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RADICAL TRANSVERSAL SCREEN SEMI-SLANT LIGHTLIKE
SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS

S. S. Shukla and Akhilesh Yadav

Abstract. In this paper, we introduce the notion of radical transversal screen semi-slant
lightlike submanifolds of indefinite Kaehler manifolds giving characterization theorem with some
non-trivial examples of such submanifolds. Integrability conditions of distributions D1, D2 and
RadTM on radical transversal screen semi-slant lightlike submanifolds of indefinite Kaehler man-
ifolds have been obtained. Further, we obtain necessary and sufficient conditions for foliations
determined by above distributions to be totally geodesic.

1. Introduction

The theory of lightlike submanifolds of a semi-Riemannian manifold was intro-
duced by Duggal and Bejancu [2]. A submanifold M of a semi-Riemannian manifold
M is said to be lightlike submanifold if the induced metric g on M is degenerate, i.e.,
there exists a non-zero X ∈ Γ(TM) such that g(X, Y ) = 0, ∀Y ∈ Γ(TM). Various
classes of lightlike submanifolds of indefinite Kaehler manifolds have been defined
according to the behaviour of distributions on these submanifolds with respect to
the action of (1,1) tensor field J in Kaehler structure of the ambient manifolds.
Such submanifolds have been studied in [3, 7].

The geometry of slant submanifolds of Kaehler manifolds was studied by B.
Y. Chen in [1] and the geometry of semi-slant submanifolds of Kaehler manifolds
was studied by N. Papaghuic in [5]. In [6], Sahin studied screen-slant lightlike
submanifolds of an indefinite Hermitian manifold. The theory of radical transver-
sal, transversal, semi-transversal lightlike submanifolds has been studied in [8]. In
[9–11], the authors studied lightlike submanifolds, radical transversal lightlike sub-
manifolds and radical transversal screen semi-slant lightlike submanifolds. In this
paper, we introduce the notion of radical transversal screen semi-slant lightlike
submanifolds of indefinite Kaehler manifolds. This new class of lightlike submani-
folds of an indefinite Kaehler manifold includes radical transversal and transversal
lightlike submanifolds as its sub-cases.
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The paper is arranged as follows. There are some basic results in Section 2. In
Section 3, we introduce radical transversal screen semi-slant lightlike submanifolds
of an indefinite Kaehler manifold, giving some examples. Section 4 is devoted to
the study of foliations determined by distributions on radical transversal screen
semi-slant lightlike submanifolds of indefinite Kaehler manifolds.

2. Preliminaries

A submanifold (Mm, g) immersed in a semi-Riemannian manifold (M
m+n

, g)
is called a lightlike submanifold [2] if the metric g induced from g is degenerate
and the radical distribution RadTM is of rank r, where 1 ≤ r ≤ m. Let S(TM)
be a screen distribution which is a semi-Riemannian complementary distribution
of RadTM in TM, that is

TM = RadTM ⊕orth S(TM).

Now consider a screen transversal vector bundle S(TM⊥), which is a semi-
Riemannian complementary vector bundle of RadTM in TM⊥. Since for any local
basis {ξi} of RadTM , there exists a local null frame {Ni} of sections with values
in the orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that g(ξi, Nj) = δij

and g(Ni, Nj) = 0, it follows that there exists a lightlike transversal vector bun-
dle ltr(TM) locally spanned by {Ni}. Let tr(TM) be complementary (but not
orthogonal) vector bundle to TM in TM |M . Then

tr(TM) = ltr(TM)⊕orth S(TM⊥),

TM |M = TM ⊕ tr(TM),

TM |M = S(TM)⊕orth [RadTM ⊕ ltr(TM)]⊕orth S(TM⊥).

