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SOME CONSTRUCTIONS OF GRAPHS
WITH INTEGRAL SPECTRUM
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Abstract. A graph G is said to be an integral graph if all the eigenvalues of the adjacency
matrix of G are integers. A natural question to ask is which graphs are integral. In general,
characterizing integral graphs seems to be a difficult task. In this paper, we define some graph
operations on ordered triple of graphs. We compute their spectrum and, as an application, we
give some new methods to construct infinite families of integral graphs starting with either an
arbitrary integral graph or integral regular graph. Also, we present some new infinite families of
integral graphs by applying our graph operations to some standard graphs like complete graphs,
complete bipartite graphs etc.

1. Introduction

Throughout the paper we consider only graphs with no loops and no multiple
edges. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. The adjacency
matrix A(G) of G is the n × n real symmetric matrix [aij ], where aij = 1 if the
vertices vi and vj are adjacent in G, otherwise aij = 0. The spectrum of the
adjacency matrix of a graph G is known as adjacency spectrum of G or simply,
spectrum of G. For studies on spectrum of graphs, we refer to a classical book by
Cvetković, Doob and Sachs [5]. If all the eigenvalues of the adjacency matrix of a
graph G are integers, then the graph G is said to be an integral graph. The graphs
Kn, Km,n (mn a perfect square), C6, the cocktail parity graph CP (n) = nK2, are
some examples of integral graphs. Integral graphs finds its applications in perfect
state transfers in graphs [7]. The notion of integral graph was first introduced
by Harary and Schwenk in 1974 [10]. In general, the problem of characterizing
integral graphs is a difficult task. A result of Ahmadi et al. [3] shows that for
a sufficiently large n, the number of integral graphs on n vertices can be at most
2

n(n−1)
2 − n

400 . In literature, researchers mainly focussed on classifying integral graphs
among some interesting families of graphs such as trees, regular graphs, complete
r-partite graphs etc. Some works on integral trees and complete r-partite integral
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graphs can be found in a PhD thesis of Wang [18] and also in [8]. In [9], Hansen et al.
characterized integral graphs in the families of complete split graphs and multiple
complete split-like graphs. So [16] considered circulant graphs and characterized
integral graphs among them. In [1], Abdollahi and Vatandoost determined all
connected cubic integral Cayley graphs. Some studies on integral regular graphs
can be found in [6, 17, 21].

We now recall some well-known graph products [11]. Let H be a graph with
vertex set V (H) = {u1, u2, . . . , um}. The cartesian product G ¤ H of two graphs
G and H is the graph with vertex set V (G ¤ H) = V (G)×V (H) and in which two
vertices (vi, uk) and (vj , ul) are adjacent if either vi = vj and ukul is an edge in H
or uk = ul and vivj is an edge in G. The Kronecker product G⊗H of two graphs
G and H is the graph with vertex set V (G⊗H) = V (G)×V (H) and in which two
vertices (vi, uk) and (vj , ul) are adjacent if and only if vivj is an edge in G and ukul

is an edge in H. The strong product G £ H of two graphs G and H is the union
of cartesian and Kronecker product of graphs G and H. It is worth to note that
the cartesian and strong product of graphs G and H consists of |V (G)| copies of H
and |V (H)| copies of G. Also the Kronecker product consists of |V (G)| copies of
Km. Interestingly, these graph products when applied on integral graphs produces
again integral graphs.

The problem of constructing infinite families of integral graphs has attracted
many researchers. In [12,19–21], several families of integral graphs are constructed
by employing some known graphs (integral graphs). Mohammadian and Tayfeh-
Rezaie [15] investigated various forms of (0, 1)-matrices (obtained using Kronecker
product) for integer eigenvalues. More information about integral graphs can be
found in [4]. Most of the graph constructions demonstrated in literature are ap-
plied either on complete graphs or complete bipartite graphs to produce infinite
families of integral graphs, for example, see [2,12–15,20]. Our aim in this paper is
to construct infinite families of integral graphs starting with an arbitrary integral
graph. We define some graph operations on ordered triple of graphs using some
well-known graph products. We compute their spectrum and as an application,
we give some new methods to construct infinite families of integral graphs starting
with either an arbitrary integral graph or integral regular graph. Also, we present
some new infinite families of integral graphs by applying our graph operations on
some standard graphs like complete graphs, complete bipartite graphs etc. In the
sequel, we denote n copies of a graph G by nG.

