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INTEGRAL INEQUALITIES OF JENSEN TYPE
FOR A-CONVEX FUNCTIONS

S. S. Dragomir

Abstract. Some integral inequalities of Jensen type for A-convex functions defined on real
intervals are given.

1. Introduction

Assume that I and J are intervals in R, (0,1) C J and functions h and f are
real non-negative functions defined in J and I, respectively.

DEFINITION 1. [20] Let h: J — [0,00) with h not identical to 0. We say that
f:I —]0,00) is an h-convex function if for all z,y € I we have
[tz + (1 =1t)y) <h(t)f(x) + k(1 —1)f(y) (1.1)
for all ¢t € (0,1).

For some results concerning this class of functions see [3, 13, 17-20].

This class of functions contains the class of Godunova-Levin type functions [9,
10, 14, 16]. It also contains the class of P functions and quasi-convex functions.
For some results on P-functions see [15] while for quasi convex functions, the reader
can consult [11].

DEFINITION 2. [4] Let s be a real number, s € (0,1]. A function f:[0,00) —
[0, 00) is said to be s-convex (in the second sense) or Breckner s-convex if

fltz+ (1 —t)y) <t°f(x) + (1 -1)°f(y)
for all z,y € [0,00) and ¢ € [0, 1].
For some properties of this class of functions see [1, 2, 4, 7, 8, 12].
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We can introduce now another class of functions defined on a convex subset C
of a linear space X that contains as limiting cases the classes of Godunova-Levin
and P-functions.

DEFINITION 3. We say that the function f: C' C X — [0, 00) is of s-Godunova-
Levin type, with s € [0, 1], if
1

mf(y)a (1.2)

1
flt+ (1 1) < L fa) +
for all t € (0,1) and =,y € C.

We observe that for s = 0 we obtain the class of P-functions while for s =1
we obtain the class of Godunova-Levin. If we denote by Qs(C) the class of s-
Godunova-Levin functions defined on C, then we obviously have

P(C) = Qu(C) € Qs,(C) € Qs,(C) € Q1(C) = Q(C)
fOI'OS$1S32S1.

For different inequalities of Hermite-Hadamard or Jensen type related to these
classes of functions, see [1, 3, 13, 15-19].

A function h:J — R is said to be supermultiplicative if
h(ts) > h(t)h(s) for any t,s € J. (1.3)
If the inequality (1.3) is reversed, then h is said to be submultiplicative. If the
equality holds in (1.3) then A is said to be a multiplicative function on J.
In [15], we introduced the following concept of functions:
DEFINITION 4. Let A:[0,00) — [0,00) be a function with the property that

A(t) > 0 for all t > 0. A mapping f: C — R defined on convex subset C of a linear
space X is called A\-convex on C if

ax + By Ma)f(z)+A(8) f(y)
f( a+p >< AMa+5) (14)
for all , 3 > 0 with o+ 3 >0 and z,y € C.

We observe that if f:C' — R is A-convex on C, then f is h-convex on C' with
h(t) = %, t €[0,1]. If f:C — [0,00) is h-convex function with h supermulti-
plicative on [0, 00), then f is A-convex with A = h.

We have the following result providing many examples of subadditive functions
A: [0, 00) — [0, 00).

THEOREM 1. [5] Let h(z) = D07 jan2™ be a power series with nonnegative
coefficients a,, > 0 for all n € N and convergent on the open disk D(0, R) with
R >0 or R=o00. If r € (0,R) then the function A,:[0,00) — [0,00) given by

Ar(t) == In {h(h(r)] (1.5)

rexp(—t))

is nonnegative, increasing and subadditive on [0, 00).
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Now, if we take h(z) = 1=, z € D(0,1), then
1 —rexp(—t)
M) =In | —————=
(t) =In [ 1—7r
is nonnegative, increasing and subadditive on [0, c0) for any r € (0,1).
If we take h(z) = exp(z), z € C then

Ar(t) = r[1 — exp(—t)] (1.7)

is nonnegative, increasing and subadditive on [0, c0) for any r > 0.

