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CODES OVER HYPERRINGS

B. Davvaz and T. Musavi

Abstract. Hyperrings are essentially rings, with approximately modified axioms in which
addition or multiplication is a hyperoperation. In this paper, we focus on an important subclass of
codes with additional structure called linear codes. Indeed, we introduce the notion of linear codes
on finite hyperrings and we present a construction technique of cyclic codes over finite hyperrings.
Since polynomial hyperrings are one of the main tools in our study, we analyze them too.

1. Introduction

Codes over rings have been discussed in a series of papers originating with
Blake [1,2], who presented generalized notions of Hamming codes, Reed-Solomon
codes, and BCH codes over arbitrary integer residue rings. In the past decade, a
substantial research has been done on linear codes over finite rings. Many authors
used to focus their research on codes over integer residue rings. Nowadays quite a
few papers are concerned with linear codes over other classes of rings. Linear codes
over finite rings with identity have recently raised a great interest for their new role
in algebraic coding theory and for their successful application in combined coding
and modulation. In [12], Greferath investigated cyclic linear codes over arbitrary
(not necessarily commutative) finite rings. Some aspects of codes over finite rings
(fields) has been earlier given in [13,14,17,23].

Algebraic hyperstructures were introduced by Marty in [18]. A hypergroup is
an algebraic structure similar to a group, but the composition of two elements is a
non-empty set. Mittas introduced in [22] the notion of canonical hypergroups. Sev-
eral books have been written on this topic, see [3,4,6,26]. Hyperrings are essentially
rings, with approximately modified axioms in which addition or multiplication is
a hyperoperation. This concept has been studied by a variety of authors. A well
known type of a hyperring is called the Krasner hyperring [16]. This concept has
been studied by a variety of authors. Some principal notions of hyperring theo-
ry can be found in [5,7,10,19–21,24]. Davvaz and Koushky constructed in [8] the
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hyperring of polynomials over a hyperring and they stated and proved some prop-
erties of the hyperring of polynomials. Then, Jančić-Rašović in [15] considered the
construction of the hyperring of polynomials over a commutative hyperring R, for
which (R, +) is not necessarily a regular hypergroup. A recent book on hyperring
theory is published by Davvaz and Leoreanu-Fotea [9]. They studied and analyzed
several kinds of hyperrings.

Tallini established connections between code theory and hyperstructure theory
[25]. Corsini and Leoreanu in Chapter 8 of [4] studied this connection too.

This paper is organized as follows. In Section 2, we present some basic facts
about algebraic hyperstructures and hyperrings. In Section 3, we investigate some
properties of polynomial hyperrings. In Section 4, we focus on an important sub-
class of codes with additional structure called linear codes. Indeed, we develop the
notion of linear codes on hyperrings instead of rings (or fields). Also, we present a
construction technique of cyclic codes over finite hyperrings.

2. Preliminaries

Let H be a non-empty set and P∗(H) be the set of all non-empty subsets
of H. Then, the map ? : H × H −→ P∗(H), where (x, y) 7→ x ? y ⊆ H is called
a hyperoperation and the couple (H, ?) is called a hypergroupoid or hyperstructure.
For any two non-empty subsets A and B of H and x ∈ H, we define

A ? B =
⋃

a∈A,b∈B

a ? b, A ? x = A ? {x} and x ? B = {x} ? B.

A hypergroupoid (H, ?) is called a semihypergroup if for all a, b, c of H we have
(a ? b) ? c = a ? (b ? c). A hypergroupoid (H, ?) is called a quasihypergroup if for
all a of H we have a ? H = H ? a = H. A hypergroupoid (H, ?) which is both a
semihypergroup and a quasihypergroup is called a hypergroup.

A Krasner hyperring is an algebraic structure (R, +, ·) which satisfies the fol-
lowing axioms:
(1) (R, +) is a canonical hypergroup, i.e.,

(i) for every x, y, z ∈ R, x + (y + z) = (x + y) + z,
(ii) for every x, y ∈ R, x + y = y + x,
(iii) there exists 0 ∈ R such that 0 + x = x for every x ∈ R,
(iv) for every x ∈ R there exists a unique element x′ ∈ R such that 0 ∈ x + x′;
(We shall write −x for x′ and we call it the opposite of x.)
(v) z ∈ x + y implies y ∈ −x + z and x ∈ z − y;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x ·0 =
0 · x = 0.