2. Spectrum of ψα(G1, G2, G3)

Let Gi (i = 1, 2, 3) be a graph on ni vertices. Let V (G1) = {u1, u2 . . . , un1},
V (G2) = {v1, v2 . . . , vn2} and V (G3) = {w1, w2, . . . , wn3} be the vertex sets of
G1, G2 and G3, respectively. Denote by ψα(G1, G2, G3) (α = 1, 2, 3), the graph
obtained from Gi (i = 1, 2, 3) as follows:

Definition 2.1. ψ1(G1, G2, G3) is the graph obtained from G1 ¤G3 and
G2 ¤ G3, by joining each vertex in the i-th copy of G1 in G1 ¤ G3 to every vertex
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in the j-th copy of G2 in G2 ¤ G3, whenever the vertices wi and wj are adjacent
in G3.

Definition 2.2. ψ2(G1, G2, G3) is the graph with vertex set
V (ψ2(G1, G2, G3)) = (V (G1)× V (G3))∪ (V (G2)× V (G3)) and edge set defined as
follows:

a. (ui, wk) and (uj , wl) are adjacent in ψ2(G1, G2, G3) if either uiuj is an edge in
G1 and wk = wl.

b. (vi, wk) and (vj , wl) are adjacent in ψ2(G1, G2, G3) if either vivj is an edge in
G2 and wk = wl.

c. (ui, wk) and (uj , wl) are adjacent in ψ2(G1, G2, G3) if uiuj is an edge in G1

and wkwl is an edge in G3.
d. (vi, wk) and (vj , wl) are adjacent in ψ2(G1, G2, G3) if vivj is an edge in G2 and

wkwl is an edge in G3.
e. (vi, wk) and (uj , wl) are adjacent in ψ2(G1, G2, G3) if wkwl is an edge in G3.

Definition 2.3. ψ3(G1, G2, G3) is the graph obtained from G1 £ G3 and
G2 £ G3, by joining each vertex in the i-th copy of G1 in G1 £ G3 to every vertex
in the j-th copy of G2 in G2 £ G3, whenever the vertices wi and wj are adjacent
in G3.

Let A = (aij) be a n ×m matrix and B = (bij) be a p × q matrix. Then the
Kronecker product A⊗B of A and B is the np×mq matrix obtained by replacing
each entry aij of A by aijB. It is well-known that (A ⊗ B)(C ⊗D) = AC ⊗ BD,
whenever the products AC, BD are defined and λµ is the eigenvalue of A ⊗ B,
whenever λ and µ are the eigenvalues of A and B, respectively.

In this section, we compute the spectrum of ψα(G1, G2, G3), α = 1, 2, 3, when
G1 and G2 are regular graphs.

Theorem 2.4. Let Gi (i = 1, 2) be an ri-regular graph on ni vertices and let
G3 be an arbitrary graph on n3 vertices. Suppose Spec(G1) = {λ1 = r1 ≥ λ2 ≥
· · · ≥ λn1}, Spec(G2) = {µ1 = r2 ≥ µ2 ≥ · · · ≥ µn2} and Spec(G3) = {ν1 ≥ ν2 ≥
· · · ≥ νn3}, then the spectrum of ψ1(G1, G2, G3) consists of
a. λi + νj, i = 2, 3, . . . , n1 and j = 1, 2, 3, . . . , n3.
b. µi + νj, i = 2, 3, . . . , n2 and j = 1, 2, 3, . . . , n3.

c.
(
2νi + r1 + r2 ±

√
4ν2

i n1n2 + (r1 − r2)2
)

/2, i = 1, 2, . . . , n3.

Proof. With suitable labelling of the vertices of G := ψ1(G1, G2, G3), the
adjacency matrix of G can be formulated as follows:

A(G) =
[

In3 ⊗A(G1) + A(G3)⊗ In1 A(G3)⊗ Jn1×n2

A(G3)⊗ Jn2×n1
In3 ⊗A(G2) + A(G3)⊗ In2

]
,

where Jn1×n2 is the n1 × n2 matrix whose all entries are 1.
Since A(G3) is a real symmetric matrix of order n3, it has n3 orthonormal

eigenvectors. Let X1, X2, . . . , Xn3 be a set of orthonormal eigenvectors of A(G3)
corresponding to the eigenvalues ν1, ν2, . . . , νn3 , respectively.