Following are four cases of a lightlike submanifold
(
M, g, S(TM), S(TM⊥)

)
:

Case 1. r-lightlike if r < min (m,n),

Case 2. co-isotropic if r = n < m, S
(
TM⊥)

= {0},
Case 3. isotropic if r = m < n, S (TM) = {0},
Case 4. totally lightlike if r = m = n, S(TM) = S(TM⊥) = {0}.
The Gauss and Weingarten formulae are given as

∇XY = ∇XY + h(X,Y ), (2.1)

∇XV = −AV X +∇t
XV, (2.2)

for all X, Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where ∇XY,AV X belong to Γ(TM)
and h(X, Y ),∇t

XV belong to Γ(tr(TM)). ∇ and ∇t are linear connections on M
and on the vector bundle tr(TM) respectively. The second fundamental form h
is a symmetric F (M)-bilinear form on Γ(TM) with values in Γ(tr(TM)) and the
shape operator AV is a linear endomorphism of Γ(TM). From (2.1) and (2.2), for
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any X,Y ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)), we have

∇XY = ∇XY + hl (X, Y ) + hs (X,Y ) , (2.3)

∇XN = −ANX +∇l
XN + Ds (X, N) , (2.4)

∇XW = −AW X +∇s
XW + Dl (X, W ) , (2.5)

where hl(X, Y ) = L (h(X,Y )), hs(X,Y ) = S (h(X,Y )), Dl(X, W ) = L(∇t
XW ),

Ds(X,N) = S(∇t
XN). L and S are the projection morphisms of tr(TM) on

ltr(TM) and S(TM⊥) respectively. ∇l and ∇s are linear connections on ltr(TM)
and S(TM⊥) called the lightlike connection and screen transversal connection on
M respectively.

Now by using (2.1), (2.3)–(2.5) and metric connection ∇, we obtain

g(hs(X, Y ),W ) + g(Y, Dl(X, W )) = g(AW X, Y ),

g(Ds(X, N), W ) = g(N, AW X).

Denote the projection of TM on S(TM) by P . Then from the decomposition of
the tangent bundle of a lightlike submanifold, for any X, Y ∈ Γ(TM) and ξ ∈
Γ(RadTM), we have

∇XPY = ∇∗XPY + h∗(X, PY ),

∇Xξ = −A∗ξX +∇∗tXξ,

By using the above equations, we obtain

g(hl(X, PY ), ξ) = g(A∗ξX, PY ),

g(h∗(X, PY ), N) = g(ANX, PY ),

g(hl(X, ξ), ξ) = 0, A∗ξξ = 0.

It is important to note that in general ∇ is not a metric connection. Since ∇ is
metric connection, by using (2.3), we get

(∇Xg)(Y, Z) = g(hl(X, Y ), Z) + g(hl(X, Z), Y ).

An indefinite almost Hermitian manifold (M, g, J) is a 2m-dimensional semi-
Riemannian manifold M with semi-Riemannian metric g of constant index q,
0 < q < 2m and a (1, 1) tensor field J on M such that following conditions
are satisfied:

J
2
X = −X,

g(JX, JY ) = g(X, Y ), (2.6)

for all X, Y ∈ Γ(TM).
An indefinite almost Hermitian manifold (M, g, J) is called an indefinite

Kaehler manifold if J is parallel with respect to ∇, i.e.,

(∇XJ)Y = 0, (2.7)

for all X, Y ∈ Γ(TM), where ∇ is Levi-Civita connection with respect to g.
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3. Radical transversal screen semi-slant lightlike submanifolds

In this section, we introduce the notion of radical transversal screen semi-
slant lightlike submanifolds of indefinite Kaehler manifolds. At first, we state the
following lemma for later use:

Lemma 3.1. Let M be a 2q-lightlike submanifold of an indefinite Kaehler
manifold M , of index 2q such that 2q < dim(M). Then the screen distribution
S(TM) on lightlike submanifold M is Riemannian.

The proof of above Lemma follows as in Lemma 3.1 of [6], so we omit it.

