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FIXED POINTS OF GENERALIZED TAC-CONTRACTIVE
MAPPINGS IN b-METRIC SPACES

G. V. R. Babu and T. M. Dula

Abstract. We introduce generalized T'AC-contractive mappings in b-metric spaces and we
prove some new fixed point results for this class of mappings. We provide examples in support
of our results. Our results extend the results of [S. Chandok, K. Tas and A. H. Ansari, Some
fixed point results for TAC-type contractive mappings, J. Function Spaces, Vol. 2016, Article
ID 1907676, 6 pages| from the metric space setting to b-metric spaces and generalize a result of
[D. Dori¢, Common fixed point for generalized (1, ¢)-weak contractions, Appl. Math. Lett. 22
(2009) 1896-1900].

1. Introduction

Banach contraction principle has been extended by various authors based on
the generalization of contraction conditions and/or generalization of ambient space.
In 1997, Alber and Guerre-Delabriere [1] introduced weakly contractive maps which
are extensions of contraction maps and obtained fixed point results in the setting
of Hilbert spaces. Rhoades [14] extended this concept to metric spaces. In 2008,
Dutta and Choudhury [8] introduced (1, p)-weakly contractive maps and proved
the existence of fixed points in complete metric spaces. In continuation to the
extensions of contraction maps, Dorié¢ [7] studied (¢, ¢)-weakly contractive maps
and proved the existence of fixed points in complete metric spaces. On the other
hand, in the direction of generalizing metric spaces, in 1993, Czerwik [6] introduced
the concept of b-metric spaces and proved the Banach contraction mapping principle
in this setting. Afterwards, several research papers appeared on the existence of
fixed points for single-valued and multi-valued mappings in b-metric spaces [4, 13,
15-18].

Very recently, Chandok, Tas and Ansari [5] introduced the concept of TAC-
contractive mappings and proved some fixed point results in the setting of complete
metric spaces.
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DEFINITION 1.1. [5] Let (X, d) be a metric space and let a, 3 : X — [0, 00) be
two given mappings. We say that T : X — X is a T'AC-contractive mapping if

z,y € X with a(z)B(y) 2 1 = ¢(d(Tz, Ty)) < f(¢(d(x,y)), o(d(z,y))),

where:
(i) v is continuous and nondecreasing function with ¢(¢) = 0 if and only if ¢ = 0;
(ii) ¢ :[0,00) — [0,00) is continuous with lim,, o ¢(t,) =0 = lim, oty = 0;
and
(iii) f:[0,00)2 — R is continuous, f(s,t) < s and f(s,t) = s implies that either
s=0ort=0, for all s,t € [0,00).

THEOREM 1.2. [5] Let (X, d) be a complete metric space, o, 3 : X — [0,00) be
two mappings and let T : X — X be a cyclic («, 3)-admissible mapping. Assume
that T is a T AC-contractive mapping. Suppose that there exists o € X such that
a(zg) > 1 and B(xo) > 1 and either of the following conditions hold:

(a) T is continuous;
(b) If {z,} is a sequence in X such that x, — z and B(x,) > 1 for all n, then

B(z) = 1.

Then T has a fized point. Moreover, if a(z) > 1 and B(y) > 1 for all z,y €
Fiz(T) where Fiz(T) is the set of all fized points of T, then T has a unique fixed
point.

Motivated by this work, we introduce generalized T'AC-contractive mappings
in b-metric spaces and extend Theorem 1.2 to b-metric spaces. In Section 2, we
present preliminaries. In Section 3, we prove our main results in which we study
the existence of fixed points of generalized T'AC-contractive mappings in b-metric
spaces. We provide corollaries and examples in support of our results in Section 4.

2. Preliminaries

DEFINITION 2.1. [11] A function ¢ : [0,00) — [0,00) is called an altering
distance function if the following properties hold:

(i) ® is continuous and nondecreasing function,
(ii) ¥(t) =0 if and only if ¢ = 0.
We denote the set of all altering distance functions by W.

DEFINITION 2.2. [6] Let X be a non-empty set. A function d : X x X — [0, 00)
is said to be a b-metric if the following conditions are satisfied;

(i) 0 < d(z,y) for all z,y € X and d(z,y) = 0 if and only if z = y;
(i) d(z,y) =d(y,x) for all z,y € X;
(iii) there exists s > 1 such that d(z,z) < s[d(z,y) + d(y,2)] for all z,y,z € X.