(3) The multiplication is distributive with respect to the hyperoperation +.
In the above definition, for simplicity of notation we write sometimes xy instead

of x · y and in (iii), 0 + x = {x} instead of 0 + x = x.

Example 1. [9] Let R = {0, 1, 2} be a set with the hyperoperation + and the
binary operation · defined as follows:
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+ 0 1 2
0 0 1 R
1 1 1 R
2 2 R 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 1 2

Then, (R, +, ·) is a Krasner hyperring.

A Krasner hyperring (R, +, ·) is called commutative (with unit element) if
(R, ·) is a commutative semigroup (with unit). A commutative Krasner hyperring
is called a Krasner hyperfield if (R − {0}, ·) is a group. A Krasner hyperring R is
called a hyperdomain if R is a commutative hyperring with unit element and ab = 0
implies that a = 0 or b = 0 for all a, b ∈ R. Let (R, +, ·) be a hyperring and A be a
non-empty subset of R. Then, A is said to be a subhyperring of R if (A,+, ·) is itself
a hyperring. The subhyperring A of R is normal in R if and only if x + A− x ⊆ A
for all x ∈ R. A subhyperring A of a hyperring R is a left (right) hyperideal of R if
ra ∈ A (ar ∈ A) for all r ∈ R, a ∈ A. Also, A is called a hyperideal if A is both a
left and a right hyperideal. Let A and B be non-empty subsets of a hyperring R.
The sum A + B is defined by

A + B = {x | x ∈ a + b for some a ∈ A, b ∈ B}.
The product AB is defined by

AB = {x | x ∈
n∑

i=1

aibi, ai ∈ A, bi ∈ B, n ∈ Z+}.

If A and B are hyperideals of R, then A + B and AB are also hyperideals of R.
Let A = {a1, a2, . . . , ar} be a set of r elements. An r-ary code C of length n

is a non-empty subset of n-tuples with entries in A, i.e., C ⊂ An. The elements
of the code C are called codewords, and C is called an r-ary block code. The size
r of the code alphabet is called the radix of the code. We denote the number of
the codewords in a code C by |C|. If C ⊂ An contains M codewords, then we say
that C has length n and size M and we denote it by (n,M)-code. The (Hamming
distance) d(x, y) between two vectors x, y ∈ An is defined to be the number of
coordinates in which x and y differ. wt(x) of a vector x ∈ An is the number of non-
zero coordinates in x. For a code C containing at least two words, the minimum
distance of a code C, denoted by d(C), is

d(C) = min{d(x; y) : x, y ∈ C; x 6= y}.

3. Polynomial hyperrings

An additive-multiplicative hyperring is an algebraic structure (R, +, ·) which
satisfies the following axioms:
(1) (R, +) is a canonical hypergroup, i.e.,

(i) for every x, y, z ∈ R, x + (y + z) = (x + y) + z,
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(ii) for every x, y ∈ R, x + y = y + x,
(iii) there exists 0 ∈ R such that 0 + x = x for every x ∈ R, where 0 is called
additive identity,
(iv) for every x ∈ R there exists a unique element x′ ∈ R such that 0 ∈ x + x′

(We shall write −x for x′ and we call it the opposite of x),
(v) z ∈ x + y implies y ∈ −x + z and x ∈ z − y.

(2) (R, ·) is a semihypergroup having zero as a bilaterally absorbing element, i.e.,
x · 0 = 0 · x = 0.

(3) The hypermultiplication · is distributive with respect to the hyperoperation
+.

(4) For all x, y ∈ R, we have x · (−y) = (−x) · y = −(x · y).

An additive-multiplicative hyperring (R, +, ·) is called commutative if (R, ·) is
a commutative semihypergroup. Also, R is called a hyperring with multiplicative
identity if there exists e ∈ R such that x · e = x = e · x for every x ∈ R. We fix the
notation 1 for the multiplicative identity.

Example 2. Let R = {0, a, b, c} be a set with two hyperoperations defined
as follows:

+ 0 a b c
0 0 a b c
a a {0, a} c {b, c}
b b c {0, b} {a, c}
c c {b, c} {a, c} R

· 0 a b c
0 0 0 0 0
a 0 {0, a} 0 {0, a}
b 0 0 {0, b} {0, b}
c 0 {0, a} {0, b} R

Then, (R, +, ·) is an additive-multiplicative hyperring.