Definition 3.1. Let M be a 2q-lightlike submanifold of an indefinite Kaehler
manifold M of index 2q such that 2q < dim(M). Then we say that M is a radical
transversal screen semi-slant lightlike submanifold of M if the following conditions
are satisfied:
(i) J(RadTM) = ltr(TM),
(ii) there exist non-degenerate orthogonal distributions D1 and D2 on M such that

S(TM) = D1 ⊕orth D2,
(iii) the distribution D1 is an invariant, i.e. JD1 = D1,
(iv) the distribution D2 is slant with angle θ(6= 0), i.e. for each x ∈ M and each

non-zero vector X ∈ (D2)x, the angle θ between JX and the vector subspace
(D2)x is a non-zero constant, which is independent of the choice of x ∈ M and
X ∈ (D2)x.
This constant angle θ is called the slant angle of distribution D2. A radical

transversal screen semi-slant lightlike submanifold is said to be proper if D1 6= {0},
D2 6= {0} and θ 6= π

2 .

From the above definition, we have the following decomposition

TM = RadTM ⊕orth D1 ⊕orth D2.

Let (R2m
2q , g, J) denote the manifold R2m

2q with its usual Kaehler structure given by

g = 1
4 (−∑q

i=1 dxi ⊗ dxi + dyi ⊗ dyi +
∑m

i=q+1 dxi ⊗ dxi + dyi ⊗ dyi),
J(

∑m
i=1(Xi∂xi + Yi∂yi)) =

∑m
i=1(Yi∂xi −Xi∂yi),

where (xi, yi) are the cartesian coordinates on R2m
2q . Now we construct some exam-

ples of radical transversal screen semi-slant lightlike submanifolds of an indefinite
Kaehler manifold.

Example 1. Let (R12
2 , g, J) be an indefinite Kaehler manifold, where g is

of signature (−,+, +, +,+, +,−,+,+, +, +,+) with respect to the canonical basis
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6}.

Suppose M is a submanifold of R12
2 given by x1 = −y2 = u1, x2 = −y1 = u2,

x3 = u3 cosβ, y3 = −u4 cosβ, x4 = u4 sin β, y4 = u3 sin β, x5 = u5 sinu6, y5 =
u5 cosu6, x6 = sin u5, y6 = cos u5.
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The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6}, where
Z1 = 2(∂x1 − ∂y2), Z2 = 2(∂x2 − ∂y1),
Z3 = 2(cos β∂x3 + sin β∂y4), Z4 = 2(sin β∂x4 − cos β∂y3),
Z5 = 2(sin u6∂x5 + cos u6∂y5 + cos u5∂x6 − sin u5∂y6),
Z6 = 2(u5 cosu6∂x5 − u5 sin u6∂y5).

Hence RadTM = span {Z1, Z2} and S(TM) = span {Z3, Z4, Z5, Z6}.
Now ltr(TM) is spanned by N1 = −∂x1−∂y2, N2 = −∂x2−∂y1 and S(TM⊥)

is spanned by
W1 = 2(sin β∂x3 − cosβ∂y4), W2 = 2(cos β∂x4 + sin β∂y3),
W3 = 2(sin u6∂x5 + cos u6∂y5 − cos u5∂x6 + sin u5∂y6),
W4 = 2(u5 sin u5∂x6 + u5 cosu5∂y6).

It follows that JZ1 = 2N2 and JZ2 = 2N1, which implies that JRadTM =
ltr(TM). On the other hand, we can see that D1 = span {Z3, Z4} such that
JZ3 = Z4 and JZ4 = −Z3, which implies that D1 is invariant with respect to J
and D2 = span {Z5, Z6} is a slant distribution with slant angle π/4. Hence M is a
radical transversal screen semi-slant 2-lightlike submanifold of R12

2 .

Example 2. Let (R12
2 , g, J) be an indefinite Kaehler manifold, where g is

of signature (−,+, +, +,+, +,−,+,+, +, +,+) with respect to the canonical basis
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6}.

Suppose M is a submanifold of R12
2 given by x1 = u1, y1 = −u2, x2 =

u1 cosα − u2 sin α, y2 = u1 sin α + u2 cosα, x3 = y4 = u3, x4 = −y3 = u4,
x5 = u5 cos θ, y5 = u6 cos θ, x6 = u6 sin θ, y6 = u5 sin θ.