In this case, the pair (X, d) is called a b-metric space with coefficient s.
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Every metric space is a b-metric space with s = 1. In general, not every b-
metric space is a metric space. Throughout this paper, R denotes the real line, and
N is the set of all natural numbers.

ExaMPLE 2.3. Let X = R, and let the mapping d : X x X — [0,00) be
defined by d(x,y) = |z — y|? for all z,y € X. Then (X,d) is a b-metric space with
coeflicient s = 2, but it is not a metric space.

DEFINITION 2.4. [4] Let (X, d) be a b-metric space.

(i) A sequence {z,} in X is called b-convergent if there exists x € X such that
d(xpn,x) — 0 as n — oco. In this case, we write lim,, o, x, = .
(ii) A sequence {z,} in X is called b-Cauchy if d(z,, ) — 0 as n,m — oo.
(iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence
in X is b-convergent.

(iv) A set B C X is said to be b-closed if for any sequence {z,} in B such that
{zn} is b-convergent to z € X, it is z € B.

REMARK 2.5. A b-metric need not be a continuous function. For more details,
we refer to [10].

LEMMA 2.6. [9] Let (X, d) be a b-metric space with s > 1.
(i) If a sequence {x,} C X is b-convergent, then it admits a unique limit.

(ii) Ewery b-convergent sequence in X is b-Cauchy.

DEFINITION 2.7. Let (X,d) and (M,d’') be two b-metric spaces. A function
f: X — M is b-continuous at x € X if it is b-sequentially continuous at X. That
is, whenever {z,} is b-convergent to xz, { fz,} is b-convergent to fz.

DEFINITION 2.8. [11] Let A and B be nonempty subsets of X. A mapping
f:AUB — AU B is said to be cyclic if f(A) C B and f(B) C A.

DEFINITION 2.9. [2] Let X be a nonempty set, f be s selfmap on X and
a,f: X — [0,00) be two mappings. We say that f is a cyclic (a, §)-admissible
mapping if

(i) for any z € X with a(z) > 1 = B(fx)

1, and
(ii) for any y € X with 8(y) > 1 = a(fy) > 1.

2
2
We denote:
O ={¢:[0,00) — [0,00) with lim,,_,cc ¢(tn) =0 = lim,_ t, = 0}, and
C={f:]0,00)2 = R (i) fis continuous, (ii) f(a,t) < a, (iii) f(a,t) =a =
either a =0 or t = 0 and (iv) f(a,t) < f(b,t) whenever a < b}.
We observe that:
(i) if f € C then f(0,0) = 0;
(ii) if ¢ € ® then ¢(t) =0 = ¢t =0.
(iii) if ¢ € ® then limsup,,_, ., ¢(t,) =0 = limsup,,_,,, t, = 0.
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EXAMPLE 2.10. The following functions f : [0,00)? — R are elements of C:

(i) f(a,t) = a—t, (ii) f(a,t) = ‘1’—;;, (iil) f(a,t) = 155, and (iv) f(a,t) = 17,
for a,t € [0, 00).

We denote &1 = {¢ : [0,00) — [0,00) | ¢ is lower semicontinuous with ¢(t) =0
if and only if t = 0}. We observe that ®; C .

Dori¢ proved the following theorem by using ¢ € ®; in complete metric spaces.

THEOREM 2.11. [7] Let (X, d) be a complete metric space and let T : X — X
be a selfmap of X. If there exist v € ¥ and ¢ € ®1 such that
Y(d(Tz,Ty)) < P(M(z,y)) — p(M(z,y)), (2.1)
where M (z,y) = max{d(z,y),d(x,Tz),d(y, Ty), w} for all x,y € X,
then T has a unique fixed point in X.

The following lemma is useful in proving our main results.

