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TOWARDS CANTOR INTERSECTION THEOREM AND
BAIRE CATEGORY THEOREM IN PARTIAL METRIC SPACES

Manoranjan Singha and Koushik Sarkar

Abstract. In this paper we consider a suitable definition of convergence and introduce star
closed sets that enable us to establish a variant of Cantor intersection theorem as well as Baire
category theorem in partial metric spaces.

1. Introduction

As in [5], let X = Sw be the set of all sequences over a nonempty set S. Then
(X, d) is a metric space if for all x, y ∈ X, d(x, y) = 2−k, where k is the largest
nonnegative integer or ∞ such that xi = yi for each i < k. In Computer Science,
every sequence is approximated by a section of it however long it may be because
it is not possible, by writing a computer program, to compute a sequence and print
out its values in any finite amount of time. Suppose now that the above definition
of ‘d’ is extended to Y , the set of all finite sequences over S. Then ‘d’ fails to be a
metric on Y because d(x, x) = 2−k for some k < ∞, that is because nonzero self-
distance is possible. Now, the question is, “is there a generalization of the metric
space axioms in which nonzero self-distances are possible, such that most familiar
metric and topological properties are retained?” Partial metric space appears as
an affirmative answer to this question. In 1994, S. G. Matthews [7] introduced the
concept of partial metric space to study denotational semantics of programming
languages and brought the concept of nonzero self distances.

For a metric space (X, d) closed sets play an important role to characterize its
completeness. In this paper we introduce star closed sets and show that Cantor
intersection theorem and Baire category theorem can be achieved in partial metric
spaces.

As in [7], a mapping p : X ×X → [0,∞), where X is a nonempty set, is said
to be a partial metric if whenever x, y, z ∈ X the following conditions hold:
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(1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(2) p(x, y) = p(y, x);
(3) p(x, y) ≥ p(x, x);
(4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z)
and the ordered pair (X, p) is called a partial metric space. A basic example of a
partial metric space is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+.

Each partial metric p on X generates a T0 topology τp on X having the family
of open p-balls Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} as a basis. According to
[7], a sequence {xn} in (X, p) is said to converge to x if limn→∞ p(xn, x) = p(x, x).

Now let X = [0,∞) and p(x, y) = max{x, y}, ∀x, y ∈ X. Then the sequence
{1, 2, 1, 2, . . . } is convergent in the partial metric space (X, p), which is absurd. So,
as in [5], we say that a sequence {xn} in a partial metric space (X, p) converges
to x ∈ X if limn→∞ p(xn, x) = p(x, x) = limn→∞ p(xn, xn). A sequence {xn} in
(X, p) is a Cauchy sequence if limn,m→∞ p(xn, xm) exists and a partial metric space
is said to be complete if every Cauchy sequence in (X, p) is convergent.

For a partial metric space (X, p), the functions dw, dp : X ×X → R+ given by
dw(x, y) = 2p(x, y)− p(x, x)− p(y, y) and

dp(x, y) = max{p(x, y)− p(x, x), p(x, y)− p(y, y)}
= p(x, y)−min{p(x, x), p(y, y)}

are metrics on X.
Throughout this paper, by A

p
we mean the closure of A in (X, p) and by A the

closure of A in (X, dp). We define the interior of A by IntA = {x ∈ A : Bp(x, r) ⊂
A for some r > 0}. The articles [2–4, 6, 8–11, 13, 14] are cited to provide more
information about partial metric spaces achieved by several researchers working in
this field.

2. Star closure, Cantor intersection theorem
and Baire category theorem

Let us begin with the example stated above and consider the subset A = (0, 1)
of X. Then A

p
= [0,∞). Now take a ∈ [0,∞)− [0, 1]. Then a ∈ A

p
, but there does

not exist any sequence xn ∈ A such that limn→∞ p(xn, xn) = p(a, a) and so {xn}
does not converge to a. i.e., the sequence lemma does not hold in a partial metric
space. Now we define the star closure of a subset and star closed sets in a partial
metric space. We define A

∗
by

A
∗

= A ∪ { l : l is a limit of a convergent sequence in A }.
A is said to be a star closed set in (X, p) if A = A

∗
. In a partial metric space (X, p)

we observe the following properties

(i) ∅∗ = ∅.
(ii) X

∗
= X.
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(iii) A ⊂ B ⇒ A
∗ ⊂ B

∗
.