The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6}, where
Z1 = 2(∂x1 + cos α∂x2 + sin α∂y2), Z2 = 2(−∂y1 − sin α∂x2 + cos α∂y2),
Z3 = 2(∂x3 + ∂y4), Z4 = 2(∂x4 − ∂y3),
Z5 = 2(cos θ∂x5 + sin θ∂y6), Z6 = 2(sin θ∂x6 + cos θ∂y5).

Hence RadTM = span {Z1, Z2} and S(TM) = span {Z3, Z4, Z5, Z6}.
Now ltr(TM) is spanned by N1 = −∂x1 + cos α∂x2 + sin α∂y2, N2 = ∂y1 −

sin α∂x2 + cos α∂y2 and S(TM⊥) is spanned by
W1 = 2(∂x3 − ∂y4), W2 = 2(∂x4 + ∂y3),
W3 = 2(sin θ∂x5 − cos θ∂y6), W4 = 2(cos θ∂x6 − sin θ∂y5).

It follows that JZ1 = −2N2, JZ2 = 2N1, which implies that JRadTM = ltr(TM).
On the other hand, we can see that D1 = span {Z3, Z4} such that JZ3 = Z4, JZ4 =
−Z3, which implies that D1 is invariant with respect to J and D2 = span {Z5, Z6}
is a slant distribution with slant angle 2θ. Hence M is a radical transversal screen
semi-slant 2-lightlike submanifold of R12

2 .

Now, for any vector field X tangent to M , we put JX = PX +FX, where PX
and FX are tangential and transversal parts of JX respectively. We denote the
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projections on RadTM , D1 and D2 in TM by P1, P2 and P3 respectively. Then
for any X ∈ Γ(TM), we get

X = P1X + P2X + P3X. (3.1)

Now applying J to (3.1), we have

JX = JP1X + JP2X + JP3X,

which gives
JX = JP1X + JP2X + fP3X + FP3X, (3.2)

where fP3X (resp. FP3X) denotes the tangential (resp. transversal) component
of JP3X. Thus we get JP1X ∈ Γ(ltr(TM)), JP2X ∈ Γ(D1), fP3X ∈ Γ(D2) and
FP3X ∈ Γ(S(TM⊥)).

Similarly, we denote the projections of tr(TM) on ltr(TM) and S(TM⊥) by
Q1 and Q2 respectively. Then for any W ∈ Γ(tr(TM)), we have

W = Q1W + Q2W. (3.3)

Applying J to (3.3), we obtain

JW = JQ1W + JQ2W,

which gives
JW = JQ1W + BQ2W + CQ2W, (3.4)

where BQ2W (resp. CQ2W ) denotes the tangential (resp. transversal) component
of JQ2W . Thus we get JQ1W ∈ Γ(RadTM), BQ2W ∈ Γ(D2) and CQ2W ∈
Γ(S(TM⊥)).

Now, by using (2.7), (3.2), (3.4) and (2.3)–(2.5) and identifying the components
on RadTM , D1, D2, ltr(TM) and S(TM⊥), we obtain

P1(∇XJP2Y ) + P1(∇XfP3Y ) = P1(AJP1Y X) + P1(AFP3Y X) + Jhl(X, Y ),

P2(∇XJP2Y ) + P2(∇XfP3Y ) = P2(AFP3Y X) + P2(AJP1Y X) + JP2∇XY,
(3.5)

P3(∇XJP2Y ) + P3(∇XfP3Y )

= P3(AFP3Y X) + P3(AJP1Y X) + fP3∇XY + Bhs(X, Y ), (3.6)

∇l
XJP1Y + hl(X, JP2Y ) + hl(X, fP3Y ) = JP1∇XY −Dl(X, FP3Y ), (3.7)

Ds(X, JP1Y ) + hs(X, JP2Y ) + hs(X, fP3Y )

= Chs(X,Y )−∇s
XFP3Y + FP3∇XY. (3.8)

Theorem 3.2. Let M be a 2q-lightlike submanifold of an indefinite Kaehler
manifold M . Then M is a radical transversal screen semi-slant lightlike submanifold
if and only if
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(i) Jltr(TM) is a distribution on M such that Jltr(TM) = RadTM ,

(ii) distribution D1 is invariant with respect to J , i.e. JD1 = D1,
(iii) there exists a constant λ ∈ [0, 1) such that P 2X = −λX.
Moreover, there also exists a constant µ ∈ (0, 1] such that BFX = −µX, for all
X ∈ Γ(D2), where D1 and D2 are non-degenerate orthogonal distributions on M
such that S(TM) = D1 ⊕orth D2 and λ = cos2 θ, θ is slant angle of D2.