56 B. R. Rakshith

Case 1: νi 6= 0.

Let ωi =
(
2νi + r1 + r2 +

√
4ν2

i n1n2 + (r1 − r2)2
)

/2,

ωi =
(
2νi + r1 + r2 −

√
4ν2

i n1n2 + (r1 − r2)2
)

/2,

Φi =




Xi

ωi − νi − r1
⊗ 1

n1×1

Xi

νin2
⊗ 1

n2×1


 and Φi =




Xi

ωi − νi − r1
⊗ 1

n1×1

Xi

νin2
⊗ 1

n2×1


,

where i = 1, 2, . . . , n3 and 1 = (1, 1, . . . , 1)T . Then

A(G)Φi =
[

In3 ⊗A(G1) + A(G3)⊗ In1 A(G3)⊗ Jn1×n2

A(G3)⊗ Jn2×n1
In3 ⊗A(G2) + A(G3)⊗ In2

]

×




Xi

ωi − νi − r1
⊗ 1

n1×1

Xi

νin2
⊗ 1n2×1




=




(In3 ⊗A(G1) + A(G3)⊗ In1)
(

Xi

ωi − νi − r1
⊗ 1n1×1

)

+(A(G3)⊗ Jn1×n2
)
(

Xi

νin2
⊗ 1n2×1

)

(A(G3)⊗ Jn2×n1
)
(

Xi

ωi − νi − r1
⊗ 1n1×1

)

+(In3 ⊗A(G2) + A(G3)⊗ In2)
(

Xi

νin2
⊗ 1n2×1

)




=




(
Xi

ωi − νi − r1

)
⊗ r11n1×1 +

(
νiXi

ωi − νi − r1

)
⊗ 1n1×1 + (Xi ⊗ 1n1×1)(

νin1Xi

ωi − νi − r1

)
⊗ 1n2×1 +

(
Xi

νin2
⊗ r21n2×1

)
+

(
Xi

n2
⊗ 1n2×1

)




= ωi




Xi

ωi − νi − r1
⊗ 1n1×1

Xi

νin2
⊗ 1n2×1


 = ωiΦi.

Thus Φi (i = 1, 2, . . . , n3) is an eigenvector of A(G) corresponding to the eigenvalue
ωi. Similarly, it can be proved that Φi (i = 1, 2, . . . , n3) is an eigenvector of A(G)
corresponding to the eigenvalue ωi.

Case 2 : νi = 0.

Let Xi be an eigenvector of A(G3) with corresponding eigenvalue νi = 0. Then

A(G)
[

Xi ⊗ 1n1×1

0

]
= r1

[
Xi ⊗ 1n1×1

0

]
.

Hence,
[

Xi ⊗ 1n1×1

0

]
is an eigenvector of A(G) with corresponding eigenvalue r1.
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Similarly, it can be shown that
[

0
Xi ⊗ 1n2×1

]
is an eigenvector of A(G) cor-

responding to the eigenvalue r2.
Since A(G1) is a r1-regular graph, it follows that 1n1×1 is an eigenvector of

A(G1) corresponding to the eigenvalue r1. Let Z1 = 1n1×1/
√

n1, Z2, . . . , Zn1 be
a set of orthonormal eigenvectors of A(G1) corresponding to the eigenvalues λ1 =
r1, λ2, . . . , λn1 , respectively. For i = 1, 2, . . . , n3 and j = 2, 3, . . . , n1, we have

A(G)
[

Xi ⊗ Zj

0

]

=
[

In3 ⊗A(G1) + A(G3)⊗ In2 A(G3)⊗ J
n1×n2

A(G3)⊗ J
n2×n1

In3 ⊗A(G2) + A(G3)⊗ In2

] [
Xi ⊗ Zj

0

]

=
[

(Xi ⊗ λjZj) + (νiXi ⊗ Zj)
νiXi ⊗ 0

]
= (νi + λj)

[
Xi ⊗ Zj

0

]
.

Thus,
[

Xi ⊗ Zj

0

]
is an eigenvector of A(G) corresponding to the eigenvalue νi +λj ,

where i = 1, 2, . . . , n3 and j = 2, 3, . . . , n1.
Let Y1 = 1n2×1/

√
n2, Y2, . . . , Yn2 be an orthonormal set of eigenvectors of

A(G2) corresponding to the eigenvalues µ1 = r2, µ2, . . . , µn2 , respectively. Then

it is easy to see that
[

0
Xi ⊗ Yj

]
is an eigenvector with corresponding eigenvalue

νi + µj for i = 1, 2, . . . , n3 and j = 2, 3, . . . , n2. This completes the proof of the
theorem.