(1.6)

COROLLARY 1. [5] Let h(z) = >_7°  a,z™ be a power series with nonnegative
coefficients a, > 0 for all n € N and convergent on the open disk D(0, R) with
R>0o0orR=00 andr € (0,R). For a mapping f:C — R defined on convex subset
C of a linear space X, the following statements are equivalent:

(i) The function f is Ap-convex with A.:[0,00) — [0, 00),

m@w:m{mmﬁg4»}

(i) We have the inequality

az+By

e R = R R

for any o, 3> 0 with a4+ 3 >0 and z,y € C.
(iii) We have the inequality

[1(r exp(=a))]/ @ [h(r exz(r:g))]f(y) < W) @HO-IEER (1)

[A(r exp(—a — 8)))/ 7
forany a,3>0 with a4+ 3 >0 and z,y € C.

We observe that, in the case when
Ar(t) = 7]l —exp(—t)], t >0
then the function f is A,.-convex on convex subset C of a linear space X iff
f <a:r + ﬁy> < [L—exp(=a)]f(x) + [1 — exp(=F)]f(y)
a+p8 )~ 1—exp(—a—p5)
for any o, > 0 with a + 8 > 0 and z,y € C. Notice that this definition is
independent of r > 0.

(1.10)

The inequality (1.10) is equivalent to

s (ow: + ﬁy> < exp(B)lexp(a) — 1] () + exp(a)lexp(F) — 11f(y)
atp )= expla+ ) — 1
for any o, 6 > 0 with o+ 3 > 0 and z,y € C.

Motivated by the large interest on Jensen and Hermite-Hadamard inequalities
that has been materialized in the last two decades by the publication of hundreds
of papers, we establish here some inequalities of these types for A-convex functions
defined on real intervals.

(1.11)
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2. Unweighted Jensen integral inequalities
The following discrete inequality of Jensen type has been obtained in [6]:

THEOREM 2. Let A:[0,00) — [0,00) be a function with the property that
A(t) > 0 for all t > 0 and a mapping f:C — R defined on convex subset C of a
linear space X. The following statements are equivalent:

(i) f is A-convex on C;

(i) For all z; € C and p; > 0 with i € {1,...,n}, n > 2 so that P, > 0, we
have the inequality

1 n

f(;yuipz%) < NP 1; Api) f(x5). (2.1)

The proof can be done by induction over n > 2.

COROLLARY 2. Let f:C — R be a A-convex function on C and «; € [0,1],
ie{l,....n} with Y1 o; =1. Then for any x; € C with i € {1,...,n} we have
the inequality

n 1 n
f(z Oéil‘i> S m z )\(Oéz)f(l‘l) (2.2)

In particular, we have

f(x1+"'+1’n>Sc(n)f(xl)"_"'"’_f(xn) (2.3)

n

where

~—

1
n

A1)

We have the following version of Jensen’s inequality as well:

COROLLARY 3. Let f:C — R be a A-convex function on C and z; € C' and
p; >0 withi € {1,...,n}, n > 2 so that P, > 0. Then we have the inequality

The proof follows by (2.2) for oy = £-, i € {1,...,n}.
We are able now to state and prove the following unweighted Jensen inequality

for Riemann integral:

THEOREM 3. Let u: [a,b] — [m, M] be a Riemann integrable function on [a,b).
Let X:[0,00) — [0,00) be a function with the property that A(t) > 0 for all t > 0
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and the function f:[m,M] — [0,00) is A -conver and Riemann integrable on the
interval [m, M]. If the following limit exists

n A0
t—0+ ¢

f(bla /abu(t) dt) < )\(bka)/:f(u(t))dt. (2.6)

Proof. Consider the sequence of divisions

=k e (0,00) (2.5)

then

dy : x(-n):a—i—l(b—a), i€{0,...,n}
n

K2

and the intermediate points
fi(n) =a+ i(b—a)7 i €{0,...,n}.
n

We observe that the norm of the division A,, := max;cgo,..., n_l}(xgi)l — :cfn)) =

b—a
n

b n—1 (n) (n) (n) b—qgn=l 2
/ u(t)dt = lim 3 w(§)[z; ) —x; ] = lim —— >~ u<a+(b—a)>.
a n