(iv) A
∗

is the smallest star closed set containing A.

(v)
m⋃

n=1
An

∗
=

m⋃
n=1

A
∗
n.

Now since a partial metric space (in the sense of [7]) is not even T1 in general,
there is a doubt about the uniqueness of limit of a convergent sequence therein. In
the case of convergence defined as in [5] (which we assume in the sequel), there is
no such doubt according to the following

Proposition 2.1. In a partial metric space (X, p) the limit of a convergent
sequence (in the sense of [5]) is unique.

Proof. Let {xn} be a sequence in (X, p) that converges to x and y. Then

lim
n→∞

p(xn, x) = p(x, x) = lim
n→∞

p(xn, xn), and (2.1)

lim
n→∞

p(xn, y) = p(y, y) = lim
n→∞

p(xn, xn). (2.2)

From (2.1) and (2.2) we get
p(x, x) = p(y, y). (2.3)

Now p(x, y) ≤ p(x, xn) + p(xn, y) − p(xn, xn). Taking the limit we have p(x, y) ≤
p(x, x). Also we have p(x, y) ≥ p(x, x). Hence p(x, y) = p(x, x). Using (2.3) we
have p(x, y) = p(x, x) = p(y, y), which implies x = y.

Proposition 2.2. A
∗

is a star closed set.

Proof. Let x ∈ A
∗∗

. Then there exists a sequence xn ∈ A
∗

such that
limn→∞ p(xn, x) = p(x, x) = limn→∞ p(xn, xn). Since xn ∈ A

∗
there exists a

sequence un
m ∈ A such that limm→∞ p(un

m, xn) = p(xn, xn) = limm→∞ p(un
m, un

m).
Hence

lim
n,m→∞

p(un
m, xn) = p(x, x) = lim

m→∞
p(un

m, un
m). (2.4)

Now p(un
m, x) ≤ p(un

m, xn)+p(xn, x)−p(xn, xn). Taking the limit as n,m →∞ we
get limm→∞ p(un

m, x) ≤ p(x, x). Hence limm→∞ p(un
m, x) = p(x, x). Using (2.4) we

get limm→∞ p(un
m, x) = p(x, x) = limm→∞ p(un

m, un
m). So x ∈ A

∗
. Thus A

∗∗ ⊂ A
∗
.

Hence A
∗∗

= A
∗
.

Note. Defining the star closure of a subset of a topological space in the same
way it can be seen that the properties (i)–(v) hold but in this case the star closure
may not be idempotent.

Proposition 2.3. Any closed set in (X, p) is a star closed set in (X, p).

Proof. Let A be a closed in (X, p). Then A = A
p
. Let x ∈ A

∗
. Then there

exists a sequence xn ∈ A such that limn→∞ p(xn, x) = p(x, x) = limn→∞ p(xn, xn).
It follows that x ∈ A

p
= A. Thus A

∗
= A. Hence A is star closed in (X, p).



Cantor intersection theorem and Baire category theorem 129

Example 2.1. The subset A = {1, 2, 3, 4} is a star closed set but not a closed
set in the partial metric space (R+, p) with p(x, y) = max{x, y} ∀x, y ∈ R+.

Lemma 2.1. [1] Let {xn} be a sequence in a partial metric space (X, p) and
x ∈ X. Then limn→∞ dp(xn, x) = 0 if and only if limn→∞ p(xn, x) = p(x, x) =
limn,m→∞ p(xn, xm).

Proposition 2.4. Any star closed set in (X, p) is a closed set in (X, dp).

Proof. Let A be a star closed set in (X, p). i.e., A = A
∗
. Let x ∈ A. Then

there exists a sequence {xn} in A that converges to x with respect to τ(dp) and
using Lemma 2.1 we have x ∈ A

∗
= A. Thus A ⊂ A. Hence A = A.

Example 2.2. Let us consider (R+, p) with p(x, y) = max{x, y} ∀x, y ∈ R+.
Let C = {a, b}. Then C = C but C

p 6= C. Hence a closed subset of (X, dp) may
not be closed set in (X, p).

Lemma 2.2. [12] In a partial metric space, if {xn} converges to x and {yn}
converges to y then limn→∞ p(xn, yn) = p(x, y).

