MATEMATNYKN BECHUK OPUTMHAJIHNA HAYYHU DAL
68, 4 (2016), 287-297 research paper
December 2016

ADDITION FORMULA FOR COMPLEMENTARY ERROR
FUNCTION WITH ASSOCIATED INTEGRAL REPRESENTATIONS

Leila Moslehi and Alireza Ansari

Abstract. In this paper, using the Mellin transform of parabolic cylinder functions we
present an addition formula for the complementary error function in terms of the Gaussian func-
tions. Also, some inverse Laplace transforms of the complementary error functions are shown and
new integral representations for the exponential integral and Bessel functions are given. Moreover,
the solution of diffusion equation in finite domain is presented in terms of the theta functions.

1. Introduction

In the literature, the error function (probability integral) [9]

) z
EI‘f(Z) = ﬁ/o e_xde,

along with its complement (complementary error function)

2 e 2
Erfe(z) = — e ¥ dz,
7l

have many applications in various branches of applied mathematics, such as prob-
ability, theory of errors, heat conduction and different branches of mathematical
physics [9]. In this paper, we intend to develop the literature review on complemen-
tary error function and find some new integral representations for this function and
other special functions. For this purpose, first by using the definition of parabolic
cylinder function [10, p. 328]
67z2/4

P& =5,

and considering the complementary error function as a special case of it

D_q(z) = ez2/4\/§ Erfc(\%), (1.1)

2010 Mathematics Subject Classification: 33B20, 44A10
Keywords and phrases: Addition formula; Mellin transform; Laplace transform; complemen-
tary error function; Theta function

/ et /2 =1y R(v) > 0,
0

287



288 L. Moslehi, A. Ansari

we get an addition formula for the complementary error function. This formula is
obtained by applying the one and two dimensional Mellin transforms [10, p. 397]

M{f(z);s} =F(s) = /000 257 f(z) du,
Mo{f(z,y);s,t} = /OOO /Ooo [z, y)a® =ty da dy,

and associated properties
M{f'(z);s} = —(s —1)F(s — 1),
1
M{f(ax);s} = EF(S), a>0.

2. Main theorems

Before we state our results for the complementary error function, let us recall
the Mellin transform of parabolic cylinder function D_, [10, p. 330]

I'(s)
I((s+v+1)/2)
and find an integral addition formula for the parabolic cylinder function D_, (a+b)
in special case of v. In this sense, we use the approach of papers [1, 2, 13] for

obtaining our result. Also, see the papers [6, 7] for other addition formulas in
terms of the series representations for v =n € N.

Me 1 D_, (w); s} = /22 (502 R(s) >0, (21)

THEOREM 2.1. For |arg(a)| < w/2 and |arg(b)| < m/2, the following addition
formula holds for the complementary error function

9 .o
Erfc(a + b) [ /2 e~ CSC2(9)a2_SEC2(9)b2d9. (22)
0

™

Proof. We employ the function e~ (@+9)*/4D_ (a + b) and set a = r cos?(¢)
and b = rsin?(¢) to get the two dimensional Mellin transform of this function as
follows

/ / e_(a+b)2/4D_,,(a +b)a* 1L dadb = B(a, B)M{e_rz/‘LD_y(r); a+ [}
0 Jo

[(a)T(B)r!/22- (ath+r)/2

b

F((a+B+v+1)/2) (2.3)

I'(a)T
where B is the beta function given by B(«, ) = M' Now, we consider the
e

following integral and intend to get the two dimensional Mellin transform of it

1
I:/Oxu/Q1(1_$)U/21(Z_(€£2/4D_y(§)) . £(6752/4D_V(§))5

dz.
=i dE

b
H(171)1/2’
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For this purpose, by using the definition of two dimensional Mellin transform we

have
! v/2— v/2— > d —g? a—
[arta-apr] [T e Do), 0 da

0 z1/2

x {/wd(e—fz/‘*p (3) bﬁ—ldb} dz
o d§ I v

_ [(a)T(B)r2-a/2=p/2—v+1 /1 ZOI2HV[271 (1 )8/ 2 /21 g

T(a/2+v/2)T(B8/2+v/2) J,
_ D(a)T(B)r2—/2=h/2-v+1
- D(a/2+v/2)T(B/2+v/2)
_ al(a)[(B)2-2/2=B/2—v+l
N D(a/2+5/2+v)

At this point, in view of the relations (2.4) and (2.3) in special case v = 1, we get
e—(a+b)2/4D71(a +b) =

B(a/2+v/2,8/24 v/2)

(2.4)

d

i/ 220 2 L ehp o) Leenp )
V2t Jo d¢ £—

d
s dE “

5*(17;})1/2
which by using the relation (1.1) leads to
11 22 dx
Erfc(a =+ b) = ; A e = 1-z m,

or equivalently, by setting 2 = sin?(#) we have
E

™

Erfc(a + b) — E/ e~ CSC2(9)a2_S€C2(0)b2d9_ -
0

REMARK 2.2. Throughout this paper, we denote the function k() as k(f) =
sec?(0) or k(6) = csc?(0).