N0 =0 nmee s N =0

— 0 as n — oo and since u is Riemann integrable on [a, b], then

Also, since f:[m, M] — [0,00) is Riemann integrable, then f o u is Riemann inte-
grable and

b—a n—1

/abf(u(t))dt: tim % {u(a—l—i(b—a))]

n—oo N

a

Utilising the inequality (2.1) for p; := &=

(5 e o-)

and z; := u(a + £(b— a)) we have

n

n b—a\ b—anzl 1

< A f(u<a+ba>)
A(b—a)(b—a) < n > n EO n( ) 2.7)
for any n > 1.
Observe that
A(b=a
lim (b_” ) = lim &zke (0, 00),
n—oo 224 t—0+

n

and by taking the limit over n — oo in the inequality (2.7), we deduce the desired
result (2.6). m

COROLLARY 4. Let u:[a,b] — [m,M] be a Riemann integrable function on
la,b] and h(z) = " anz™ be a power series with nonnegative coefficients a, > 0
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for all n € N and convergent on the open disk D(0, R) with R > 0 or R = co and
€ (0, R). Let A\:[0,00) — [0,00) be given by

Ar(t) = In [;&M]

and the function f:[m,M] — [0,00) be A.-convex and Riemann integrable on the
interval [m, M]. Then

f<bi / ") dt) i (e / f(u (2.8)

h(rexp( <b a)))

Proof. We observe that A, is differentiable on (0, 00) and

rexp(—t)h/ (rexp(—t))
h{r exp(—1))

AL(t) =

for ¢ € (0,00), where h'(z) = >.°°  na,z""'. Since \.(0) = 0, therefore
g A8y gy TR
k= Slir[& = N (0) = hr) >0 for r € (0, R).

Utilising (2.6) we get the desired result (2.8). m
The following Hermite-Hadamard type inequality holds:

COROLLARY 5. With the assumptions of Theorem 3 for f and )\ and if [a,b] =
[m, M|, we have the Hermite-Hadamard type inequality

f(“;b) < S /abf(t)dt- (2.9)

REMARK 1. Assume that the function f:[m,M] — [0,00) is A-convex and
Riemann integrable on the interval [m, M] with

A(t) =1 —exp(—t), t > 0.

If w: [a,b] — [m, M] is a Riemann integrable function on [a, b], then

(e [ o) = asioman [ 1o

In particular, for [a,b] = [m, M] and u(t) = t we have the Hermite-Hadamard type

inequality
a+b
<
f(2>_1exp b—a) /f

The proof follows from (2.6) observing that

T () VI
kitE%LTi)\"’(O)il'
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Utilising a similar argument and the inequality (2.4) we can state the following
result as well:

THEOREM 4. Let u:[a,b] — [m, M] be a Riemann integrable function on [a,b].
Let \:]0,00) — [0,00) be a function with the property that A(t) > 0 for all t > 0
and the function f:[m,M] — [0,00) is A -convex and Riemann integrable on the
interval [m, M]. If the limit (2.5) exists, then

f(b_ / ()dt)_)\ b_a/f (2.10)

Examples of such inequalities are incorporated below:

COROLLARY 6. Let u:[a,b] — [m,M] be a Riemann integrable function on
[a,b] and h(z) =Y _," a,z" be a power series with nonnegative coefficients a, > 0
for all n € N and convergent on the open disk D(0, R) with R > 0 or R = oo and

€ (0,R). Let \:[0,00) — [0,00) be given by

Ar(t) :=In {1&]

and the function f:[m,M] — [0,00) be A.-conver and Riemann integrable on the
interval [m, M|. Then

f(b—la /abu(t) dt) < (b_a)h;h/ / F(u (2.11)

We also have the Hermite-Hadamard type inequality:

COROLLARY 7. With the assumptions of Theorem 4 for f and X and if [a,b] =
[m, M], we have the Hermite-Hadamard type inequality

f (a;b> < A(l)(]Z—a) /abf(t)dt. (2.12)

REMARK 2. Assume that the function f:[m,M] — [0,00) is A-convex and
Riemann integrable on the interval [m, M] with A(¢ ) 1 —exp(-t), t > 0. If
u: [a,b] — [m, M] is a Riemann integrable function on [a, b], then

f(bla/abu(t)dt) —— bia/f

In particular, for [a,b] = [m, M] and u(t) = ¢t we have the Hermite-Hadamard type

inequality
a+b e 1 b
< . t)dt
f<2)_e—1 b—a/af()
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3. Weighted Jensen integral inequalities
We can prove now a weighted version of Jensen inequality.