Lemma 2.3. In a partial metric space (X, p),
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in

the metric space (X, dp).
(b) (X, p) is complete if and only if (X, dp) is complete.

Proof. Part (a) is done in [1]. We prove part (b). Let (X, dp) be com-
plete. If {xn} is a Cauchy sequence in (X, p), then by (a) {xn} is a Cauchy
sequence in (X, dp). Since (X, dp) is complete there exists y ∈ X such that
limn→∞ dp(xn, y) = 0. So, limn→∞ p(xn, y) = p(y, y) = limn→∞ p(xn, xn). Con-
versely, let (X, p) be complete and {xn} be a Cauchy sequence in (X, dp). Hence
{xn} is a Cauchy sequence in (X, p). Since (X, p) is complete there exists y ∈ X
such that limn→∞ p(xn, y) = p(y, y) = limn→∞ p(xn, xn). Then for any ε > 0 there
exists a natural number M such that p(xn, y)− p(y, y) < ε ∀n ≥ M . Then

dp(y, xn) = p(xn, y)−min{p(xn, xn), p(y, y)} < ε ∀n ≥ M.

Hence (X, dp) is complete.
Remark 2.1. Since dp and dw are equivalent metrics, we can take dw instead

of dp in the above lemma.

Lemma 2.4. p(A) = p(A
∗
) where p(A) = sup{p(x, y)− p(x, x) : x, y ∈ A}.

Proof. For any subsets A,B of the underlying partial metric space (X, p),
A ⊂ B implies A×A ⊂ B ×B and so

sup{p(x, y)− p(x, x) : x, y ∈ A} ≤ sup{p(x, y)− p(x, x) : x, y ∈ B}
which means p(A) ≤ p(B). Since A ⊂ A

∗
, p(A) ≤ p(A

∗
). Let x, y ∈ A

∗
; then there

exist {xn}, {yn} in A such that {xn} converges to x and {yn} converges to y. Now
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p(x, y) ≤ p(x, xn) + p(xn, yn) + p(yn, y)− p(xn, xn)− p(yn, yn), so after passing to
the limit p(x, y) − p(x, x) ≤ p(A). Thus, sup{p(x, y) − p(x, x) : x, y ∈ A

∗} ≤ p(A)
that is, p(A

∗
) ≤ p(A) and we are done.

Theorem 2.1. A partial metric space (X, p) is complete if and only if for
every sequence {Fn} of star closed sets in (X, p) satisfying:
(a) Fn+1 ⊂ Fn ∀n ∈ N and
(b) p(Fn) → 0 as n →∞,
the intersection

⋂∞
n=1 Fn is a singleton.

Proof. Let {xn} be a Cauchy sequence in (X, p) and limn→∞ p(xn+p, xn) = α ∈
R. So for any ε > 0, there exists a natural number v such that |p(xn+p, xn)−α| < ε

2 ,
∀n ≥ v. Let Fn = {xn+p−1 : p ∈ N}. Then Fn+1 ⊂ Fn implies Fn+1

∗ ⊂ Fn
∗
. Now

|p(xn+p, xn)− p(xn, xn)| ≤ |p(xn+p, xn)− α|+ |p(xn, xn)− α|
< ε ∀n ≥ v.

Hence limn→∞{p(xn+p, xn) − p(xn, xn) : xn+p, xn ∈ Fn} = 0. So, p(Fn) → 0 as
n → ∞ and as a result p(Fn

∗
) → 0 as n → ∞. So we have

⋂∞
n=1 Fn

∗ 6= ∅. Let
x ∈ ⋂∞

n=1 Fn
∗
. Since xn ∈ Fn, 0 ≤ p(xn, x) − p(x, x) ≤ p(Fn

∗
). Taking the limit

and using Sandwich Theorem we get limn→∞ p(xn, x) = p(x, x). Similarly one can
show that 0≤ p(x, xn) − p(xn, xn) ≤ p(Fn

∗
). Using Sandwich Theorem we get

limn→∞ p(xn, xn) = p(x, x). So, limn→∞ p(xn, x) = p(x, x) = limn→∞ p(xn, xn).
Hence (X, p) is complete.