A non-empty subset A of an additive-multiplicative hyperring R is a left (right)
hyperideal if

(1) a, b ∈ A implies a− b ⊆ A,

(2) a ∈ A, r ∈ R imply ra ⊆ A (ar ⊆ A).

Let X be a subset of an additive-multiplicative hyperring R. Let {Ai | i ∈ J}
be the family of all hyperideals in R which contain X. Then,

⋂
i∈J Ai is called

the hyperideal generated by X. This hyperideal is denoted by 〈X〉. If X =
{x1, x2, . . . , xn}, then the hyperideal 〈X〉 is denoted 〈x1, x2, . . . , xn〉.
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Lemma 3.1. Let R be an additive-multiplicative hyperring, a ∈ R and X ⊂ R.
Then
(1) The principal hyperideal 〈a〉 is equal to the set

{
t | t ∈ ra+as+na+k(a−a)+

m∑
i=1

riasi, r, s, ri, si ∈ R, m ∈ Z+and n, k ∈ Z
}

.

(2) If R has a unit element, then

〈a〉 =
{

t | t ∈ k(a− a) +
m∑

i=1

riasi, ri, si ∈ R, m, k ∈ Z+
}

.

(3) If a is in the center of R, then

〈a〉 =
{

t | t ∈ ra + na + k(a− a), r ∈ R, n ∈ Z+
}

,

where the center of R is the set {x ∈ R | xy = yx for all y ∈ R}.
(4) Ra = {ra | r ∈ R} is a left hyperideal in R and aR = {r | r ∈ R} is a right

hyperideal in R. If R has a unit element, then a ∈ aR ∩Ra.
(5) If R has a unit element and a is in the center of R, then Ra = 〈a〉 = aR.
(6) If R has a unit element and X is included in the center of R, then

〈X〉 =
{

t | t ∈
m∑

i=1

rixi, ri ∈ R, xi ∈ X, m ∈ Z+
}

.

Let (R, +, ·) be a Krasner hyperring with unit element 1, where for every
a, b ∈ R, a(−b) = (−a)b = −(ab) and x be an indeterminate. Assume that i is a
non-negative integer. Then, the expressions of the form aix

i with ai ∈ R are called
monomials of degree i in the indeterminate x with coefficients in R. A formal sum

a0x
0 + a1x

1 + a2x
2 + · · ·+ anxn (1)

of a finite number of monomials a0x
0, a1x

1, a2x
2, . . . , anxn with coefficients in R,

where n is any nonnegative integer, is called a polynomial. In polynomial (1),
aix

i is called its i-th degree term and ai is called the coefficient of term. When
ai = 1 we write 1xi = xi. When ai = 0, we usually omit the term aix

i in the
expression (1). In particular terms 0xn+1, 0xn+2, . . . can be regarded as omitted
in (1). In what follows, we define x0 = 1 and x1 = x. Often the simple notations
f(x), g(x), h(x), . . . are used for polynomials.

Let f(x) and g(x) be two polynomials over R. If all their coefficients of terms of
the same degree are equal, we say that f(x), g(x) are equal or, in other words, that
f(x), g(x) are the same polynomials, written as f(x) = g(x). In particular a0x

0 +
a1x

1+a2x
2+· · ·+anxn and a0x

0+a1x
1+a2x

2+· · ·+anxn+0xn+10xn+2+· · ·+0xn+m

are equal polynomials. Later on we will frequently use the summation sign
∑

to
simplify to notation of the polynomial f(x) = a0x

0 + a1x
1 + a2x

2 + · · ·+ anxn as
f(x) =

∑n
i=0 aix

i. If an 6= 0, f(x) is called a polynomial of degree n, denoted by
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deg f(x) = n, and an is called its leading coefficient. If an = 1, f(x) is called a
monic polynomial. When all the coefficients of f(x) are 0, f(x) is called the zero
polynomial, denoted by 0 and we define deg 0 = −∞.

We denote by R[x] the set of all polynomials in x over R. Let f(x) and
g(x) be any two elements of R[x] and f(x) =

∑n
i=0 aix

i, g(x) =
∑m

i=0 bix
i. Let

M = max{n, m}. Set

an+1 = an+2 = · · · = aM = 0, if n < M

bm+1 = bm+2 = · · · = bM = 0, if m < M.

