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ON GENERALIZATIONS OF BOEHMIAN SPACE
AND HARTLEY TRANSFORM

C. Ganesan and R. Roopkumar

Abstract. Boehmians are quotients of sequences which are constructed by using a set of
axioms. In particular, one of these axioms states that the set S from which the denominator
sequences are formed should be a commutative semigroup with respect to a binary operation. In
this paper, we introduce a generalization of abstract Boehmian space, called generalized Boehmian
space or G-Boehmian space, in which S is not necessarily a commutative semigroup. Next, we
provide an example of a G-Boehmian space and we discuss an extension of the Hartley transform
on it.

1. Introduction

Motivated by the Boehme’s regular operators [1], a generalized function space
called Boehmian space is introduced by J. Mikusiński and P. Mikusiński [6] and
two notions of convergence called δ-convergence and ∆-convergence on a Boehmian
space are introduced in [7]. In general, an abstract Boehmian space is constructed
by using a suitable topological vector space Γ, a subset S of Γ, ? : Γ× S → Γ and
a collection ∆ of sequences satisfying some axioms. In [9], the abstract Boehmian
space is generalized by replacing S with a commutative semi-group in such a way
that S is not even comparable with Γ and the binary operation on S need not be the
same as ?. Using this generalization of Boehmians, a lot of Boehmian spaces have
been constructed for extending various integral transforms. To mention a few recent
works on Boehmians, we refer to [12–16, 18]. There is yet another generalization
of Boehmians called generalized quotients or pseudoquotients [3, 10, 11].

According to the earlier constructions, we note that S is assumed to be a
commutative semi-group either with respect to the restriction of ? or with respect to
the binary operation defined on S. In this paper, we provide another generalization
of an abstract Boehmian space, in which S is not necessarily a commutative semi-
group. We shall call such Boehmian space a generalized Boehmian space or simply
a G-Boehmian space and we also provide a concrete example of a G-Boehmian
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space and study the Hartley transform on it. At this juncture, we point out that in
a recent interesting paper on pseudoquotients [5], the commutativity of S is relaxed
by Ore type condition, which is entirely different from the generalization discussed
in this paper.

2. Preliminaries

2.1. Boehmians. From [7], we briefly recall the construction of a Boehmian
space B = B(Γ, S, ?,∆), where Γ is a topological vector space over C, S ⊆ Γ,
? : Γ× S → Γ satisfies the following conditions:

(A1) (g1 + g2) ? s = g1 ? s + g2 ? s, ∀g1, g2 ∈ Γ and ∀s ∈ S,
(A2) (cg) ? s = c(g ? s), ∀c ∈ C, ∀g ∈ Γ and ∀s ∈ S,
(A3) g ? (s ? t) = (g ? s) ? t, ∀g ∈ Γ and ∀s, t ∈ S,
(A4) s ? t = t ? s, ∀s, t ∈ S,
(Ac) If gn → g as n →∞ in Γ and s ∈ S, then gn ? s → g ? s as n →∞ in Γ,
and ∆ is a collection of sequences from S with the following properties:

(∆1) If (sn), (tn) ∈ ∆, then (sn ? tn) ∈ ∆,
(∆2) If g ∈ Γ and (sn) ∈ ∆, then g ? sn → g as n →∞ in Γ.

We call a pair ((gn), (sn)) of sequences satisfying the conditions gn ∈ Γ, ∀n ∈ N,
(sn) ∈ ∆ and

gn ? sm = gm ? sn, ∀m,n ∈ N,

a quotient and is denoted by gn

sn
. The equivalence class

[
gn

sn

]
containing gn

sn
induced

by the equivalence relation ∼ defined on the collection of all quotients by

gn

sn
∼ hn

tn
if gn ? tm = hm ? sn, ∀m, n ∈ N (1)

is called a Boehmian and the collection B of all Boehmians is a vector space with
respect to the addition and scalar multiplication defined as follows.

[
gn

sn

]
+

[
hn

tn

]
=

[
gn ? tn + hn ? sn

sn ? tn

]
, c

[
gn

sn

]
=

[
cgn

sn

]
.

Every member g ∈ Γ can be uniquely identified as a member of B by
[

g?sn

sn

]
,

where (sn) ∈ ∆ is arbitrary and the operation ? is also extended to B × S by[
gn

φn

]
?t =

[
gn?t
φn

]
. There are two notions of convergence on B namely δ-convergence

and ∆-convergence which are defined as follows.