The following corollary is an immediate consequence of the above theorem.

Corollary 2.5. Let Gi (i = 1, 2) be an integral ri-regular graph and let G3 be
an integral graph. Then ψ1(G1, G2, G3) is integral if and only if 4ν2

i n1n2+(r1−r2)2

is a perfect square for i = 1, 2, . . . , n3.

The following theorems give the spectrum of ψα(G1, G2, G3) (α = 2, 3) when
G1 and G2 are regular graphs. As the proofs of these theorems are analogous to
that of the above one, we omit the details.

Theorem 2.6. For i = 1, 2, let Gi be a ri-regular graph on ni vertices and
let G3 be an arbitrary graph. Suppose Spec(G1) = {λ1 = r1 ≥ λ2 ≥ · · · ≥ λn1},
Spec(G2) = {µ1 = r2 ≥ µ2 ≥ · · · ≥ µn2} and Spec(G3) = {ν1 ≥ ν2 ≥ · · · ≥ νn3}.
Then the spectrum of ψ2(G1, G2, G3) consists of:
a. λi(1 + νj), i = 2, 3, . . . , n1 and j = 1, 2, 3, . . . , n3.
b. µi(1 + νj), i = 2, 3, . . . , n2 and j = 1, 2, 3, . . . , n3.

c.
(
(νi + 1)(r1 + r2)±

√
4ν2

i n1n2 + (νi + 1)2(r1 − r2)2
)

/2, i = 1, 2, . . . , n3.

Theorem 2.7. Let Gi (i = 1, 2) be a ri-regular graph on ni vertices and let
G3 be an arbitrary graph. Suppose Spec(G1) = {λ1 = r1 ≥ λ2 ≥ · · · ≥ λn1},
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Spec(G2) = {µ1 = r2 ≥ µ2 ≥ · · · ≥ µn2} and Spec(G3) = {ν1 ≥ ν2 ≥ · · · ≥ νn3}.
Then the spectrum of ψ3(G1, G2, G3) consists of:

a. λi + νj + λiνj, i = 2, 3, . . . , n1 and j = 1, 2, 3, . . . , n3.

b. µi + νj + µiνj, i = 2, 3, . . . , n2 and j = 1, 2, 3, . . . , n3.

c.
(
(νi + 1)(r1 + r2) + 2νi ±

√
4ν2

i n1n2 + (νi + 1)2(r1 − r2)2
)

/2, i = 1, 2, . . . , n3.

Corollary 2.8. Let Gi (i = 1, 2) be an integral ri-regular graph and let G3

be an integral graph. Then ψα(G1, G2, G3) (α = 2, 3) is integral if and only if
4ν2

i n1n2 + (νi + 1)2(r1 − r2)2 is a perfect square for i = 1, 2, . . . , n3.

Using Corollaries 2.5 and 2.8, in the following propositions, we give some fam-
ilies of integral graphs.

Proposition 2.9. Let G1, G2 be integral regular graphs of same degrees on
n1, n2 vertices, respectively and let G3 be an integral graph. Then ψα(aG1, bG2, G3)
(α = 1, 2, 3) is an integral graph for a, b ∈ N and abn1n2 a perfect square.

Proposition 2.10. Let Gi (i = 1, 2) be an integral ri-regular graph on ni

vertices. Let a, b ∈ N and ab = (r1 − r2)2p(pn2n1n2 ± 1) (p = 1, 2, 3, . . . ). Then
ψ1(aG1, bG2,Kn,n) is an integral graph.

Proposition 2.11. Let G1 be an integral (n+k)-regular graph on n1 vertices
and G2 be an integral k-regular graph on n2 vertices. Then ψ1(aG1, bG2,Kn,n) is
an integral graph for a, b ∈ N and ab = p(pn1n2± 1) (p = 1, 2, 3, . . . ). Also if k = 0
and n2 = abn1 ± 1, then ψ1(aG1, bG2, Kn,n) is an integral graph.