Then, f(x) and g(x) can be written as f(x) =
∑M

i=0 aix
i, g(x) =

∑M
i=0 bix

i . The
hypersum and hypermultiplication of f(x) and g(x) are defined as follows:

f(x)⊕ g(x) =
{ M∑

i=0

cix
i | ci ∈ ai + bi

}
,

f(x)¯ g(x) =
{ m+n∑

k=0

ckxk | ck ∈
∑

i+j=k

aibj

}
.

Theorem 3.2. (R[x],⊕,¯) is an additive-multiplication hyperring.

Proof. The proof is similar to the polynomial hyperring construction in [8] and
[15].

R[x] is called the hyperring of polynomials in an indeterminate x over the
Krasner hyperring R or the hyperring of polynomials of x over R. The zero element
0 of R is the zero element of R[x] and the identity 1 of R is the identity of R[x].
Moreover, we have

Theorem 3.3. Let (F, +, ·) be a Krasner hyperfield and f(x), g(x) ∈ F [x].
(i) If h(x) ∈ f(x)¯ g(x), then deg h(x) = deg f(x) + deg g(x),
(2) If t(x) ∈ f(x)⊕ g(x), then deg t(x) ≤ max{deg f(x), deg g(x)}.

Proof. If one or both of f(x) and g(x) is 0, then f(x) ¯ g(x) = 0 and both
sides of (i) are −∞. Suppose that both f(x) and g(x) are not 0. Assume that
f(x) =

∑n
i=0 aix

i and g(x) =
∑n

i=0 bix
i and that deg f(x) = n and deg g(x) = m.

Then, an 6= 0 and bm 6= 0. By the definition of hypermultiplication of polynomials,
the coefficient of xn+m in every elements of f(x) ¯ g(x) is anbm 6= 0 and all of
the coefficients of terms of deg > n + m are 0. Therefore, for h(x) ∈ f(x)¯ g(x),
deg(h(x)) = m + n = deg f(x) + deg g(x).

The proof of (ii) is obvious.

Theorem 3.4. (Division algorithm) Let F be a Krasner hyperfield with unit
element 1, where for every a, b ∈ R, a(−b) = (−a)b = −(ab) and (F [x],⊕,¯) is
the polynomials hyperring of F . If a(x) and b(x) ∈ F [x] and b(x) 6= 0, then there
exists a pair of polynomials q(x) and r(x) such that

a(x) ∈ q(x)¯ b(x)⊕ r(x), deg r(x) < deg b(x). (2)
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Proof. We apply induction in the degree of a(x). When deg a(x) < deg b(x),
let q(x) = 0 and r(x) = a(x). Then,

a(x) ∈ 0¯ b(x)⊕ r(x) = 0⊕ a(x) = {a(x)}, deg a(x) = deg r(x) < deg b(x),

so we have relation (2). When deg a(x) ≥ deg b(x), let deg a(x) = n,deg b(x) = m
and

a(x) = a0 + a1x + a2x
2 + · · ·+ anxn,

b(x) = b0 + b1x + b2x
2 + · · ·+ bmxm,

where an 6= 0 and bm 6= 0. Then, n ≥ m. Now we consider a(x)ªanb−1
m xn−m¯b(x)

(where b−1
m is the multiplicative inverse of bm in Krasner hyperfield F ). Thus, by

Theorem 3.3, anb−1
m xn−m ¯ b(x) is a polynomial of degree n and with leading

coefficient anb−1
m bm = an. Hence, anb−1

m xn−m¯ b(x) = d0 +d1x+d2x
2 + · · ·+dnxn

(where dn = an) and

a(x)ª anb−1
m xn−m ¯ b(x) =

{ n∑
k=0

ckxk|ck ∈ ak − dk

}
. (3)

Thus, for every polynomial
∑n

k=0 ckxk ∈ a(x)ª anb−1
m xn−m ¯ b(x) the coefficient

of n-th monomial, i.e., cn, is an element of an − an. On the other hand, we have
0 ∈ an − an. So, by choosing cn = 0, it follows that there exists a polynomial

a1(x) ∈ a(x)ª anb−1
m xn−m ¯ b(x) (4)

such that deg a1(x) < n. By the induction hypothesis, there exists a pair of poly-
nomials q1(x) and r1(x) such that

a1(x) ∈ q1(x)¯ b(x)⊕ r1(x), deg r1(x) < deg b(x). (5)

Hence, by (4) and (5), we obtain

a(x) ∈ a1(x)⊕ anb−1
m xn−m ¯ b(x) ⊆ q1(x)¯ b(x)⊕ r1(x)⊕ anb−1

m xn−m ¯ b(x),

where deg r1(x) < deg b(x). By using the definition, we obtain

a(x) ∈ (q1(x)⊕ anb−1
m xn−m)¯ b(x)⊕ r1(x), deg r1(x) < deg b(x),

Now, let q(x) = q1(x)⊕ anb−1
m xn−m and r(x) = r1(x). Then, (2) follows.