Definition 2.1. We say that Xm
δ→ X as m →∞ in B, if there exists (sn) ∈

∆ such that Xm ? δn, X ? δn ∈ Γ, ∀m,n ∈ N and for each n ∈ N, Xm ? δn → X ? δn

as m →∞ in Γ.

Definition 2.2. We say that Xm
∆→ X as m → ∞ in B, if there exists

(sn) ∈ ∆ such that (Xm−X)?δm ∈ Γ, ∀m ∈ N and (Xm−X)?δm → 0 as m →∞
in Γ.
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2.2. Hartley transform. For an arbitrary integrable function f , the Hartley
transform was defined by

[H(f)](t) =
1√
2π

∫ ∞

−∞
f(x)[cosxt + sin xt] dx, ∀t ∈ R

and its inverse is obtained from the formula H[H(f)] = f , whenever H(f) ∈ L1(R).
For more details on the classical theory of Hartley transform, we refer to [2, 4].

The Hartley transform is one of the integral transforms which is closely related
to Fourier transform in the following sense.

F(f) =
H(f) +H(−f)

2
+ i

H(f)−H(−f)
2

and H(f) =
1 + i

2
F(f) + i

1− i

2
F(−f),

where F(f) is the Fourier transform of f , which is defined by

F(f)(t) =
1√
2π

∫ ∞

−∞
f(x)e−ixt dx, ∀t ∈ R.

However N. Sundararajan [19] pointed out that Hartley transform has some com-
putational advantages over the Fourier transform and therefore it can be an ideal
alternative of Fourier transform.

Furthermore, as |[H(f)](t)| ≤ 2|F(f)(t)|, ∀t ∈ R, using the properties of Fouri-
er transform, we have H(f) ∈ C0(R), ‖H(f)‖∞ ≤ 2‖F(f)‖∞ ≤ ‖f‖1 and hence the
Hartley transform H : L1(R) → C0(R) is continuous.

3. Generalized Boehmian spaces

We introduce a generalization of Boehmain space called G-Boehmian space
B?(Γ, S, ?, ∆), which is obtained by relaxing the Boehmian-axiom (A4) in Subsec-
tion 2.1 by

(A′4) f ? (s ? t) = (f ? t) ? s, ∀f ∈ Γ and s, t ∈ S.

If we probe into know the necessity for introducing the axioms (A3) and (A4) for
constructing Boehmians, we could see that these two axioms are used to prove the
transitivity of the relation ∼ defined on the collection of all quotients in (1).

It is easy to see that the verification of reflexivity and symmetry for the relation
∼ are straightforward. So we now verify the transitivity of ∼ using (A3) and (A′4).

Let gn

sn
, hn

tn
and pn

un
be quotients such that gn

sn
∼ hn

tn
and hn

tn
∼ pn

un
. Then, we

have gn, hn, pn ∈ Γ, ∀n ∈ N, (sn), (tn), (un) ∈ ∆ and

gn ? sm = gm ? sn, ∀m,n ∈ N
hn ? tm = hm ? tn, ∀m, n ∈ N
pn ? um = pm ? un, ∀m,n ∈ N (2)
gn ? tm = hm ? sn, ∀m,n ∈ N
hn ? um = pm ? tn, ∀m,n ∈ N.
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For arbitrary m,n, j ∈ N, applying (A′4), (A3) and (2), we get

(gn ? um) ? tj = gn ? (tj ? um) = (gn ? tj) ? um

= (hj ? sn) ? um = hj ? (um ? sn)

= (hj ? um) ? sn = (pm ? tj) ? sn

= pm ? (sn ? tj) = (pm ? sn) ? tj .

Next applying (∆2), we get gn ? um = pm ? sn, ∀m,n ∈ N, and hence gn

sn
∼ pn

un
.

Thus, the transitivity of ∼ follows.
We note that the axioms (A3) and (A4) are also used in the proof of the

following statements:
• g?sn

sn
is a quotient, ∀g ∈ Γ and (sn) ∈ ∆,

• gn

sn
∼ gn?tn

sn?tn
, for each quotient gn

sn
and for each (tn) ∈ ∆,

• gn?t
sn

is a quotient whenever gn

sn
is a quotient,

• gn?tn+hn?sn

sn?tn
is a quotient whenever gn

sn
and hn

tn
are quotients,

and these statements can also be proved by using (A3) and (A′4) as above.
Now we construct an example of a G-Boehmian space by proving the required

auxiliary results. Let Γ = S = L1(R), ∆ be the usual collection of all sequences
(δn) from L1(R) satisfying the following properties.