LEMMA 2.12. [3] Suppose (X,d) is a b-metric space with coefficient s and
{zn} is a sequence in X such that d(xn,zp41) — 0 as n — oco. If {z,} is not a
Cauchy sequence then there exist an € > 0 and sequences of positive integers {my}
and {ni} with ng > my > k such that d(m, , Tn, ) > €, d(Tmy, Tny—1) < € and

(i) € < limsup d(@m,, , Tn, ) < se (iii) ¢ < limsup d(Tom, 11, Tn, ) < %€
k—oo S k—o00
(ii) < < lmsup d(Tmy, Tngp+1) < s2e (iv) % < lmsup d(Tmy+1, Tngp+1) < s3e.
S k— o0 S k—o00

3. Main results

In this section, we introduce the notion of a generalized T'AC-contractive map
in b-metric spaces and prove fixed point results for such mapping in b-complete
metric spaces.

DEFINITION 3.1. Let (X, d) be a b-metric space and let «, 5 : X — [0,00) be
two given mappings. Let T : X — X be a selfmap of X. If there exist ¢ € U,
¢ € ® and f € C such that

for all z,y € X, a(2)B(y) 21 = P(s°d(Tz, Ty)) < f((M(z,y)), 6(Ms(2,9))),

(3.1)
where M (z,y) = max{d(x,y),d(z, Tx),d(y, Ty), %}, then we say that
T is a generalized T AC-contractive map in b-metric spaces.

THEOREM 3.2. Let (X,d) be a b-complete metric space with coefficient s >
1. Let T : X — X be a selfmap of X. Assume that there exist two mappings
a,f: X — [0,00) and Y € ¥, ¢ € ® and f € C such that T is a generalized
T AC-contractive mapping. Further, suppose that there exists xg € X such that
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alxzg) > 1 and B(xg) > 1, T is a cyclic (o, 3)-admissible mapping and either of the
following conditions hold:

(i) T is continuous,

(i) if {xzn} is a sequence in X such that x, — z and B(x,) > 1 for all n, then
6(z) = 1.
Then T has a fized point.

Proof. By the hypotheses we have xg € X such that a(zg) > 1 and B(xg) > 1.
Now, we define an iterative sequence {x,} by z,4+1 = Tz, for n =0,1,2,... . If
Tpg+1 = Tn, for some ng € NU {0}, we have Tz, = Tpy+1 = Tn,, S0 that x,, is a
fixed point of T and we are through.

Hence, without loss of generality, we assume that x,,; # =z, for all n €
N U {0}. Since a(zp) > 1 and T is a cyclic (a, 3)-admissible mapping, we have
B(x1) = B(Txo) > 1, and this implies that a(x2) = a(Tx1) > 1. On continuing
this process, we obtain

a(xor) > 1 and B(zar41) > 1 for all k € NU{0}. (3.2)

Since B(xo) > 1 and T is a cyclic («, 3)-admissible mapping, we have «a(z1) =
a(Txp) > 1 and this implies that S(xz2) = 8(Tz1) > 1. In general, on continuing
this process, we obtain

B(zor) > 1 and a(xops1) > 1 for all £k € NU {0}. (3.3)

Therefore from (3.2) and (3.3) we have a(z,) > 1 and ((z,) > 1 for all n € NU{0}.

First we show that lim,, o, d(z,, zp+1) = 0. Since a(x,)B(xn11) > 1 for all
n € NU {0}, from (3.1), we have

(s’ d(T2n, Tni1)) < fO(M(2n, Tni1)), d(Ms (20, Tni1))) (3.4)

where

Ms(xna $n+1)

Ty i1, T
:max{d('rn7xn+1)7d(mn7Txn)ad($n+17Tl'n+1)7d(xn’ Tn+1) + d@ni, T )}

2s
= max{d(zn, Tnt1), d(Tni1, Tnia)}-
Now, if d(zpn,nt1) < d(@py1,Tnt2) for some n € NU {0}, it follows from (3.4)
that
Y(d(Tpi1, Tny2)) = Y(A(Trp, Trngq)) < w(ssd(Tmananrl))
< FW(d(@ng1; Tnt2)), ¢(d(@nt1; Tnt2))) < Y(d(@nt1, Tnz)),
so that f(¢(d(Tnt1, Tn2)), (d(Tnt1; Tny2))) = (d(Tni1, Tns2)). Hence by (ii)

of the definition of f, we have either ¥/(d(zp+1, Tnt2)) = 0 or ¢(d(Tp+1, Tnt2)) =0,
a contradiction since x, # Tp41.