Proposition 2.12. Let a, b and j be arbitrary positive integers. Then:

(1) the graph ψ1(aK2nj,2nj , bK2, Kn,n) is integral for ab =
j(nj − 1)2

8n
∈ N.

(2) For ab =
j(nj − 1)2

2n
∈ N, the graph ψ1(aK2nj , bK1, Kn,n) is integral.

(3) The graph ψ1(aH, bC4, Kn,n), where H = K2nj,2nj ¤ K2 is integral for ab =
j(nj − 1)2

32n
∈ N.

(4) for ab =
(nj − 1)2

2n2
∈ N, the graph ψ1(a(Knj,nj ¤ Knj), bK1, Kn,n) is integral.

Proposition 2.13. Let a, b and j be arbitrary positive integers and let α =
2, 3. Then:

(1) For ab = (n + 1)2
j(nj − 1)2

8n
∈ N, the graph ψα(aK2nj,2nj , bK2, Kn+1) is

integral.

(2) The graph ψα(aK2nj , bK1, Kn+1) is integral for ab = (n+1)2
j(nj − 1)2

2n
∈ N.
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a) ψ1(K2, K2, C4) with spectrum b) ψ2(C4, C4, K2) with spectrum

{71, 31, 16,−15,−32,−51} {81, 41, 011,−43}

c) ψ3(K4,4, K2, K2) with spectrum {111, 31, 17,−19,−51,−71}

Fig. 1. Some integral graphs obtained from Corollaries 2.5 and 2.8

(3) For ab = (n + 1)2
j(nj − 1)2

32n
∈ N, the graph ψα(aH, bC4, Kn+1) is integral,

where H = K2nj,2nj ¤ K2.

(4) The graph ψα(a(Knj,nj ¤ Knj), bK1, Kn+1) is integral for

ab = (n + 1)2
(nj − 1)2

2n2
∈ N.

3. Spectrum of φα(G1,G2, G3)

Denote by φα(G1, G2, G3) (α = 1, 2, 3), the graph obtained from Gi (i = 1, 2, 3)
as follows:

Definition 3.1. φ1(G1, G2, G3) is the graph obtained from G1 ¤G3 and
G2 ⊗G3, by joining each vertex in the i-th copy of G1 in G1 ¤ G3 to every vertex
in the j-th copy of G2 in G2 ⊗ G3, whenever the vertices wi and wj are adjacent
in G3.

Definition 3.2. φ2(G1, G2, G3) is the graph obtained from G1 ¤G3 and
G2 £ G3, by joining each vertex in the i-th copy of G1 in G1 ¤ G3 to every vertex
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in the j-th copy of G2 in G2 £ G3, whenever the vertices wi and wj are adjacent
in G3.

Definition 3.3. φ3(G1, G2, G3) is the graph obtained from G1 ⊗ G3 and
G2 £ G3, by joining each vertex in the i-th copy of G1 in G1 ⊗G3 to every vertex
in the j-th copy of G2 in G2 £ G3, whenever the vertices wi and wj are adjacent
in G3.

In this section, we give the spectrum of φα(G1, G2, G3) (α = 1, 2, 3) when G1

and G2 are regular graphs. We use the following lemma to prove our main results.

Lemma 3.4. (see [5]) If M, N,P, Q are matrices with M being non-singular
then ∣∣∣∣

M N
P Q

∣∣∣∣ = |M | |Q− PM−1N |.

The proof of the following theorem can be given in an analogous way as that
of Theorem 2.4, but here we give a different proof using the above lemma.

Theorem 3.5. Let Gi (i = 1, 2) be an ri-regular graph on ni vertices and
let G3 be an arbitrary graph. Suppose Spec(G1) = {λ1 = r1 ≥ λ2 ≥ · · · ≥ λn1},
Spec(G2) = {µ1 = r2 ≥ µ2 ≥ · · · ≥ µn2} and Spec(G3) = {ν1 ≥ ν2 ≥ · · · ≥ νn3}.
Then the spectrum of φ1(G1, G2, G3) consists of:
a. λi + νj, i = 2, 3, . . . , n1 and j = 1, 2, 3, . . . , n3.
b. µiνj, i = 2, 3, . . . , n2 and j = 1, 2, 3, . . . , n3.

c.
(
r1 + νi(r2 + 1)±

√
4ν2

i n1n2 + (νi(r2 − 1)− r1)2
)

/2, i = 1, 2, . . . , n3.