(P1)
∫∞
−∞ δn(t) dt = 1, ∀n ∈ N,

(P2)
∫∞
−∞ |δn(t)| dt ≤ M, ∀n ∈ N, for some M > 0,

(P3) supp δn → 0 as n →∞, where supp δn is the support of δn;
and # be the following convolution

(f#g)(x) =
1
2

∫ ∞

−∞
[f(x + y) + f(x− y)]g(y)dy, ∀x ∈ R,

for all f, g ∈ L1(R).

Lemma 3.1. If f, g ∈ L1(R), then ‖f#g‖1 ≤ ‖f‖1‖g‖1 and hence f#g ∈
L1(R).

Proof. By using Fubini’s theorem, we obtain

‖f#g‖1 =
1
2

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
[f(x + y) + f(x− y)]g(y) dy

∣∣∣∣ dx

≤ 1
2

∫ ∞

−∞

∫ ∞

−∞
|[f(x + y) + f(x− y)]g(y)| dy dx

≤ 1
2

∫ ∞

−∞
|g(y)|

∫ ∞

−∞
|f(x + y) + f(x− y)| dx dy

≤ ‖f‖1‖g‖1 < +∞
and hence f#g ∈ L1(R).
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Lemma 3.2. If f, g and h ∈ L1(R) then (f#g)#h = f#(g#h) = (f#h)#g.

Proof. Let f, g, h ∈ L1(R) and let x ∈ R. Repeatedly applying the Fubini’s
theorem, we get that

[f#(g#h)](x) =
∫ ∞

−∞
[f(x + y) + f(x− y)](g#h)(y) dy

=
∫ ∞

−∞
[f(x + y) + f(x− y)]

∫ ∞

−∞
[g(y + z) + g(y − z)]h(z) dz dy

=
∫ ∞

−∞
h(z)

( ∫ ∞

−∞
[f(x + y) + f(x− y)]g(y + z) dy

+
∫ ∞

−∞
[f(x + y) + f(x− y)]g(y − z) dy

)
dz

=
∫ ∞

−∞
h(z)

( ∫ ∞

−∞
[f(x + u− z) + f(x− u + z)]g(u) du

+
∫ ∞

−∞
[f(x + u + z) + f(x− u− z)]g(u) du

)
dz,

(by using y + z = u in the first term and y − z = u in the second term)

=
∫ ∞

−∞
h(z)

∫ ∞

−∞
[f(x + u− z) + f(x− u + z)

+ f(x + u + z) + f(x− u− z)]g(u) du dz

=
∫ ∞

−∞
h(z)

( ∫ ∞

−∞
[f(x + z + u) + f(x + z − u)]g(u) du

+
∫ ∞

−∞
[f(x− z + u) + f(x− z − u)]g(u) du

)
dz

=
∫ ∞

−∞
h(z)[(f#g)(x + z) + (f#g)(x− z)] dx

= [(f#g)#h](x). (3)

Using (3), we get

[f#(g#h)](x) =
∫ ∞

−∞
h(z)

∫ ∞

−∞
[f(x + z + u) + f(x + z − u)

+ f(x− z + u) + f(x− z − u)]g(u) du dz

=
∫ ∞

−∞
g(u)

∫ ∞

−∞
[f(x + z + u) + f(x + z − u)

+ f(x− z + u) + f(x− z − u)]h(z) dz du

=
∫ ∞

−∞
g(u)

∫ ∞

−∞
[f(x + u + z) + f(x + u− z) + f(x− u + z)

+ f(x− u− z)]h(z) dz du
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=
∫ ∞

−∞
g(u)

[ ∫ ∞

−∞
[f(x + u + z) + f(x + u− z)]h(z) dz

+
∫ ∞

−∞
[f(x− u + z) + f(x− u− z)]h(z) dz

]
du

=
∫ ∞

−∞
g(u)[(f#h)(x + u) + (f#h)(x− u)] du

= [(f#h)#g](x).

Since x ∈ R is arbitrary, the proof follows.