Hence d(zy,, Tni1) > d(Tpi1, Tnao) for all n € NU{0}. Therefore, the sequence
{d(zp,xns1)} is decreasing and bounded from below. Thus there exists r > 0 such
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that lim,, e d(Zp, Zn41) = r. Suppose that r > 0. Then we have

(A1, Tns2)) = BT, Tins1) < O(5d(T0, Tns1))
< f@(d(@n, Tnt1)), d(d(Tn, Tni1))) < Y(d(Tn, Tntr)). (3.5)

On letting n — oo in (3.5) and using the continuity of ¢ and f, we have (r) <
f(@(r), and limg, o0 ¢(d(n, Tn41))) < ¥(r), so that

F@(r), limy, oo ¢(d(xn, xne1))) = (r). Hence, either ¥(r) =0 or

limy, o0 ¢(d(xp, zn+1)) = 0. In any case it is a contradiction. Hence, r = 0, i.e.,
limy, 00 d(2p, Tpy1) = 0.

We now prove that {z,} is a b-Cauchy sequence. If {x,} is not b-Cauchy,
then by Lemma 2.12, there exist € > 0 and sequences of positive integers {ny}
and {my} with ny > my > k such that d(xm,, ,2n,) > €, d(Tm,, Tn,—1) < € and
(i)-(iv) of Lemma 2.12 hold. Since a(xm,,) > 1 and B(x,,) > 1 we have that
T ) Bl = 1.

Now, from (3.1) we have

1/)(d(f£mk+1, fxnk“l‘l)) = ’l/)(d(szk s T’I”k)) < 1/}(53d(Txmk ’ Txnk))
< FWO(Ms (@ Ty, )s (M (T, Tny ) (3.6)

where

Ms(xmk ’ ‘T’I’Lk)

= max {d(zmk bl xnk)? d(xmk b fx’mk)7 d(znk bl fxnk-)?

d(fxmk7:r"k) + d(xmk:’ ffEnk) }
2s '
(3.7)

Letting n — oo in (3.7) and using (i)—(iv) of Lemma 2.12, we have

2 2
. s%e + s“¢
e < limsup My(2m, , Tn, ) < max{se, 0, ———

m su P } = se. (3.8)

Now, from (3.6) and using (3.8) we have

P(se) = 1/)(53%) < 1/1(53 lim sup(d(Zm,+1, Tne+1))) = 1/)(53 limsup d(Txpm,, TTy,)

S k—oo k—oo
= limsup ¢(s*d(Txm,,, Tn,)
k—o0
< f(d)(hin sup Ms(Zm,, Tn,), lilzn sup ¢(Ms(Timy,, Tny,)))
< f(¥(se), 112118111) P(Ms(Tmy, Tny))) < P(se€),

which implies that f(v(se€),limsupy_, . ¢(Mg(Tm, , ZTn,))) = ¥(se). Hence, by the
property (ii) of f, we have either ¥ (se) = 0 or limsupy,_, o ¢(Ms(zm,,zn,)) =0, in
either case it is a contradiction. So we conclude that {x,} is a b-Cauchy sequence
n (X,d). Since (X,d) is b-complete, it follows that there exists z € X such that
lim,, oo Tp, = 2.
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First, we assume that T is continuous. Then we have lim,, .o, Tz, = Tz, so
that Tz = lim,, oo Ty, = limy, 00 Tpy1 = 2.

Now we assume that (ii) holds, that is G(z,) > 1 for all n. Then we have
B(z) > 1. We assume that Tz # z. From the triangular inequality, we have
d(z,Tz) < s[d(z,Txyn) + d(Txp,Tz)]. On taking the upper limit as n — oo, we
have 1

d(z,Tz) < limsupd(Tz,, Tz). (3.9)

; n—oo
Also we have d(T'x,,Tz) < s{d(Txy,z)+ d(z,T%)]. On taking the upper limit as
n — 00, we obtain

limsup d(Tx,,Tz) < sd(z,Tz). (3.10)

n—oo

From (3.9) and (3.10), we have
1
gd(z,Tz) <limsupd(Tz,,Tz) < sd(z,Tz). (3.11)
n—oo

Since a(x,)B(z) > 1, from (3.1), we get

P(d(2,T2)) < ¢(s’d(z,T2)) = 1/)(83[211(2,%)}) < ¢(s*limsup d(T'zy, T2)))