Proof. Let M be a radical transversal screen semi-slant lightlike submanifold of
an indefinite Kaehler manifold M . Then distribution D1 is invariant with respect to
J and JRadTM = ltr(TM). Thus JX ∈ ltr(TM), for all X ∈ Γ(RadTM). Hence
J(JX) ∈ J(ltr(TM)), which implies −X ∈ J(ltr(TM)), for all X ∈ Γ(RadTM),
which proves (i) and (ii).

Now for any X ∈ Γ(D2), we have |PX| = |JX| cos θ, which implies

cos θ =
|PX|
|JX| . (3.9)

In view of (3.9), we get cos2 θ = |PX|2
|JX|2 = g(PX,PX)

g(JX,JX)
= g(X,P 2X)

g(X,J
2
X)

, which gives

g(X, P 2X) = cos2 θ g(X, J
2
X). (3.10)

Since M is radical transversal screen semi-slant lightlike submanifold, cos2 θ =
λ(constant) ∈ [0, 1) and therefore from (3.14), we get g(X,P 2X) = λg(X, J

2
X) =

g(X,λJ
2
X), which implies

g(X, (P 2 − λJ
2
)X) = 0.

Now for any X ∈ Γ(D2), we have J
2
(X) = P 2X + FPX + BFX + CFX. Taking

the tangential component, we get P 2X = −X − BFX ∈ Γ(D2), for any X ∈
Γ(D2). Thus (P 2 − λJ

2
)X ∈ Γ(D2). Since the induced metric g = g|D2×D2 is

non-degenerate(positive definite), by the facts above, we have (P 2 − λJ
2
)X = 0,

which implies
P 2X = λJ

2
X = −λX. (3.11)

Now, for any vector field X ∈ Γ(D2), we have

JX = PX + FX, (3.12)

where PX and FX are tangential and transversal parts of JX respectively.
Applying J to (3.12) and taking tangential component, we get

−X = P 2X + BFX. (3.13)

From (3.11) and (3.13), we get BFX = −µX, where 1− λ = µ(constant) ∈ (0, 1].
This proves (iii).
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Conversely suppose that conditions (i), (ii) and (iii) are satisfied. From (i), we
have JN ∈ RadTM , for all N ∈ Γ(ltr(TM)). Hence J(JN) ∈ J(RadTM), which
implies −N ∈ J(RadTM), for all N ∈ Γ(ltr(TM)). Thus JRadTM = ltr(TM).
From (3.18), for any X ∈ Γ(D2), we get −X = P 2X − µX, which implies P 2X =
−λX, where 1− µ = λ(constant) ∈ [0, 1).

Now cos θ = g(JX,PX)

|JX||PX| = − g(X,JPX)

|JX||PX| = − g(X,P 2X)

|JX||PX| = −λ g(X,J
2
X)

|JX||PX| = λ g(JX,JX)

|JX||PX| .

From the above equation, we get

cos θ = λ
|JX|
|PX| . (3.14)

Therefore (3.9) and (3.14) give cos2 θ = λ(constant).
Hence M is a radical transversal screen semi-slant lightlike submanifold.

Corollary 3.1. Let M be a radical transversal screen semi-slant lightlike
submanifold of an indefinite Kaehler manifold M with slant angle θ, then for any
X, Y ∈ Γ(D2), we have
(i) g(PX, PY ) = cos2 θ g(X, Y ),
(ii) g(FX, FY ) = sin2 θ g(X,Y ).

The proof of above Corollary follows by using similar steps as in proof of
Corollary 3.2 of [6].