THEOREM 5. Let u,w:[a,b] — [m, M| be Riemann integrable functions on
[a,b] and w(t) > 0 for any t € [a, b] with fabw(t) dt > 0. Let A\: [0,00) — [0,00) be a
function with the property that A(t) > 0 for all t > 0 and the function f:[m, M| —
[0,00) is A-convex and Riemann integrable on the interval [m, M]. If the following

limit exists, is finite and
t
lim —=¢>0 3.1
Aoy =0 (3.1)

then
1

b 1 b
f(fabw(t)dt/a w(t)u(t) dt> <£ffw(t)dt/a Aw(t)) f(u(t)) dt. (3.2)

Proof. Consider the sequence of divisions
dy : xl(-n) =a+£(b—a), i€{0,...,n}
and the intermediate points
55”) =a+ %(bfa), i€{0,...,n}.

We observe that the norm of the division A,, := maxie{o,__”n_l}(scgi)l - IE")) =

I’_T“—>0asn—>oo.

If we write the inequality (2.1) for the sequences

pi:w<a+2(b—a)> andxi:u(a—i—;(b—a)), ic{0,....n}

we get

! (Z?_Jw<al+ o & (o se-0)u(er ;(b_a)»
1
= A wa+ L(b—a)))

sz:A(w (a—f—;(b—a)))f(u(a—i—;L(b—a))>, (3.3)
forn>1

Observe that

/ <z?:01w(a1+ i(b—a)) nzolw (a+ ;(b_a)) ! (a+ ;(b_a)»

-/ (1’;‘2?_‘0le+ T4 a) So(arzo-a)u(or :L(b_a)))
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and
1
n—1
AXEiZo wla+ (b —a)))

><Z:O)\<w<a+i(b—a)))f(u(a—i—i(b—a)))
iy wlatzb-a) !
Ay wla+ £(b—a)) 523 wa+ (b —a)
_anzlA( ( %(b—a) )f(u(cﬂ—:b(b—a))).
Then from (3.3) we get
b—a n—1 . .
f(%“Z?Jw&+ w—a»rﬁw<a+;“_a0“<a+;“_a0>
Sico wlatz(b—a) 1
T wlat (b —a) e wla+d
b_anzl)\< ( (b—a)))f(u(a—l—:b(b—a))) (3.4)

for all n > 1. Since

n—1 1 —_ g n—1 1
lim Zw(a—l—l(b—a)):limb aZw(a—i—Z(b—a))x lim —
n ; n

b
:/ w(t) dt X 0o = 00,
a

then

. S w(a+ (b —a)) . ¢
lim — = lim — =
nmo Ny wla+ f(b—a)))  mee At)
and by letting n — oo in (3.4) we get the desired result (3.2). m

The following unweighted version of Jensen inequality holds:

COROLLARY 8. Let u:[a,b] — [m,M] be a Riemann integrable function on
[a,b]. Let X\:][0,00) — [0,00) be a function with the property that A\(t) > 0 for all
t > 0 and the function f:[m, M] — [0,00) be X -convex and Riemann integrable on
the interval [m, M. If the limit (3.1) exists, then

f(b_la /abu(t) dt> < éA(l)bia/abf(u(t))dt. (3.5)

Moreover, if [a,b] = [m, M|, then by taking u(t) =t, t € [a,b], we have the Hermite-

Hadamard inequality
a+b 1 b
< /A1 t) dt. .
(550) sowps, [ (30
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REMARK 3. In order to give examples of subadditive functions A:[0,00) —
[0,00) with the property that A(¢) > 0 for all ¢ > 0 and for which the following
limit exists, is finite and

t
lim — =/ .
Jim NG > 0, (3.7)

we consider the power series h(z) = >~ | a,2" with nonnegative coefficients a,, > 0
foralln > 1, a; > 0 and convergent on the open disk D(0, R) with R > 0 or R = oo.

