(amp )-limy, n Tonn = L.

DEFINITION 3.2. Let A = (ajkmn) be a non-negative RH-regular summability
matrix and let {qmn }tm,nen be a positive non-increasing double sequence. Then
a real double sequence {Zun }m nen is said to be A%—Statistically convergent to a
number L with the rate of 0., (@) if for every e > 0 and ¢ > 0,

{(jvk)6N2: Z ajkmnzé} EZ,
(m,n)EKs(e)

where Ko(e) = {(m,n) € N® : |z,n — L| > eammn}. In this case, we write
A%—st—om (i )-liMyy, Ty = L.

LEMMA 3.1. Let {Zmn}mmnen and {Ymntmnen be double sequences. As-
sume that A = (ajxmn) 15 a non-negative RH-reqular summability matric and let
{@mn tmnen and {Bmn tm.nen be positive non-increasing double sequences. If

A%—st—o(amn)—lrilnrll Tomn = L1 and A%—st—o(ﬁmn)—lrilnrll Ton = Lo
then we have
(4) A%—st—o(vmn)—lim (Tmn £ Ymn) = L1 £ Lo where Y, = max{mn, Bmn }»

(i1) AZ-st-o(aumn)-lim A&y, = ALy for any real number \.

Proof. The proof is straightforward and so is omitted. m

LEMMA 3.2. Let {Zmn}mmen and {Ymntmnen be double sequences. As-
sume that A = (ajgmn) 15 a non-negative RH-reqular summability matric and let
{@mn tmnen and {Bmn}m.nen be positive non-increasing double sequences. If

AZ -s5t-0n (n)-iM Ty, = Ly and A% -st-0 (Bmn)-lim 2, = Lo
m,n m,n
then we have
(Z) Ag’St'Om (’Ymn)'}?ilnrll (xnm + ynbn) = Ll + L2 where TYmn = maX{amna 6mn}7

(i%) Ag-st-om (mn)-lim A2y = ALy for any real number A.
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Proof. The proof is straightforward and so is omitted. m

Now we prove the following theorem.

THEOREM 3.1. Let {Tiun }m.nen be a sequence of positive linear operators from
H,(K) into C(K). Let A = (ajkmn) be a non-negative RH-regular summability ma-

triz and {Qmn }monen and {Bmn }m nen be positive non-increasing double sequences.
Assume that the following conditions hold

(i) A%—st—O(amn)—gmn | Tonn fo — fol =0,
(i1) A3 -st-0(Bpn)-im w(f;8mn) =0,

where § := Opn = /|| Ty (V)] with Y(u,v) = (% — 74)? + (%y — %)%, Then
for any f € Hy(K),

A%'St'o(')/mn)'hm HTmnf - f“ =0,
where Ymn = max{amn, Bmn} for each (m,n) € N2.

Proof. Let {Tyn}m.nen be a sequence of positive linear operators from H,,(K)
into C(K) and let A = (a;gmn) be a non-negative RH-regular summability matrix
and N = ||f]|. Then for any f € H,(K),

|Tmn(f; ’U,J)) - f(’LL,'U)|
< Tmn(‘f(xvy) - f(u’ v)|;u,v) + ‘f(ua v)HTmn(fO;uvv) - fO(u7U)|

( VG~ )+ (5 ) )
< w(fa 5)Tmn 1+ yu,v

]

+ N|Tmn(f0;uav) - fO(uvv)‘

Vi - 5 (- 1)
= w(£56)Tyun (fo: 0. ) + w(F36) T v

0

+ N|Tmn(f0;u’v) - fO(uav)|

= w(f58) T (o ,0) — w(£5) o) + w(720) + ULV, (5 0)
+ N|Tmn(f07 U,’U) - fO(ua ’U)|
< W) Ty ,) ~ Jo(a, )] +w(750) + PO T, g5, 0)
N T o ,0) = fofu, )]
Taking supremum over (u,v) € K,
;0
Ty f = £ < ()T fo — foll +0(:8) + “LONT )+ NI Ty o~ ol

If we take ¢ := 0yn = /|| Tn?|| then
[T f = FII < w(f;0) [ Tonn fo = foll + 2w(f;6) + N Tonn fo — foll
< M{w(f;0)|Tomn fo = foll +w(f;6) + [ Tnfo — foll},



298 S. Dutta, P. Das

where M = max{2, N}. Let u > 0 be given. Now consider the following sets
U= {(m,n) N f = fIl = ,U}

Uy ={(m,n) : w(f;d) > SW}

Us = {(m,n) : [ Tmnfo = foll 2 352},
Us = {(m,m) : w(£36)| T fo — foll = 7).

Then U C U; UU, UUs. Now define

Ui = {(m,n) : w(f;8) > \/3TM}’
0 = ) oo~ oll 2 [ 7

Then U C U; UU,UULUUY . Now since Yo, = max{aumn, Bmn } for each (m,n) € N?
then for all (j, k) € N2,

# Z Ajkmn < % Z Qjkmn + % Z Gjkmn

Visk (m,n)eU Ik (m,n)el; ok (m,n)eUs

+ L Z Gjkmn + L Z Ajkmn -
Bik

(m,n)€U} QI (momyeuy

Then for any ¢ > 0

{( k’ €N2 ’Y]k Z a]kmnza}

(m,n)eU

1 o 1 o
C 2. E . > ; 2. _— E ) >
= {( k) eN /Bjk‘ Ajkmn = 4}U{(j7k) €N ajk Ajkmn = 4}

(m,n)eU; Y (m,n)€U,
1 o 1 o
k) € N?: T— i, k 2. — T
o{ime 7y, 2 e Hufomer:i = ¥ aun=g)
(m,n)eU} 7 (m,n)eUy
Now from hypothesis the sets on the right-hand side belong to Z and consequently
{(j7k)€N2 Z ajkngU}GI
(m n)eyu
for any o > 0. This completes the proof. m

The proof of the following theorem is analogous to the proof of Theorem 3.1
and so is omitted.

THEOREM 3.2. Let {Thnn }mnen be a sequence of positive linear operators from
H,(K) into C(K). Let A= (ajkmn) be a non-negative RH-regular summability ma-
triz and {Qmn }monen and {Bmn }m.nen be positive non-increasing double sequences.
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Assume that the following conditions hold
(4) Ag‘St‘Om(amn)‘gH}L | Tin fo — foll = 0,

(i) A%-st-om(ﬁmn)-lim w(f; 6mn) =0,

where Spn = /| Ton (¥) || with ¥(u,v) = (£ — %)% + (%y — 12)2. Then for
any f € Hy(K),

Ag'St'Om("/mn)'}riLmn | Tomn(f) = fIl =0,
where Yy = max{mn, Bmn} for each (m,n) € N2,
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