= limsup ¢(s°[d(Txp, T2)]) < limsup f(Y(M(2n, 2)), (M (2, 2)))
< f(lirlri)s;ipw(Ms(xmz)),liyrbn_)solip d(Ms(2n, 2))), (3.12)

d(zn,Tz)+d(z,Tzn
where M, (z,,, 2) = max{d(z,, 2), d(xy, T,), d(z, Tz), AenT2EdETEn) Y
On taking the upper limit and using (3.11), we have limsup,, .o My(zy, 2) =

max{0,0,d(z,Tz),limsup,,_, d(wg;Tz)} = d(z,T%). Now, from (3.12) we obtain

Y(d(z,Tz)) < f(w(liﬁsolip Ms(wnw)),lirrbllsogp ¢(Ms(wy, 2)))
< f(w(d(z,TZ)),liﬂsotip P(My(xy,2))) < Y(d(z,T2)),

so that f(¢(d(z,Tz)),limsup,,_, . ¢(Ms(z,,2))) = ¥(d(z,Tz)). Hence, either
Y(d(z,Tz)) = 0 or limsup,, ., #(Ms(xn,2)) = 0. In either case it is a contra-
diction. Hence Tz = z. m

THEOREM 3.3. In addition to the hypotheses of Theorem 3.2, suppose that
a(u) > 1 and B(u) > 1 whenever Tu = u. Then T has a unique fixed point.

Proof. Let u and v be fixed points of T’; by hypothesis a(u) > 1 and S(v) > 1.
Hence, from (3.1) we have

Y(d(u,v)) = (d(Tu, Tv)) < P(s*d(Tu, Tv)) < f(ob(Ms(u,v)), ¢(Ms(u,v)gz)))»13>

where

M;(u,v) = max {d(u, v), d(u, Tw), d(v, Tv), d(u, Tv) 2+5d(v, Tu) }

= max {d(u,v)70, du,v) } = d(u, v).

S
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), we get
P(d(u, U)) Y(d(Tu, Tv)) < Y(s°d(Tu,Tv)) < f(¥(M(u,v)), ¢(Ms(u,v)))
f((d(u,v)), ¢(d(u, v))) < P(d(u,v)),
so that f(v(Ms(u,v)), ¢((Ms(u, v))) = ¥(d (1(1 v)). Hence, either 1 (d(u,v)) = 0 or

¢(d(u,v)) = 0. In any case it implies that ,v) = 0. Thus, u = v. Therefore f
has a unique fixed point. m

REMARK 3.4. Theorem 3.2 and Theorem 3.3 extend Theorem 1.2 to b-metric
spaces.

By using inequality (3.13
(

DEFINITION 3.5. Let (X, d) be a b-metric space with coefficient s > 1, and A
and B be two closed subsets of X such that ANB # (. Let T: AUB — AUB be
a cyclic mapping. If there exist ¥ € ¥, ¢ € ® and f € C such that

U(s*d(T, Ty)) < f(¥(Ms(2,9)), o(Ms(2,y))), (3.14)

forallz € Aand y € B. Then we say that T' is a generalized T'AC-cyclic contractive
mapping.

THEOREM 3.6. Let A and B be two nonempty closed subsets of a b-complete
b-metric space (X,d) such that ANB # 0, and let T : AUB — AUB be a
cyclic mapping. If T' is a generalized T AC-cyclic contractive mapping, then T' has
a unique fixed point in AN B.

Proof. We define o, 3 : AU B — [0,00) by

a(x):{l’ ifre A and 5(x):{1, ifxeB

0, otherwise, 0, otherwise.

For any =,y € AU B with a(z)8(y) > 1, we have € A and y € B. Hence, by the
hypotheses, the inequality (3.14) holds, which in turn means that the inequality
(3.1) holds. Therefore T is a generalized T'AC-contractive mapping on A U B.

Since AN B # ), there exists 9 € AN B and hence a(zg) > 1 and B(zo) > 1.
Let {z,,} be a sequence in X such that 3(z,) > 1 for all n € NU{0} so that x,, € B
for all n € NU {0} and z,, — = as n — oo. Since B is b-closed we have x € B and
hence #(x) > 1. Therefore all the hypotheses of Theorem 3.2 hold and hence T has
a fixed point.