Proof. Since A(Gi) (i = 1, 2, 3) is a real symmetric matrix, it is orthog-
onally diagonalizable. Let Pi (i = 1, 2, 3) be an orthogonal matrix such that
PT

i A(Gi)Pi = Di, where D1 = diag(λ1, λ2, . . . , λn1), D2 = diag(µ1, µ2, . . . , µn2)
and D3 = diag(ν1, ν2, . . . , νn3). As Gi (i = 1, 2) is an ri-regular graph, without
loss of generality, we can assume that the first column of Pi is 1ni×1/

√
ni, where

1 = (1, 1, . . . , 1)T .
Upon labelling the vertices of G := φ1(G1, G2, G3) suitably, the adjacency

matrix of G can be formulated as follows:

A(G) =
[

In3 ⊗A(G1) + A(G3)⊗ In1 A(G3)⊗ Jn1×n2

A(G3)⊗ Jn2×n1
A(G3)⊗A(G2)

]
,

where Jn1×n2 is the n1 × n2 matrix whose all entries are 1. Now,

A(G) =
[

In3 ⊗ P1D1P
T
1 + P3D3P

T
3 ⊗ In1 P3D3P

T
3 ⊗ Jn1×n2

P3D3P
T
3 ⊗ Jn2×n1

P3D3P
T
3 ⊗ P2D2P

T
2

]

=
[

P3 ⊗ P1 0
0 P3 ⊗ P2

] [
In3 ⊗D1 + D3 ⊗ In1 D3 ⊗ PT

1 Jn1×n2
P2

D3 ⊗ PT
2 Jn2×n1

P1 D3 ⊗D2

]

×
[

PT
3 ⊗ PT

1 0
0 PT

3 ⊗ PT
2

]
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=
[

P3 ⊗ P1 0
0 P3 ⊗ P2

] [
In3 ⊗D1 + D3 ⊗ In1 D3 ⊗√n1n2J

′
n1×n2

D3 ⊗√n1n2J
′
n2×n1

D3 ⊗D2

]

×
[

PT
3 ⊗ PT

1 0
0 PT

3 ⊗ PT
2

]
,

where J ′n1×n2
is the matrix obtained from J ′n1×n2

by replacing all its entry except
the first diagonal entry by 0. Thus A(G) is similar to

B :=
[

In3 ⊗D1 + D3 ⊗ In1 D3 ⊗√n1n2J
′
n1×n2

D3 ⊗√n1n2J
′
n2×n1

D3 ⊗D2

]
.

The rest of the proof follows by applying Lemma 3.4 to the matrix B.

Corollary 3.6. Let Gi (i = 1, 2) be an integral ri-regular graph and let G3 be
an integral graph. Then φ1(G1, G2, G3) is integral if and only if 4ν2

i n1n2 +(νi(r2−
1)− r1)2 is a perfect square for i = 1, 2, . . . , n3.

The following theorems give the spectrum of φα(G1, G2, G3), when G1 and G2

are regular graphs. As the proofs are analogous to those of Theorems 2.4 and 3.5,
we omit the details.

Theorem 3.7. For i = 1, 2, let Gi be an ri-regular graph on ni vertices and
let G3 be an arbitrary graph. Suppose Spec(G1) = {λ1 = r1 ≥ λ2 ≥ · · · ≥ λn1},
Spec(G2) = {µ1 = r2 ≥ µ2 ≥ · · · ≥ µn2} and Spec(G3) = {ν1 ≥ ν2 ≥ · · · ≥ νn3}.
Then the spectrum of φ2(G1, G2, G3) consists of:
a. λi + νj, i = 2, 3, . . . , n1 and j = 1, 2, 3, . . . , n3.
b. µi + νj + µiνj, i = 2, 3, . . . , n2 and j = 1, 2, 3, . . . , n3.

c.
(
r1 + r2 + νi(r2 + 2)±

√
4ν2

i n1n2 + (r2(νi + 1)− r1)2
)

/2, i = 1, 2, . . . , n3.

Corollary 3.8. Let Gi (i = 1, 2) be an integral ri-regular graph and let G3 be
an integral graph. Then φ2(G1, G2, G3) is integral if and only if 4ν2

i n1n2 +(r2(νi +
1)− r1)2 is a perfect square for i = 1, 2, . . . , n3.