Lemma 3.3. If fn → f as n → ∞ in L1(R) and if g ∈ L1(R), then fn#g →
f#g as n →∞ in L1(R).

Proof. From the proof of Lemma 3.1, we have the estimate

‖(fn − f)#g‖1 ≤ ‖fn − f‖1‖g‖1. (4)

Since fn → f as n → ∞ in L1(R), the right hand side of (4) tends to zero as
n →∞. Hence the lemma follows.

Lemma 3.4. If (δn), (ψn) ∈ ∆ then (δn#ψn) ∈ ∆.

Proof. By using Fubini’s theorem, we get
∫ ∞

−∞
(δn#ψn)(x) dx =

1
2

∫ ∞

−∞

∫ ∞

−∞
[δn(x + y) + δn(x− y)] ψn(y) dy dx

=
1
2

∫ ∞

−∞
ψn(y)

∫ ∞

−∞
[δn(x + y) + δn(x− y)] dx dy

=
1
2

∫ ∞

−∞
ψn(y)

[ ∫ ∞

−∞
δn(z) dz +

∫ ∞

−∞
δn(z) dz

]
dy

=
1
2

∫ ∞

−∞
2ψn(y) dy = 1, for all n ∈ N.

By a similar argument, it is easy to verify that
∫∞
−∞ |(δn#ψn)(x)| dx ≤ M for some

M > 0. Since supp δn#ψn ⊂ [supp δn + supp ψn] ∪ [supp δn − supp ψn], we get
that supp (δn#ψn) → {0} as n →∞. Hence it follows that (δn#ψn) ∈ ∆.

Theorem 3.5. Let f ∈ L1(R) and let (δn) ∈ ∆, then f#δn → f as n → ∞
in L1(R).

Proof. Let ε > 0 be given. By the property (P2) of (δn), there exists M > 0
with

∫∞
−∞ |δn(t)|dt ≤ M, ∀ n ∈ N. Using the continuity of the mapping y 7→ fy

from R in to L1(R), (see [17, Theorem 9.5]), choose δ > 0 such that

‖fy − f0‖1 <
ε

M
whenever |y| < δ, (5)
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where fy(x) = f(x− y), ∀x ∈ R. By the property (P3) of (δn), there exists N ∈ N
with supp δn ⊂ [−δ, δ], ∀n ≥ N . By using the property (P1) of (δn) and Fubini’s
theorem, we obtain

‖f#δn − f‖1 =
∫ ∞

−∞

∣∣∣∣
1
2

∫ ∞

−∞
[f(x + y) + f(x− y)] δn(y) dy − f(x)

∫ ∞

−∞
δn(y) dy

∣∣∣∣ dx

≤ 1
2

∫ ∞

−∞

∫ ∞

−∞
(|f(x + y)− f(x)|+ |f(x− y)− f(x)|) |δn(y)| dx dy

≤ 1
2

∫ ∞

−∞

( ∫ ∞

−∞
|f(x + y)− f(x)| dx +

∫ ∞

−∞
|f(x− y)− f(x)| dx

)
|δn(y)| dy

=
1
2

∫ δ

−δ

(‖f−y − f0‖1 + ‖fy − f0‖1) |δn(y)| dy, ∀ n ≥ N

<
1
2

∫ δ

−δ

(
ε

M
+

ε

M
) |δn(y)| dy, by (5)

=
ε

M

∫ δ

−δ

|δn(y)| dy ≤ ε, ∀ n ≥ N

and hence f#δn → f as n →∞ in L1(R).

Lemma 3.6. If fn → f as n → ∞ in L1(R) and (δn) ∈ ∆, then fn#δn → f
as n →∞ in L1(R).

Proof. For any n ∈ N we have

‖fn#δn − f‖1 = ‖fn#δn − f#δn + f#δn − f‖1
≤ ‖(fn − f)#δn‖1 + ‖f#δn − f‖1
≤ ‖fn − f‖1 ‖δn‖1 + ‖f#δn − f‖1, (by Lemma 3.1)

≤ M‖fn − f‖1 + ‖f#δn − f‖1
Since fn → f as n → ∞ in L1(R) and by Theorem 3.5, the right hand side of the
last inequality tends to zero as n →∞. Hence the lemma follows.

Thus the G-Boehmian space B?
L1 = B?(L1(R),L1(R), #, ∆) has been con-

structed.
Finally, we justify that the convolution # introduced in this section is not

commutative.