Let (R,⊕,¯) be any additive-multiplicative hyperring and m be a fixed element
of R. For any two elements a, b ∈ R, we define

a ≡ b (mod m) ⇐⇒ ∃r ∈ R s.t. : a ∈ m¯ r ⊕ b.

Lemma 3.5. The above relation is an equivalence relation on R.

Proof. (1) For every a ∈ R with considered r = 0 we have a ∈ m ¯ 0 ⊕ a =
0⊕ a = {a}, hence a ≡ a (mod m).
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(2 For every a, b ∈ R if a ≡ b (mod m), there exists r ∈ R such that a ∈
m¯ r⊕ b. By using the definition, we get b ∈ −(m¯ r)⊕ a. So, b ∈ m¯ (−r)⊕ a,
which implies that b ≡ a (mod m).

(3) For every a, b, c ∈ R if a ≡ b (mod m) and b ≡ c (mod m), ∃r, r′ ∈ R such
that a ∈ m ¯ r ⊕ b, b ∈ m ¯ r′ ⊕ c, then it follows a ∈ m ¯ r ⊕m ¯ r′ ⊕ c. Thus,
a ∈ m ¯ (r ⊕ r′) ⊕ c. So, there exists t ∈ r ⊕ r′ such that a ∈ m ¯ t ⊕ c. Hence,
a ≡ c (mod m).

Each equivalence class is called a residue class modulo m in R. The residue
class modulo m containing a ∈ R will be denoted by a. Denote the set of residue
classes modulo m in R by R/(m). Clearly, when m = 0, R/(m) = R. Let a ∈ R,
then a ∈ R/(m). Clearly, b ∈ a if and only if b ≡ a (mod m), i.e., b ∈ m ¯ r ⊕ a
for some r ∈ R. Let a, b be two residue classes modulo m. Define hypersum and
hypermultiplication of a, b by

a ¢ b = {t | t ∈ a⊕ b},
a ¡ b = {s | s ∈ a¯ b}.

Theorem 3.6. R/(m) is an additive-multiplicative huperring with respect the
above hyperoperations.

Proof. It is straightforward.
We observe that polynomial hyperring (R[x],⊕,¯) created of Krasner hyp-

perring (R, +, ·), is an additive-multiplicative hyperring. Thus, for any polynomial
f(x), where deg f(x) = n > 0, we can consider residue class hyperring R[x]/(f(x)).

Theorem 3.7. Let F be a Krasner hyperfield and f(x) be a polynomial of
degree n > 0 of additive-multiplicative hyperring F [x]. Then the set of elements

S = {a0 + a1x + a2 + · · ·+ an−1x
n−1 | a0, a1, . . . , an−1 ∈ F}.

is a complete system of representative of the residue classes mod f(x) in F [x].

Proof. Suppose that g(x) ∈ F [x]. By the division algorithm, there exist
polynomials q(x) and r(x) ∈ F [x] such that

g(x) ∈ f(x)¯ r(x)⊕ q(x) , deg r(x) < deg f(x).

Since deg r(x) < deg f(x) = n, r(x) ∈ S, g(x) ≡ r(x) (mod f(x)) and g(x) = r(x).
This proves that any polynomial in F [x] lies in the residue class modulo f(x)
contaning a polynomial in S. Let

g1(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1,

g2(x) = b0 + b1x + b2x
2 + · · ·+ bn−1x

n−1,

be two elements of S. If g1(x) = g2(x), then g1(x) ≡ g2(x) (mod f(x)), so there
is r(x) ∈ F [x] such that g1(x) ∈ f(x) ¯ r(x) ⊕ g2(x) and hence g1(x)ª g2(x) ⊆
f(x) ¯ r(x) ⊕ g2(x) ª g2(x). But by Theorem 3.3, for every c(x) ∈ g1(x) ª g2(x),
deg c(x) ≤ n − 1 and for every t(x) ∈ f(x) ¯ r(x) ⊕ g2(x) ª g2(x), deg t(x) =
n+deg r(x), i.e., deg t(x) ≥ n. Therefore, S is a complete system of representatives
of the residue classes modulo f(x) in F [x].
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4. Construction of codes over a finite hyperring

Let the code alphabet be a finite Krasner hyperring (R, +, ·) and |R| = r.