Theorem 3.3. Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold M with structure vector field tangent to
M . Then RadTM is integrable if and only if
(i) P2(AJP1Y X) = P2(AJP1XY ) and P3(AJP1Y X) = P3(AJP1XY ),

(ii) Ds(Y, JP1X) = Ds(X, JP1Y ), for all X, Y ∈ Γ(RadTM).

Proof. Let M be a radical transversal screen semi-slant lightlike submani-
fold of an indefinite Kaehler manifold M . Let X, Y ∈ Γ(RadTM). From (3.8),
we have Ds(X, JP1Y ) = Chs(X, Y ) + FP3∇XY , which gives Ds(X, JP1Y ) −
Ds(Y, JP1X) = FP3[X,Y ]. In view of (3.5), we have P2(AJP1Y X)+JP2∇XY = 0,
which implies P2(AJP1XY ) − P2(AJP1Y X) = JP2[X, Y ]. Also from (3.6), we
have P3(AJP1Y X) + Bhs(X,Y ) + fP3∇XY = 0, which gives P3(AJP1XY ) −
P3(AJP1Y X) = fP3[X, Y ]. This concludes the theorem.

Theorem 3.4. Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold M . Then D1 is integrable if and only
if
(i) hl(Y, JP2X) = hl(X, JP2Y ) and hs(Y, JP2X) = hs(X, JP2Y ),
(ii) P3(∇XJP2Y ) = P3(∇Y JP2X), for all X, Y ∈ Γ(D1).

Proof. Let M be a radical transversal screen semi-slant lightlike subman-
ifold of an indefinite Kaehler manifold M . Let X, Y ∈ Γ(D1). From (3.8),
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we have hs(X, JP2Y ) = Chs(X, Y ) + FP3∇XY , which implies hs(X, JP2Y ) −
hs(Y, JP2X) = FP3[X, Y ]. In view of (3.7), we have hl(X, JP2Y ) = JP1∇XY ,
which gives hl(X, JP2Y ) − hl(Y, JP2X) = JP1[X, Y ]. From (3.6), we obtain
P3(∇XJP2Y ) = fP3∇XY + Bhs(X, Y ), which implies P3(∇XJP2Y ) −
P3(∇Y JP2X) = fP3[X, Y ]. This proves the theorem.

Theorem 3.5. Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold M . Then D2 is integrable if and only
if
(i) hl(X, fP3Y ) + Dl(X, FP3Y ) = hl(Y, fP3X) + Dl(Y, FP3X),
(ii) P2(∇XfP3Y −∇Y fP3X) = P2(AFP3Y X −AFP3XY ),
for all X,Y ∈ Γ(D2).

Proof. Let M be a radical transversal screen semi-slant lightlike subman-
ifold of an indefinite Kaehler manifold M . Let X, Y ∈ Γ(D2). From (3.7),
we have hl(X, fP3Y ) + Dl(X, FP3Y ) = JP1∇XY , which gives hl(X, fP3Y ) +
Dl(X,FP3Y ) − hl(Y, fP3X) − Dl(Y, FP3X) = JP1[X, Y ]. Also from (35), we
obtain P2(∇XfP3Y ) = P2(AFP3Y X) + JP2∇XY , which implies P2(∇XfP3Y −
∇Y fP3X) = P2(AFP3Y X − AFP3XY ) + JP2[X,Y ]. Thus, we obtain the required
results.

Theorem 3.6. Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold M . Then the induced connection ∇ is
a metric connection if and only if
(i) BDs(X, N) = fP3ANX,

(ii) JP2ANX = 0, for all X ∈ Γ(TM) and N ∈ Γ(ltr(TM)).

Proof. Let M be a radical transversal screen semi-slant lightlike submanifold of
an indefinite Kaehler manifold M . Then the induced connection∇ on M is a metric
connection if and only if RadTM is parallel distribution with respect to∇ [2]. From
(2.3), (2.4) and (2.7), we obtain ∇XJN + hl(X, JN) + hs(X, JN) = −JANX +
J∇l

XN + JDs(X, N). Now, on comparing tangential components of both sides of
above equation, we get ∇XJN = −JP2ANX − fP3ANX + J∇l

XN + BDs(X, N),
which completes the proof.