Example 3.7. If f(x) =
{

e−x if x ≥ 0
0 if x < 0

and g(x) =
{

0 if x > 0
ex if x ≤ 0,

then

f, g ∈ L1(R) and f#g 6= g#f .
Indeed, for any x ∈ R, we have

(f#g)(x) =
∫ ∞

−∞
[f(x + y) + f(x− y)]g(y) dy =

∫ 0

−∞
[f(x + y) + f(x− y)]ey dy

=
∫ 0

−∞
f(x + y)ey dy +

∫ 0

−∞
f(x− y)ey dy
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=

{ ∫ 0

−x
e−(x+y)ey dy +

∫ 0

−∞ e−(x−y)ey dy if x ≥ 0

0 +
∫ x

−∞ e−(x−y)ey dy if x < 0

=

{
e−x(

∫ 0

−x
dy +

∫ 0

−∞ e2y dy) if x ≥ 0

e−x
∫ x

−∞ e2y dy if x < 0

=
{

e−x(x + 1
2 ) if x ≥ 0

ex

2 if x < 0

and

(g#f)(x) =
∫ ∞

−∞
[g(x + y) + g(x− y)]f(y) dy =

∫ ∞

0

[g(x + y) + g(x− y)]e−y dy

=
∫ ∞

0

g(x + y)e−y dy +
∫ ∞

0

g(x− y)e−y dy

=

{
0 +

∫∞
x

ex−ye−y dy if x > 0
∫ −x

0
ex+ye−y dy +

∫∞
0

ex−ye−y dy if x ≤ 0

=

{
ex

∫∞
x

e−2y dy if x > 0

ex(
∫ −x

0
dy +

∫∞
0

e−2y dy) if x ≤ 0

=
{ 1

2e−x if x > 0

ex(−x + 1
2 ) if x ≤ 0.

From the above computations it is clear that f#g 6= g#f and hence our claim
holds.

4. Hartley transform on G-Boehmians

As in the general case of extending any integral transform to the context of
Boehmians, we have to first obtain a suitable convolution theorem for Hartley
transform. To obtain a compact version of a convolution theorem for Hartley
transform, for f ∈ L1(R), we define

[C(f)](t) =
∫ ∞

−∞
f(x) cos xt dx, t ∈ R.

We point out that C is not the usual Fourier cosine transform, as Fourier cosine
transform is defined for integrable functions on non-negative real numbers.

Theorem 4.1. If f, g ∈ L1(R), then H(f#g) = H(f) · C(g).

Proof. Let t ∈ R be arbitrary. By using Fubini’s theorem, we obtain that

[H(f#g)](t) =
1√
2π

∫ ∞

−∞
(f#g)(x)[cosxt + sin xt] dx

=
1√
2π

1
2

∫ ∞

−∞

∫ ∞

−∞
[f(x + y) + f(x− y)]g(y)dy[cos xt + sin xt] dx
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=
1

2
√

2π

∫ ∞

−∞
g(y)

∫ ∞

−∞
[f(x + y) + f(x− y)] [cos xt + sin xt] dx dy

=
1

2
√

2π

∫ ∞

−∞
g(y)

( ∫ ∞

−∞
f(x + y) cos xt dx +

∫ ∞

−∞
f(x + y) sin xt dx

+
∫ ∞

−∞
f(x− y) cos xt dx +

∫ ∞

−∞
f(x− y) sin xt dx

)
dy

=
1

2
√

2π

∫ ∞

−∞
g(y)

( ∫ ∞

−∞
f(z) cos(zt− yt) dz +

∫ ∞

−∞
f(z) sin(zt− yt) dz

+
∫ ∞

−∞
f(z) cos(zt + yt)′, dz +

∫ ∞

−∞
f(z) sin(zt + yt) dz

)
dy

=
1

2
√

2π

∫ ∞

−∞
g(y)

∫ ∞

−∞
f(z)[2 cos zt cos yt + 2 sin zt cos yt] dz dy

=
1√
2π

∫ ∞

−∞
g(y) cos yt

∫ ∞

−∞
f(z)[cos zt + sin zt] dz dy

= [H(f)](t) · [C(g)](t).

Thus we have H(f#g) = H(f) · C(g).

Theorem 4.2. If f, g ∈ L1(R), then C(f#g) = C(f) · C(g).