Let R be a Krasner hyperring. A commutative hypergroup A together with
the map · : R×A → A (scalar multiplication) is called a (left) hypermodul over R,
if for every r, s ∈ R and a, b ∈ A,

(1) r(a + b) = ra + rb,

(2) (r + s)a = ra + sa,

(3) r(sa) = (rs)a.

For example, if R is a Krasner hyperring, then Rn is a hypermodul over R.

Definition 4.1. An r-ary linear code C of length n over R is an
R-subhypermodule of Rn. Namely, for every c1, c2 ∈ C and a1, a2 ∈ R we have
a1c1 + a2c2 ⊆ C.

Example 3. Let (R, +, ·) be a finite Krasner hyperring and I be a hyperideal
of R. Then, In ⊆ Rn and In is a linear code of length n over R, i.e., In is an
R-subhypermodule of Rn. For every c1 = (c10, c11, . . . , c1,n−1),
c2 = (c20, c21, . . . , c2,n−1) ∈ C and a1, a2 ∈ R we have

a1c1 + a2c2 = a1(c10, c11, . . . , c1,n−1) + a2(c20, c21, . . . , c2,n−1)

= (a1c10, a1c11, . . . , a1c1,n−1) + (a2c20, a2c21, . . . , a2c2,n−1)

= (a1c10 + a2c20, a1c11 + a2c21, . . . , a1c1,n−1 + a2c2,n−1).

Since I is a hyperideal of R, we have, for 0 ≤ j ≤ n− 1, that a1c1j + a2c2j ⊆ I.
Consequently, a1c1+a2c2 = (a1c10+a2c20, a1c11+a2c21, . . . , a1c1,n−1+a2c2,n−1) ⊆
In.

Definition 4.2. The inner product of vectors x = (x1, . . . , xn) and y =
(y1, . . . , yn) in Rn is

x · y> =
n∑

i=1

xiyi.

C⊥, the dual of linear code C is defined by

C⊥ = {y ∈ Rn | 0 ∈ x.y>, ∀x ∈ C}.

Proposition 4.3. The dual of a linear code C of length n over R is linear.

Proof. Suppose that x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) are two
elements of C⊥ and a, b ∈ R. Then, for every c = (c0, c1, . . . , cn−1) ∈ C we have

0 ∈ c.x> = c0x0 + c1x1 + · · ·+ cn−1xn−1,

0 ∈ c.y> = c0y0 + c1y1 + · · ·+ cn−1yn−1.
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It is sufficient to show that 0 ∈ c · (ax + by)> = c · ax> + c · by>. We have

c · (ax + by)>

= {(c0, c1, . . . , cn−1) · (t0, t1, . . . , tn−1)> | ti ∈ axi + byi, 0 ≤ i ≤ n− 1}
= {c0t0 + c1t1 + · · ·+ cn−1tn−1 | ti ∈ axi + byi, 0 ≤ i ≤ n− 1}
⊆ c0(ax0 + by0) + c1(ax1 + by1) + · · ·+ cn−1(axn−1 + byn−1)
= c0ax0 + c0by0 + c1ax1 + c1by1 + · · ·+ cn−1axn−1 + cn−1byn−1

= a(c0x0 + c1x1 + · · ·+ cn−1xn−1) + b(c0y0 + c1y1 + · · ·+ cn−1yn−1)

= a(c · x>) + b(c · y>).

Now, by (4), we get that 0 ∈ a(c · x>) + b(c · y>). Hence, 0 ∈ c · (ax + by)>. This
implies that ax + by ⊆ C>. Therefore, C> is a linear code.

Definition 4.4. Let c be a vector of length n over R. The cyclic shift T (c)
is the vector of length n:

T (c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

Definition 4.5. A code C of length n over a finite Krasner hyperfield F
(finite Krasner hyperring R) is said to be cyclic if T (c) ∈ C whenever c ∈ C, i.e.,
T (C) = C.

Theorem 4.6. If C1 and C2 are cyclic codes of length n over a finite Krasner
hyperfield F (finite Krasner hyperring R), then
(1) C1 + C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2} is cyclic.
(2) C1 ∩ C2 is cyclic.