Let u (say) be a fixed point of T. If u € A, then v = Tw € B. Similarly,
it w e B, then u = Tu € A, hence u € AN B. This implies that a(u) > 1 and
B(u) > 1. Therefore, by Theorem 3.3, T has a unique fixed point. m

4. Corollaries and examples

COROLLARY 4.1. Let (X, d) be a b-complete metric space with coefficient s > 1
and T : X — X be a selfmap of X. If there exist p € W, ¢ € ® and f € C such
that

U(s*d(Tw, Ty)) < f((My(x,y)), $(Ms(2,9))) for all z,y € X, (4.1)

then T has a unique fixed point.
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Proof. By choosing a(z) = 8(z) =1 for all € X, clearly the inequality (4.1)
implies the inequality (3.1) and hence by Theorem 3.3, the conclusion of corollary
follows. m

COROLLARY 4.2. Let (X,d) be a complete metric space. Let T : X — X
be a selfmap of X. Assume that there exist two mappings o, : X — [0,00)
and ¢ € ¥, ¢ € ® and f € C such that a(x)B(y) > 1 implies (d(Tx,Ty)) <
f@(M(z,y)), (M (z,y))) for all z,y in X, where M (x,y) = max{d(z,y), d(z,Tx),
d(y,Ty),W}. Further, suppose that there exists xg € X such that
a(zg) > 1 and B(xp) > 1, T is a cyclic (a, B)-admissible mapping and either of the
following conditions hold:
(i) T is continuous,
(ii) if {zn} is a sequence in X such that x, — z and B(x,) > 1 for all n, then
B(=) > 1.
Then T has a fized point.

Proof. The result follows from Theorem 3.2 by taking s =1. m

From Theorem 3.3 by taking s = 1 and a(x) = B(z) = 1 we deduce the
following corollary.

COROLLARY 4.3. Let (X, d) be a complete metric space and T : X — X be a
selfmap of X. If there exist v € VU, ¢ € ® and f € C such that Y(d(Tz,Ty)) <
FW(M(z,y)), p(M(z,y))) for allz,y € X, where M (x,y) is defined as in Corollary
4.2. Then T has a unique fized point.

COROLLARY 4.4. Let (X,d) be a b-complete metric space with coefficient s > 1.
Let T : X — X be a selfmap of X. Assume that there exist two mappings a, (3 :
X — [0,00) and ¢ € ¥, ¢ € ® such that a(x)B(y) > 1 implies Y(s3d(Tx, Ty)) <
Y(Ms(z,y)) — ¢(Ms(z,y)). Further, suppose that there exists xo € X such that
a(zg) > 1 and B(xp) > 1, T is a cyclic (a, B)-admissible mapping and either of the
following conditions hold:
(i) T is continuous,
(i) if {xzn} s a sequence in X such that x, — z and B(x,) > 1 for all n, then
B(z) > 1.
Then T has a fized point.

Proof. Follows from Theorem 3.2 by taking f(a,t) =a —t. m

REMARK 4.5. Theorem 2.11 follows as a corollary to Corollary 4.4 by taking
s=1and a(z) = f(z) =1 for all x € X, since ; C P.

COROLLARY 4.6. Let A and B be two nonempty closed subsets of a b-complete
metric space (X,d) such that ANB # 0, and let T : AUB — AUB be a
cyclic mapping. If there exist v € W and ¢ € ® such that P(s*d(Tx,Ty)) <
Y(Ms(z,y)) — ¢(Ms(z,y)), for all x € A and y € B, then T has a unique fized
point in AN B.

Proof. The result follows from Theorem 3.6 by taking f(a,t) =a—t. m
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The following is an example in support of Theorem 3.2.
EXAMPLE 4.7. Let X = [0,00) and let d : X x X — [0,00) be defined by

0, ife=y
i) %-ﬁ-x—i—y, if v,y €0,1), x#y
€T =
Y 5+ﬁy, if z,y € (1,00), z#y
5 otherwise.

92
Clearly (X,d) is a b-metric space with coefficient s = %. Define T': X — X by
{ 2—z, ifxzel0,2]
Tx = .
T, if x € (2,00)
1, ifze[l,2 1, ifxe|0,1
a(x):{ 13: 1,2] and ﬁ(m):{ 13? [0,1]
0, ifxel0,1)U(2,00), 0, ifz e (1,00).