Proof. Let t ∈ R be arbitrary. By using Fubini’s theorem, we obtain

[C(f#g)](t) =
∫ ∞

−∞
(f#g)(x) cos xt dx

=
1
2

∫ ∞

−∞

∫ ∞

−∞
[f(x + y) + f(x− y)]g(y) dy cosxt dx

=
1
2

∫ ∞

−∞
g(y)

( ∫ ∞

−∞
f(x + y) cos xt dx +

∫ ∞

−∞
f(x− y) cos xt dx

)
dy

=
1
2

∫ ∞

−∞
g(y)

( ∫ ∞

−∞
f(z) cos(zt− yt) dz +

∫ ∞

−∞
f(z) cos(zt + yt) dz

)
dy

=
∫ ∞

−∞
g(y) cos yt

∫ ∞

−∞
f(z) cos zt dz dy

= [C(f)](t) · [C(g)](t).

Since t ∈ R is arbitrary, we have C(f#g) = C(f) · C(g).

Lemma 4.3. If (δn) ∈ ∆ then C(δn) → 1 as n → ∞ uniformly on compact
subset of R.

Proof. Let K be a compact subset of R. Let ε > 0 be given. Choose M1 > 0,
M2 > 0 and a positive integer N such that

∫∞
−∞ |δn(t)| dt ≤ M1, ∀n ∈ N, K ⊂

[−M2, M2] and supp δn ⊂ [−ε, ε] for all n ≥ N . Then for t ∈ K and n ≥ N , we
have

|[C(δn)](t)− 1| =
∣∣∣∣
∫ ∞

−∞
δn(s) cos ts ds−

∫ ∞

−∞
δn(s) ds

∣∣∣∣
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≤
∫ ∞

−∞
|δn(s)| | cos ts− 1| ds =

∫ ε

−ε

|δn(s)| | cos ts− 1| ds, ∀n ≥ N

≤
∫ ε

−ε

|δn(s)| |ts| ds,

(by using mean-value theorem, and | sin x| ≤ 1, ∀x ∈ R)

≤ M2ε

∫ ε

−ε

|δn(s)| ds ≤ M2M1ε.

This completes the proof.

Definition 4.1. For β =
[

fn

δn

]
∈ B?

L1 , we define the extended Hartley trans-
form of β by [H(β)](t) = limn→∞[H(fn)](t), (t ∈ R).

The above limit exists and is independent of the representative fn

δn
of β. Indeed,

for t ∈ R, choose k such that [C(δk)](t) 6= 0. Then, applying Theorem 4.1, we obtain
that [H(fn)](t) = [H(fn#δk)](t)

[C(δk)](t) = [H(fk#δn)](t)
[C(δk)](t) = [H(fk)](t)

[C(δk)](t) [C(δn)](t). Therefore,

using Lemma 4.3, we get [H(fn)](t) → [H(fk)](t)
[C(δk)](t) , as n → ∞ uniformly on each

compact subset of R. If fn

δn
∼ gn

ψn
, then fn#ψm = gm#δn for all m,n ∈ N.

Again using Theorem 4.1, we get limn→∞[H(fn)](t) = [H(fk)](t)
[C(δk)](t) = [H(gk)](t)

[C(ψk)](t) =
limn→∞[H(gn)](t).

If f ∈ L1(R) and β =
[

f#δn

δn

]
, then

[H(β)](t) = lim
n→∞

[H(f#δn)](t) = [H(f)](t) lim
n→∞

[C(δn)](t) = [H(f)](t),

as [C(δn)](t) → 1 as n → ∞ uniformly on each compact subset of R. This shows
that the extended Hartley transform is consistent with the Hartley transform on
L1(R).

Theorem 4.4. If β ∈ B?
L1 , then the extended Hartley transform H(β) ∈ C(R).

Proof. As H(β) is the uniform limit of {H(fn)} on each compact subset of R
and each H(fn) is a continuous function on R, H(β) is a continuous function on
R.

As proving the following properties of the Hartley transform on Boehmians is
a routine exercise, as in the case of Fourier transform on integrable Boehmians [8],
we just state them without proofs.

Theorem 4.5. The Hartley transform H : B?
L1 → C(R) is linear.

Theorem 4.6. The Hartley transform H : B?
L1 → C(R) is one-to-one.

Theorem 4.7. The Hartley transform H : B?
L1 → C(R) is continuous with

respect to δ-convergence and ∆-convergence.
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