Proof. (1) First, we prove that C1 + C2 is linear. Let t, s ∈ C and a, b ∈ R.
Then, there exist c1, d1 ∈ C1 and c2, d2 ∈ C2 such that t ∈ c1 + c2 and s ∈ d1 + d2.
Thus, at ∈ a(c1 + c2) and bs ∈ b(d1 + d2). This implies that at ∈ ac1 + ac2 and
bs ∈ bd1 + bd2. Since C1, C2 are linear, ac1, bd1 ∈ C1 and ac2, bd2 ∈ C2. Hence,

at ∈ C1 + C2 and bs ∈ C1 + C2.

Thus, at + bs ⊆ C1 + C2 and so C1 + C2 is linear. Now, we prove that the C1 + C2

is cyclic. Assume that

t = (t0, t1, . . . , tn−1) ∈ C1 + C2 = {a | a ∈ c + d, c ∈ C1, d ∈ C2}.
Then, there exist c = (c0, c1, . . . , cn−1) ∈ C1 and d = (d0, d1, . . . , dn−1) ∈ C2 such
that t ∈ c + d. It is sufficient to show that (tn−1, t0, . . . , tn−2) ∈ C1 + C2. Since
C1 and C2 are cyclic, (cn−1, c0, . . . , cn−2) ∈ C1 and (dn−1, d0, . . . , dn−2) ∈ C2.
Therefore, (cn−1, c0, . . . , cn−2) + (dn−1, d0, . . . , dn−2) ⊆ C1 + C2, i.e.,

{(sn−1, s0, . . . , sn−2) | si ∈ ci + di, 0 ≤ i ≤ n− 1} ⊆ C1 + C2,

such as (tn−1, t0, . . . , tn−2) ∈ C1 + C2. Thus, C1 + C2 is cyclic.
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(2) First, we prove that C1 ∩C2 is linear. If x, y ∈ C1 ∩C2 and a, b ∈ R, then
x ∈ C1, C2 and y ∈ C1, C2. Since C1, C2 are linear, ax+ by ⊆ C1 and ax+ by ⊆ C2.
Therefore, ax + by ⊆ C1 ∩ C2 and this means that C1 ∩ C2 is linear. Finally, we
prove that the C1 ∩C2 is cyclic. Assume that t = (t0, t1, . . . , tn−1) ∈ C1 ∩C2. It is
enough to show that (tn−1, t0, . . . , tn−2) ∈ C1 ∩ C2. Since C1, C2 are cyclic, hence
(tn−1, t0, . . . , tn−2) ∈ C1, C2. Consequently, (tn−1, t0, . . . , tn−2) ∈ C1 ∩ C2.

Let F be a finite Krasner hyperfield. The polynomial f(x) = a0 + a1x +
a2x

2 + · · ·+an−1x
n−1 of degree at most n− 1 over F may be regarded as the word

a = a0a1a2 . . . an−1 of length n in Fn . In fact, we define a correspondence between
Fn and residue class hyperring F [x]/(xn − 1), i.e., we have the function

Fn −→ F [x]/(xn − 1)

c0c1 . . . cn−1 7→ c0 + c1x + · · ·+ cn−1x
n−1.

Then, for every element c = (c0, c1, . . . , cn−1) of Fn, there is a corresponding el-
ement c(x) = c0 + c1x + · · · + cn−1x

n−1 and vice-versa. Under this correspon-
dence, T (c) for some c = (c0, c1, . . . , cn−1) ∈ Fn corresponds to the element
cn−1 + c0x + · · · + cn−2x

n−2 ∈ F [x]/(xn − 1). In this setting, multiplication by x
to any element of F [x]/(xn − 1) is equivalent to applying T to the corresponding
element of Fn. Let C denote the image of C under the above map.

Theorem 4.7. A linear code C in F is cyclic if and only if C is a hyperideal
in F [x]/(xn − 1).

Proof. If C is a hyperideal in F [x]/(xn−1) and c(x) = c0+c1x+ · · ·+cn−1c
n−1

is any codeword, then x¯c(x) is also a codeword, i.e. cn−1+c0x+· · ·+cn−2x
n−2 ∈ C

and hence (cn−1, c0, c1, . . . , cn−2) ∈ C.
Conversely, if C is cyclic, then from c(x) ∈ C we have x¯c(x) ∈ C. Therefore,

xi ¯ c(x) ∈ C, and since C is linear, then a(x)c(x) ∈ C for each polynomial a(x).
Thus, C is a hyperideal.