Using the above notation for (), we simplify the relation (2.2) for a = 0 or
b = 0, and derive an integral representation for the complementary error function
in the next corollary.

COROLLARY 2.3. For complementary error function, the following integral
representation holds

i

2 [2 2
Erfc(a) = 7/ e gy Jarg(a)| < /2. (2.5)

™ Jo

THEOREM 2.4. For |arg(a)| < w/2, the following representations hold for the
products of error functions

[ME]

4 .
Erfe(a) = / e (0% gp, (2.6)

4
™

Erf(a) Erfc(a) = g/4 e (0 g g/2 e (0% g9 (2.7)
™ Jo s z
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Proof. First, we represent the error function Erf? (a) as a double integral on
the region 0 < s<a,0<t<a

Erf?(a / / =" =t s dt,

and use the polar coordinates s = rsin®() and t = r cos?(#) to obtain

9 005(9) 7T sm(e) 7T
Erf?(a) = dr df + dr df
0
1— = / —(0)a g9
™ Jo

Now, by applying the relation (2.2) and using the identity Erfc?(a) = [1 — Erf(a)]?,
we get the relation (2.6). Also, the relation (2.7) is obtained after a simple compu-
tation on identity [Erfc(a) 4+ Erf(a)]> =1.m

THEOREM 2.5. For |arg(a)| < /2, the following representation holds for the
cubic products of error functions

Erf*(a) + Erfc*(a) = 1 — 2 / T om0 gy, O / g
0

™ T =

4

Proof. By expanding the identity [Erfc(a) + Erf(a)]®> = 1 and applying the
relation (2.7), we get the result. m

3. Identities involving the inverse Laplace transforms

In this section, using the results obtained in previous section we improve the
existing tables for the inverse Laplace transforms of the complementary error func-
tions. For example, see the handbooks [4, 12], [16, Sec. 3.7].

THEOREM 3.1. The following representation holds for the inverse Laplace
transform of complementary error function

ﬁ—l{éErfc (\/s—l— Vs —a+ \/s+ Vs — b);x}

2 (% 2[sec?(6) + csc?(0)]
_ = asec”(0)+bcsc* (0 Erf

™ /sin—1(2/\/5)/2 ‘ ¢ (\/:z: —sec?(0) — csc?(

0)) 9. (3.1)

Proof. Using the complex inversion formula for the Laplace transform and
applying the addition formula (2.2) for the complementary error function, we have

E—l{éErfc(\/s—l—\/E—a—i—\/s—i—\f—b);s}

- |:7 / Zem sec2(0)(s+\/§7a)7csc2(9)(s+\/§7b)+sa:j| ds
" omi c—ico LT Jo S
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2 (%
_“ / e® sec?(0)+bcsc?(6)
0

™

y [L / cHiee lef(se&(ems&(e))ﬁ+s(m*se<:2<9>*0“2<9>)} ds do.
2mi c—ico S

At this point, by using the fact that £=1{e~*V5 /s;z} = Erfc(2a/\/), we simplify
the above relation as follows

z 5 5 2 2
2/ easec (0)+bcsc™(0) Erfc ( 2(S€C (0) +csc (9)) )H(.’E o SGCZ(G) o CSC2(0)) do,
T Jo Vo —sec?(6) — csc?(0)

where H is the Heaviside unite step function. Finally, the relation (3.1) can be
easily derived after a simple computation. m

THEOREM 3.2. The following relation holds for the inverse Laplace transform
of complementary error function

L~ HErfe ((s — a)o‘/2);x} _ 2% /2 W( - «,0; —Kée)> dg, 0<a<l, (3.2)
0

T «
where W is the Wright function given by [11]

oo n

xr
Wy, B;z) = 7;) AT+ )’

v>-1,8€C. (3.3)
Proof. By applying the inverse Laplace transform on the function Erfc ((s —
a)®/?) and taking the relation (2.2) into account, we have

£~ Erfe ((s — a)”‘/z);x} = % /5 LH e O6=a)" 1 g,
0

w(0)(s—a)®

Now, if we apply the inverse Laplace transform of function e~ in terms of

the Wright function

Lo e @) = %W( a0 _5(0))’

th

then we get

_ a2y, 2e%” E] ~ K(0)
L 1{Erfc((sfa) /2),30}7 /0 W<704,0, )d@.