4. Foliations determined by distributions

In this section, we obtain necessary and sufficient conditions for foliations
determined by distributions on a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold to be totally geodesic.

Definition 4.1. An equivalence relation on an n-dimensional semi-Rieman-
nian manifold (M, g) in which the equivalence classes are connected, immersed
submanifolds (called the leaves of the foliation) of a common dimension k, 0 < k ≤ n
is called a foliation on M . If each leaf of a foliation F on a semi-Riemannian



128 S.S. Shukla, A. Yadav

manifold (M, g) is totally geodesic submanifold of M , we say that F is a totally
geodesic foliation.

Theorem 4.1. Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold M . Then RadTM defines a totally
geodesic foliation if and only if g(AFP3ZX, JY ) = g(∇XJP2Z +∇XfP3Z, JY ), for
all X,Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)).

Proof. Let M be a radical transversal screen semi-slant lightlike subman-
ifold of an indefinite Kaehler manifold M . To prove RadTM defines a total-
ly geodesic foliation, it is sufficient to show that ∇XY ∈ Γ(RadTM), for all
X, Y ∈ Γ(RadTM). Since ∇ is metric connection, using (2.3), (2.6), (2.7) and
(3.2), for any X, Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)), we obtain g(∇XY,Z) =
−g(∇X(JP2Z + fP3Z + FP3Z), JY ), which implies g(∇XY, Z) = g(P1AFP3ZX −
P1∇XJP2Z − P1∇XfP3Z, JY ). This proves the theorem.

Theorem 4.2. Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold M . Then D1 defines a totally geodesic
foliation if and only if

(i) g(AFZX, JY ) = g(∇XfZ, JY ), for all X, Y ∈ Γ(D1) and Z ∈ Γ(D2),

(ii) A∗
JN

vanishes on D1, for all N ∈ Γ(ltr(TM)).

Proof. Let M be a radical transversal screen semi-slant lightlike submanifold of
an indefinite Kaehler manifold M . The distribution D1 defines a totally geodesic
foliation if and only if ∇XY ∈ Γ(D1), for all X, Y ∈ Γ(D1). Since ∇ is metric
connection, from (2.3), (2.6) and (2.7), for any X, Y ∈ Γ(D1) and Z ∈ Γ(D2),
we obtain g(∇XY,Z) = −g(∇XJZ, JY ), which implies g(∇XY, Z) = g(AFZX −
∇XfZ, JY ). Also, from (2.3), (2.6) and (2.7), for any X,Y ∈ Γ(D1) and N ∈
Γ(ltr(TM)), we have g(∇XY, N) = −g(JY,∇XJN), which gives g(∇XY, N) =
−g(JY,∇XJN) = g(JY,A∗

JN
X). This concludes the theorem.

Theorem 4.3. Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Kaehler manifold M . Then D2 defines a totally geodesic
foliation if and only if

(i) g(fY,∇XJZ) = −g(FY, hs(X, JZ)),

(ii) g(fY,∇XJN) = −g(FY, hs(X, JN)),

for all X,Y ∈ Γ(D2), Z ∈ Γ(D1) and N ∈ Γ(ltr(TM)).

Proof. Let M be a radical transversal screen semi-slant lightlike submanifold of
an indefinite Kaehler manifold M . The distribution D2 defines a totally geodesic
foliation if and only if ∇XY ∈ Γ(D2), for all X, Y ∈ Γ(D2). Since ∇ is metric
connection, using (2.3), (2.6) and (2.7), for any X, Y ∈ Γ(D2) and Z ∈ Γ(D1), we
get g(∇XY,Z) = −g(JY,∇XJZ), which implies g(∇XY, Z) = −g(fY,∇XJZ) −
g(FY, hs(X, JZ)). Now, from (2.3), (2.6) and (2.7), for any X, Y ∈ Γ(D2) and N ∈
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Γ(ltr(TM)), we have g(∇XY, N) = −g(JY,∇XJN), which gives g(∇XY, N) =
−g(fY,∇XJN)− g(FY, hs(X, JN)). Thus, we obtain the required results.
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