Theorem 3.9. Let Gi (i = 1, 2) be a ri-regular graph on ni vertices and let
G3 be an arbitrary graph. Suppose Spec(G1) = {λ1 = r1 ≥ λ2 ≥ · · · ≥ λn1},
Spec(G2) = {µ1 = r2 ≥ µ2 ≥ · · · ≥ µn2} and Spec(G3) = {ν1 ≥ ν2 ≥ · · · ≥ νn3}.
Then the spectrum of φ3(G1, G2, G3) consists of:
a. λiνj, i = 2, 3, . . . , n1 and j = 1, 2, 3, . . . , n3.
b. µi + νj + µiνj, i = 2, 3, . . . , n2 and j = 1, 2, 3, . . . , n3.

c.
(
r2(νi + 1) + νi(r1 + 1)±

√
4ν2

i n1n2 + (νi(r1 − 1)− r2(νi + 1))2
)

/2,
i = 1, 2, . . . , n3.

Corollary 3.10. Let Gi (i = 1, 2) be an integral ri-regular graph and G3 be
an integral graph. Then φ3(G1, G2, G3) is integral if and only if 4ν2

i n1n2 +(νi(r1−
1)− r2(νi + 1))2 is a perfect square for i = 1, 2, . . . , n3.
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a) φ2(K2, K2, C6) with spectrum b) φ3(K1, K2, C4) with spectrum

{61, 32, 23, 16,−16,−23,−32,−61} {41, 22, 06,−22,−41}

c) φ1(4K1, 2K2, C4) with spectrum {101, 61, 26, 016,−26,−61,−101}

Fig. 2. Some integral graphs obtained from Corollaries 3.6, 3.8 and 3.10

Using Corollaries 3.6, 3.8 and 3.10, in the following propositions, we give some
families of integral graphs.

Proposition 3.11. Let G and H be integral graphs of order m and n with G
being an r-regular graph. Let a, b ∈ N and ab = (r − 1)2p(pm± 1)(p = 1, 2, 3, . . . ).
Then φ1(aK1, bG, H) is an integral graph.

Proposition 3.12. Let G be an integral graph and let a, b ∈ N and ab =
j(j − 1)2

4
∈ N, j = 1, 2, 3, . . . . Then the graph φ1(aK1, bK2j,2j , G) is integral.

Proposition 3.13. Let G be an integral graph and let a, b ∈ N and ab =
j(j + 1)2

16
, j = 1, 2, 3, . . . . Then the graph φ1(aK1, b(K2j,2j ¤C4), G) is integral.

Proposition 3.14. Let G be an integral graph and let a, b ∈ N and

ab =
(j − 1)2

4
∈ N, j = 1, 2, 3, . . . . Then the graph φ1(aK1, b(Kj,j ¤ Kj,j), G)

is integral.

Proposition 3.15. Let Gi (i = 1, 2) be an integral r-regular graph on ni

vertices and G3 be an integral graph. Let a, b ∈ N and ab = r2p(pn1n2 ± 1) (p =
1, 2, 3 . . . ). Then φ2(aG1, bG2, G3) is an integral graph.
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Proposition 3.16. Let G be an integral graph and let a, b ∈ N and ab =
(j − 1)2

4
∈ N, j = 1, 2, 3, . . . . Then the graph φ2(aK2j , bK2j , G) is integral.

Proposition 3.17. Let G be an integral graph and let a, b ∈ N and ab =(
j + 1

8

)2

∈ N, j = 1, 2, 3, . . . . Then the graph φ2(aH, bH, G) is integral, where

H = K2j,2j ¤ K2.

Proposition 3.18. Let Gi (i = 1, 2) be an integral ri-regular graph on ni ver-
tices. Let r1 = r2+1, a, b ∈ N and ab = r2

2p(pn2n1n2±1). Then φ3(aG1, bG2,Kn,n)
is an integral graph.

Proposition 3.19. For a, b ∈ N and ab =
(j − 1)2

8
∈ N, j = 1, 2, 3, . . . , the

graph φ3(aK2j,2j , bK2j ,Kn,n) is integral.

Proposition 3.20. For a, b ∈ N and ab =
j2

128
∈ N, j = 1, 2, 3, . . . ,

the graph φ3(aH, bG, Kn,n) is integral, where H = K2(j−1),2(j−1) ¤C4 and G =
K2(j−1),2(j−1) ¤ K2.
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