Since for any z € X, a(zx) > 1 < z € [1,2], where Tx = 2 — z € [0,1], hence
B(Txz) > 1. Also for x € X, 3(x) > 1 < x € [0,1], where Tz = 2 — z € [1,2], hence
a(Tx) > 1. Therefore T is a cyclic («, 3)-admissible mapping.

and o, 3 : X — [0,00) by

Next we show that T is a generalized T AC-contractive mapping. For any
x € [0,1] and y € [1,2] we have a(z)B(y) > 1; also Tz € [1,2] and Ty € [0,1].
Hence d(Txz, Ty) = 5. Now, we choose 1(t) = t, ¢(t) = {1a9o5t and f(a,t) = a —t.
For z € [0,1] and y € [1,2] we have

Ml y) = max {d(x’ y),d(z, Tz),d(y, Ty), d(@, Ty) + dly, T) }

2s

27272a )

2(5)

so that 3878 < Mg(z,y) <5. Now, we have

110
, 11\3 /5 33275\ 33275
YT, Ty) = U’((m) (2)) =(om00) = To000
3875 21475 3875
~ 1100 110000 w(uoo) — (%)
< ¢(Ms($, y)) - d)(Ms(LE, y)) = f(¢(Ms($7y)), d)(MG(‘T?y)))

Hence, T is a generalized T'AC-contractive mapping. Clearly condition (ii) of The-
orem 3.2 holds. Hence T satisfies all the hypotheses of Theorem 3.2 and x = 1 and
every element of (2, 00) are fixed points of T. So T has more than one fixed point
in X.

Here we observe that in the usual metric sense, for any «, 5 : X — [0, 00) such
that T is a cyclic (a, 8)-admissible mapping, we can easily verify that

(d(Tz, Ty)) £ f((d(z,y)), (d(z,y))),

for any ¢ € U, ¢ € ® and f defined as in Definition 1.1, and for any = # y with
a(z)B(y) > 1. Hence T is not a T'AC-contractive mapping. Therefore Theorem
1.2 is not applicable.
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One more example in support of Theorem 3.2 is the following:

EXAMPLE 4.8. Let X = [0,00) and let d : X x X — [0,00) be defined by
d(z,y) = |z — y|? for all z,y € X. Then clearly (X,d) is a b-metric space with

, 1— 2 ifzel01]
coefficient s = 2. Let us define T : X — X by T'(z) = _ and
T, if x € (1, 00)
a,f:X —[0,00) by
2 ifzelo,1
o) = ey = { 7717 TS0
0, if x € (1, 00).
Since for any =z € X, a(z) > 1 & x € [0,1], we have 5(Tz) = %—H =52 > 1
4

Since a(x) = B(x), clearly T' is a cyclic («, §)-admissible mapping.

Next we show that T is generalized T'AC-contractive mapping. We assume
that a(z)B(y) > 1. This implies that 2,y € [0,1] and hence Te = 1 — § and
Ty =1—%. We choose

2 ifxelo,2]
t)=t, ) = d =< ’
WO =t )= 5y ad o) ={ I
Then
d(z, T d(y, T
M (a.9) = max { e, ). d(o. ), (), A0 AT
S
_1_742_’_ _1_&2
—max {lo =y o - 1= Sy -1 - Y PRI

Now, we have

B(2d(T, Ty)) = 0815 — L) = (e — yf?) = |z — yf?

4 4 2
< M(z.y) = 2Mls$:,1y)) < 21\4;%;1))
3
Y(Ms(x,y))

= m = f(w(MS(x7y))a¢(Ms(xay)))

Hence T is generalized T AC-contractive mapping. For a sequence {z,} in X such
that z,, — = and «a(z,) > 1 for all n, this implies that {z,} C [0, 1]. Since [0, 1] is
a closed subset of X then z € [0,1], therefore 5(x) > 1. Hence T satisfies all the
hypotheses of Theorem 3.2 and x = % and also every element of the interval (1, 00)
is a fixed point of T

Here we observe that with the usual metric on [0, 00), the inequality (2.1) fails
to hold: for any z,y € (1,00) with x # y, we have d(z,y) = M(x,y), and hence

(T, Ty)) = P(d(z,y)) £ P(d(z,y)) — e(d(z,y)) = p(M(z,y)) — o(M(z,y)),

for any ¢ € ¥ and ¢ € ®. Hence, Theorem 2.11 is not applicable.