Theorem 4.8. If C is a hyperideal in F [x]/(xn − 1), then there is a unique
monic polynomial g(x) of minimum degree in C = 〈g(x)〉, and it is called the
generating polynomial for code C.

Proof. Suppose that C contains two distinct monic polynomials g1 = a0+a1x+
· · ·+xr and g2 = b0 + b1x+ · · ·+xr of minimum degree r. Since C is a hyperideal,
hence g1−g2 ⊆ C. Thus, (a0−b0)+(a1−b1)x+ · · ·+(1−1)xr ⊆ C. Since 0 ∈ 1−1,
hence (a0 − b0) + (a1 − b1)x + · · ·+ (ar−1 − br−1)xr−1 ⊆ C. Hence, there exists a
non-zero polynomial in C of degree less than r, which is not possible. Therefore,
there is a unique monic polynomial g(x) of degree r in C. Since g(x) ∈ C and C
is a hyperideal, we have 〈g(x)〉 ⊂ C. On the other hand, suppose that p(x) ∈ C.
By the division algorithm, we obtain p(x) ∈ q(x) ¯ g(x) ⊕ r(x), where r(x) 6= 0
and deg(r(x)) < r. If r(x) 6= 0, then we obtain r(x) ∈ p(x)ª q(x)g(x). Since C is
a hyperideal, p(x) ∈ C and 〈g(x)〉 ⊆ C implies that r(x) ∈ p(x) ª q(x)g(x) ⊆ C.
Thus, r(x) ∈ C and this means that C contains a polynomial of degree less than



Codes over hyperrings 37

r, which is a conflict. So, r(x) = 0, p(x) ∈ q(x) ¯ g(x) ⊆< g(x) >. Therefore,
C ⊂ 〈g(x)〉.

For a commutative Krasner hyperring A with identity, a linear code C of length
n over A is an A-subhypermodule of An. If C is a subset of An, the checking of
linearity is equivalent to the checking of the following two conditions:
(1) x, y ∈ C implies x + y ⊆ C,
(2) λ ∈ A and x ∈ C imply λx ∈ C.

Definition 4.9. Let T be the standard cyclic shift operator. A linear code C
of length n over R is said to be a quasi-cyclic (QC) code if it is invariant under T l

for some positive integer l, i.e., if T l(C) = C. The smallest positive integer l such
that T l(C) = C is called the index of C. For l = 1, C is simply a cyclic code over
A. A QC code of index l is also called an l −QC code.

Let C be a quasi-cyclic code of length n and index l over hyperfield F , where
l is a divisor of n, i.e., for some positive integer m, n = lm. Let R = F [x]/(xm− 1)
denote the residue class hyperring. Let

C = (c00, c01, . . . , c0,l−1, c10, . . . , c1,l−1, . . . , cm−1,0, . . . , cm−1,l−1)

denote a codeword in C. We define a map φ : Rlm −→ Rl by φ(c) =
(c0(x), c1(x), . . . , cl−1(x)) ∈ Rl, where

cj(x) =
m−1∑
i=0

cijx
i ∈ R.

Let φ(C) denote the image of C under φ. The following proposition is true.

Proposition 4.10. The map φ induces a one-to-one correspondence between
quasi-cyclic codes over F of index l and length lm and linear codes over R of length l
.

Proof. Since C is a linear code over F , φ(C) is closed under scalar multiplica-
tion by elements of F . Since xm = 1 is in R,

xcj(x) =
m−1∑
i=0

ci,jx
i+1 =

m−1∑
i=0

ci−1,jx
i,

where the subscript i− 1 is considered to be in {0, 1, . . . , m− 1} by taking modulo
m. The word

(xc0(x), xc1(x), . . . , xcl−1(x)) ∈ Rl,

corresponds to the word

(cm−1,0, cm−1,1, . . . , cm−1,l−1, c00, c01, . . . , c0,l−1, . . . , cm−2,0, . . . , cm−2,l−1) ∈ Rlm,

which is in C since C is quasi-cyclic of index l. Therefore, φ(C) is closed under
multiplication by x, and hence φ(C) is an R-submodule of Rn. By reversing the
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above argument, one sees immediately that every linear code over R of length l
comes from a quasi-cyclic code of index l and length lm over F .
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