Let A.:[0,00) — [0,00) be given by
h(r)
=In|———|.
M= [ )
We know that \,. is differentiable on (0, 00) and
rexp(—t)h (rexp(—t))
h(rexp(—t))

for t € (0,00), where h/(z) =Y o na,z""'. By 'Hospital’s rule we have

A(t) =

I
e A (1) e A1)

Since for the power series h(z) = a1z + a22® + az2® + -+ we have h/(z) = a1 +
2a5z + 3a3z% + - - -, then

N(t) = rexp(—t)(a1 + 2asor exp(—t) + 3az(r exp(—t))2 o)
" rexp(—t)(a; + agsrexp(—t) + az(rexp(—t))2 +--+)
:m+mﬂmWﬂ+mmwmﬂy+“tewm)

ay + agrexp(—t) + az(rexp(—t))2 +---

Therefore limy_, o, AL.(t) = 1 and lim;_, %(t) =1.

COROLLARY 9. Let u,w:[a,b] — [m, M] be Riemann integrable functions on
[a,b] and w(t) >0 for any t € [a,b] with fab w(t)dt > 0. Consider the power series
h(z) = >°07 anz™ with nonnegative coefficients a, > 0 for alln > 1, ay > 0 and
convergent on the open disk D(0,R) with R > 0 or R = oo. Let r € (0,R) and
assume that the function f:[m,M] — [0,00) is A.-convex and Riemann integrable

on the interval [m, M| with

Ar(t) = 1In [wefg()—m} '

Then we have the inequality

f(f;wl(t)dt /ab w(t)u(t) dt> < f;wl(t)dt /ab In {h(rexgg?w(t)))] f(u(t)) dt.
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The proof follows by Theorem 5 observing that ¢ = 1.
REMARK 4. With the assumptions of Corollary 9 for u, h and f we have

f(bia /abu(t) dt) <In [h(}:ﬂ(e’”)l)} bia/abf(u(t))dt. (3.9)

In particular, for [a,b] = [m, M| we have the Hermite-Hadamard inequality

() ulh] st e

4. Interval dependency

Let u:[a,b] — [m,M] be a Riemann integrable function on [a,b]. Let
A:[0,00) — [0,00) be a function with the property that A(¢) > 0 for all ¢ > 0
and the function f:[m, M] — [0,00) be A-convex and Riemann integrable on the
interval [m, M]. Assume also that the following limit exists

By Theorem 3 we have that

b
A(f,u, A [a, b)) / flu dt—A(b—a)f(bl / u(t)dt>>0. (4.1)
—al,
THEOREM 6. With the above assumptions for u, A, f and k we have:
(i) For any c € (a,b) we have
A(f,u, As[a,0]) = A(f, u, As[a, c]) + A(f, u, A e, B]) > 0, (4.2)

A(f,u, X;+) is a superadditive function of intervals.
(i) For any c,d € (a,b) with ¢ < d we have

A(f,u, As [a, b)) = A(F,u, As[e,d]) =0, (4.3)
A(f,u, ;) is a monotonic nondecreasing function of intervals.

Proof. (i) By the A-convexity of f we have for ¢ € (a,b) that

f(bla /abu(t)dt>
HE=2 (2 [ i) + 25 (2 [ )

_ Me— a)f (G Jyult)de) + M0 — o) f (L [ u(t) db)
- Ab—a) '
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Therefore

A(f,u, A;[a,b])

/f dt+/f dtf%A(b )f(bia/abu(t)dt>
/f dt+/f t—%)\(b—a)

Me—a)f (2 [Su(t)dt) + Ab— o) f (5L [ ult) dt)
Alb—a)

= A(f,u, \; [a, ) + A(f,u, s [e, b))

X

and the inequality (4.2) is proved.

(ii) Obvious by the property (4.2). m
REMARK 5. If [a,b] = [m, M] and u(t) =t, t € [a,b] then the functional

6(f, A /f dt—f)\(b )f(a;b>20

is a superadditive and monotonic nondecreasing function of intervals.
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