Conversely, let (X, p) be a complete partial metric space. Let us choose xn ∈
Fn ∀n ∈ N. Since Fn+1 ⊂ Fn, it follows that xm ∈ Fn ∀m ≥ n. Now 0 ≤
p(xn, xm) − p(xn, xn) ≤ p(Fn) and 0 ≤ p(xm, xn) − p(xm, xm) ≤ p(Fn). So, 0 ≤
p(xn, xm) − min{p(xn, xn), p(xm, xm)} ≤ p(Fn). Thus 0 ≤ dp(xn, xm) ≤ p(Fn).
Using condition (b) and Sandwich Theorem we see that {xn} is a Cauchy sequence
in (X, dp). Since (X, p) is complete, by Lemma 2.3 we can say that (X, dp) is
complete. Hence there exists x ∈ X such that dp(xn, x) → 0 as n → ∞. This
implies {xn} converges to x in (X, p). Therefore x ∈ Fn as Fn is star closed in (X, p).
Thus x ∈ Fn ∀n ∈ N. Let y ∈ ⋂∞

n=1 Fn. This implies 0 ≤ p(x, y)− p(x, x) ≤ p(Fn).
Taking the limit and using Sandwich Theorem we get p(x, y) = p(x, x). Similarly
one can get p(x, y) = p(y, y). Hence p(x, y) = p(x, x) = p(y, y) and so x = y. Thus⋂∞

n=1 Fn is a singleton.

Definition 2.1. A subset B of a partial metric space (X, p) is said to be
nowhere dense in (X, p) if every open set contains an open set V such that V ∩B = ∅.

Definition 2.2. A partial metric space (X, p) is said to be of second category
if it cannot be written as a countable union of nowhere dense sets. Otherwise it is
of first category.

Lemma 2.5. A closed ball in a partial metric space (X, p) is a star closed set
in (X, p).
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Proof. Bp[x, ε] = {y ∈ X : p(x, y) ≤ p(x, x) + ε} is a closed ball in
(X, p). Let z ∈ Bp[x, ε]

∗
. Then there exists a sequence xn ∈ Bp[x, ε] such that

limn→∞ p(xn, z) = p(z, z) = limn→∞ p(xn, xn). Also p(xn, x) ≤ p(x, x) + ε. Now
p(x, z) ≤ p(x, xn) + p(xn, z) − p(xn, xn). Taking the limit we have p(x, z) ≤
p(x, x) + ε implying that z ∈ Bp[x, ε]. Hence Bp[x, ε]

∗ ⊂ Bp[x, ε].
Example 2.3. A closed ball in a partial metric space (X, p) may fail to be

closed in (X, p). For example, let us consider the partial metric space ([0,∞), p),
where p(x, y) = max{x, y}. Here every open ball is of the form Bp(x, ε) = [0, x+ ε)
and every closed ball is of the form Bp[x, ε] = [0, x + ε]. So, no closed ball in this
partial metric space can be closed.

Theorem 2.2. Every complete partial metric space is of second category.

Proof. Let (X, p) be a complete partial metric space. Let X =
⋃∞

n=1 An, where
An is nowhere dense in (X, p) for all n ∈ N. Since A1 is nowhere dense in (X, p),
the open set X contains an open set Bp(x1, r1) such that Bp(x1, r1)∩A1 = ∅, where
0 < r1 < 1. Let F1 = Bp[x1,

r1
2 ] and x2 ∈ IntF1. Since A2 is nowhere dense in

(X, p), IntF1 contains an open set Bp(x2, r2) such that Bp(x2, r2)∩A2 = ∅, where
0 < r2 < 1

2 . Let F2 = Bp[x2,
r2
2 ]. Continuing in this way we get a decreasing

sequence {Fn} of star closed sets in X, where Fn = Bp[xn, rn

2 ] and 0 < rn < 1
2n−1

with the properties
(a) Fn+1 ⊂ Fn ∀n ∈ N and
(b) p(Fn) → 0 as n →∞.

Since (X, p) is complete, using Theorem 2.1 we have
⋂∞

n=1 Fn = {x} for some
x ∈ X. So, x ∈ Bp(xn, rn) and Bp(xn, rn) ∩ An = ∅ ∀n ∈ N which implies that
x /∈ An ∀n ∈ N. This contradicts x ∈ X. Hence (X, p) is of second category.
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