EXAMPLE 4.9. Let X =R and let d: X x X — [0,00) be defined by

0, ife=y
d(z.y) SHlel+lyl, ifeye(-3.3) z#y
Z, = .
T st iewe(co—fluioo) o Ay

5

35 otherwise.
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Clearly, d is a b-metric with coefficient s = %. We defineT : X — X byTex=3—=x
and o, 3 : X — [0,00) by

1, ifzelo,?2 , ifrel33
a(r) = n [ 2) and f((z) = e [2 ]
0, otherwise, 0, otherwise.

Since for any € X, a(z) > 1 & x € [0, 3], where Tz = 3 — z € [2,3], hence
B(Tz) > 1. Also for z € X, B(z) > 1 < z € [2,3], where Tz = 3 —z € [0, 3],
hence a(Txz) > 1. Therefore T is a cyclic («, 3)-admissible mapping.

We now show that T is a generalized T'AC-contractive mapping. For any
z €[0,2] and y € [2,3] we have a(z)B(y) > 1; also Tz € [2,3] and Ty € [0, 2].
Hence d(Tz,Ty) = g Now, for t,s > 0 we choose

t, if t €0,3]

and ¢<t>={ |
1+t 7423097273, if t e R\ [0, 3].

()=t flat)=

Then, for z € [0, 3] and y € [2, 3], we have

M;(z,y) = max {d(x, y),d(z, Tx),d(y, Ty), d(z,Ty) 2w;d(y, Tx) }

555 9+ \y|+\13_z| +%+|$|+|3_y|
=1maxy 55555 )
2°2°2

2(15)

230 325
hence %7 < My(z,y) < %5
Now, we have

W($2d(Tx, Ty)) = w((}é)g(g)) = w(%) - %

13135 < M;(z,y) _ Y(Ms(z,y))
T1+ 423097273 L+ 423097273 1+ ¢(Ms(z,y))
= f(P(Ms(z,y)), (Ms(z,9))).

Hence, T is a generalized T'AC-contractive mapping. Thus, T satisfies all the
hypotheses of Theorem 3.3 and x = % is the (unique) fixed point of 7.

Here we observe that in the usual metric sense, for any «, 3 : X — [0, 00) such
that T is a cyclic («, 3)-admissible mapping, we can easily verify that

Y(d(Tx,Ty)) £ f(¥ ), ¢(d(z,y))),

for any ¢ € U, ¢ € ® and f defined as in Definition 1.1, and for any z # y with
a(z)B(y) > 1, so that T is not a T AC-contractive mapping. Hence Theorem 1.2 is
not applicable.

EXAMPLE 4.10. Let X = [0,1] and let d : X x X — [0,00) be defined by
d(z,y) = \x —y|%2. Then (X,d) is a b-metric space with s = 2. Let A = [0, ]
and B = [§,1], and define T: AUB — AU B by T(z) = + — £. Hence, we have

8
TA=[ i CcBand TB =0, 5] = A which implies that T is cychc
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We now show that T is a generalized T AC-cyclic contractive mapping. We

choose ¢(t) =t, ¢(t) = 3, t > 0 and f(a,t) = 147- For z € A and y € B we have

M, (2, y) = max {d(x, y),d(z, Te), d(y, Ty),

d(z,Ty) +d(y, Tx) }

2s
dr 1, 4y 1, lv—2+Li24jy—2+ 12
= g2 1222212222 3 "3 3 "3
_maX{|CC y|7|3 3|a|3 3|7 1 ,
Now, we obtain
3T Y T Yy 8
W(s*d(Tx, Ty)) = $(2d(3, 3)) = ¥ (65 - 51°) < e((Gle —ul*)
8 2 8 S(‘ray)
= 2|z —y]? < =M,(z,y) =
9|95 yI” < 9 (z,v) 1+%
¢(Ms($,y))

Therefore, T is a generalized T'AC-cyclic contractive mapping. Hence T satisfies
all the hypotheses of Theorem 3.6 and z = i is the fixed point of T'.
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