T %

COROLLARY 3.3. The following identities hold for the inverse Laplace trans-
form of complementary error function

£ Exfe (s — a)/3); 2} = 22 /5 i“—ﬁe—@/mﬂ@)ﬂ
™ X
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™
ax

—1 /4y € 2 —r2(0)/(4x)
L7 Erfe ((s —a)/*);a} = —372,3/2 /0 K(0)e do, (3.5)
_ 2% [T k(0) . /K(0)xY/3
1 1/6Y. —
L Erfc ((s —a)'/%);z} = - /o 3173473 Al( WE ) de, 56

where Ai(z) is the Airy functions of first kind such that [17]

Ai(z) = 1 /oo cos(xt + t°/3) dt

™

Proof. 1If we use the following relation for the Wright function (3.3)

1
—W(-a,0;—2) = aW(—a,1 — a;—2),
z
and apply the following identities for the special cases of this function [3, 11]
1 22
W(-1/2,1/2;—2) = —=e™ T,

NG
W(—1/3,2/3; —2) = 3%/3Ai(3

W(=2/3,1/3;—2) = e~ /20" [371/3,A1(3~ — 31/3A1(374/322)),

the relation (3.2) is simplified to the identities (3.4)—(3.6) for a = 2/3,1/2,1/3,
respectively. m

),

4/322)

Laplace transform

2 fO (anze)

2 fO 7rw
—v—1

_x
ov— 1/2773/2 0

—52(0)/(4@) _ bebn(9)+b2x Er fC(

Function
2 1n(9) 1
fO (v 9))

(9) )d9

72+ by/z)] b
ek (0)/(SI)D2,,+1(%) de

)(V 1)/211/ 1(2

2 L2y ym Jo(2esc(9) V) db

Erfc (v/vIn(s)), R(v) >0
= Erfc (%), R(v) >0
ﬁ Erfc({/s)

s” Erfe(/s)

1 Brfe(y/s + ﬁ)

Table 1. The inverse Laplace transform of complementary error function

Using the relations (2.6) and (2.7) for the quadratic products complementary
error functions, all obtained results in this section can be rewritten for the func-

tions Erfc?(x) and Exf(z) Erfe(z).

(w/4,7/2) or (0,7/4
lary.

It suffices to replace the interval (0,7/2) with

)U (w/4,m/2). For example, we can show the following corol-

COROLLARY 3.4. The following identities hold for the inverse Laplace trans-
form of the quadratic products complementary error functions

L™ HErfc? (sV4); 2} =

3/2.23/2

. / * k(B)e " @/40) g,
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1 i >
-1 1/4 1/4y. . —r7(0)/(4x)
L7H{Erf(s/%) Erfe(s/); 2} = 572,30 /0 k(0)e de

1 2 2
— W/, Kk(Q)er (/) g9,
4

At the end of this section, we conclude that the simple relation (2.2) enables
us to obtain various inverse Laplace transforms of complementary error functions
with complicated arguments. For example, we draw Table 1 for different forms of
complementary error functions and their inverse Laplace transforms. The necessary
relations for obtaining the results have been taken from [16]. Also, the notations

Ju(z) = (5)” 1 1—2)r=1/2 tydt, R 1/2
D) = s (0B s Rw) > <172,

FAYZ 1
I(z) = F(V+§j;)F(1/2) [1(1 — 1272 cosh(zt) dt, R(v) > —1/2,

are the Bessel function of first kind and the modified Bessel function of first kind,

respectively.

4. Integral representations for exponential integral and Bessel functions

DEFINITION 4.1. The exponential integral function Ei is defined as [8, p. 883,
8.211.1]

THEOREM 4.2. For all |arg(s)| < w/2, the following representations hold for
the exponential integral function

™

CEi(ms) = 2 e - BT ke (5 /m00)) o, (4.1)

52 ws? J,
_Fi(—s) = %/07 Ko(sy/n(0)) b, (4.2)

where K, is the modified Bessel function of second kind [8, p. 917,8.432(1)]

Ko (2) = / e cos(ut)dt, | ars(2)] < & orR(z) =0, ¥ = 0.
0

Proof. By considering the relation (2.2) and using the following integral for
the error function [14, p. 106, no. 16]

* 1 2
/ xe 12 Erfe(z) dox = R + %Ei(—s), |arg(s)| < /2,
0

4

we get

1 2 ) 3 oo 22
Ty & Ei(—s) = —/ / ze O "1 dg df.
4 4 T Jo Jo
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Now, using the following integral representation for the modified Bessel function of
second kind [8, p. 370, 3.478(4)]

/oo re—BT /5 g _ ﬂ Ki2vVBY), R(B),R() > 0,
0

we obtain (4.1). For the proof of relation (4.2), we begin with the following identities
[14, p. 106, no. 17], [8, p. 370, 3.478(4)]

/ 6—52/(41'2) El"fC(fE) d—x = — Ei(_s)a éR(S) >0,
0

x

/ Bz —/a? ‘;ﬁ = Ko(2/37), R(B),R() >0,

0
to get

2 Z roo 2 3
CEi(esy= 2 5 6_5(9)3?2_52/(4;82) dj _2 2 KO( 5(9)8) df. m
™ Jo Jo x 0

™

THEOREM 4.3. For |arg(a)| < 7/2 and |arg(b)| < 7/2, the following addition
formula holds for the exponential integral function

_Ei(=(a+b) = % /0/000 Koy (V/r(@)a) Kir (v/w(@)b) dr do.

Proof. Using the following relation for the addition formula of modified bessel
function of second kind [8, p. 749, 6.791(4)]

% /O°° Kir(a)Kir (b) dT = Ko(a +b),

and applying the identity (4.2), we get the result. m

THEOREM 4.4. The following relations hold for the Bessel functions

™

Ki/4(s) =2e™° /5 /4;(9)623“2(9) Erfe (\/%K(Q)) e, (4.3)
0
Ho(s) = Yo(s) + % /O " Kolsy/n(0) + 1) db, (4.4)

where Yy is the Bessel function of second kind [8, p. 914,8.415(1)]
2 [ t
Yo(z) = 77/ cos(zt) n
™ J1 t2 —1
and Hy(z) is the Struve function of zero order given by [8, p. 942,8.550(1)]

S (/2
Hol2) =2 ot a2y
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Proof. Similar to the proof of previous theorem, we use the following integral
identities [15, p. 174, 3.7.2(17)], [15, p. 30, 2.2.1(15)]

\ 1 1 . 1
,C{Erfc(ﬁ),s} = ; — Wel/(s )K1/4<87)7

Ll VA gy = L VT ot g (55)
S

s S3/2

to get the relation (4.3). Also, we use the following relations [15, p. 180, 3.7.4(13)],
15, p. 31, 2.2.2(1)]

L2 e Brle(1//E): s} = 7l Ho(2v5) - Yo(2v/3)]
cteolis) = 2K (2as),

x
to obtain (4.4). m
5. Application to diffusion equations in finite domains

One of the important representations of addition formula for the complemen-
tary error function occurs in diffusion equations. We consider the following one-
dimensional diffusion equation in a finite medium 0 < x < a with the concentration
function u(x,t)

U = Klgg, >0, 0<z<a, (5.1)
u(z,0) =0, wu(a,t)=ugp, u,(0,t)=0.

By applying the Laplace transform on the both sides of equation (5.1)

o0
u(z,s) = / e Stu(x,t)dt,
0
and using the boundary conditions we get the solution as [5]

(2, 5) = ug cosh(zy/s/k)
7 scosh(ay/s/k) ’

which can be rewritten in the following form

~ U em\/s/k + efz\/s/k
u(x,s) = —

S ea\/s/k + e—aq/s/k
70 - [(2n+1 a—1] s/k[(2n+1)a+z]
S el

Now, by applying the inverse Laplace transform, the final solution is given by

u(x,t) = ug g(—l)” {Erfc (W) + Erfe (Wﬂ
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At this point, we intend to present another representation for the above solution
in terms of the theta functions. We recall the definition of theta function [12]

O(xz,q)=1+2 Z(fl)”q"2 cos(2nx),
n=1

and employ the addition formula (2.2) to show the solution in a different form as

(_l)n/a ean csc?(0)/(kt)
n=0 0

~ [e—(a—x)z sec?(0)/(4kt) +€—(a+x)2 sec2(9)/(4kt)] de

2
u(z,t) 2to

s

™

@ 2 [0(0,67 CSC2(¢)/(kt)) + 1]
T Jo

% [e—(a—x)z sec?(¢)/(4kt) _~_e—(a+x)zsec2(¢)/(4kt)} dgb -
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